1
|
Nguyen PT, Nakamura Y, Tran NQV, Ishimaru K, Nguyen TA, Kobayashi Y, Watanabe-Saito F, Okuda T, Nakano N, Nakao A. Ethyl Caffeate Can Inhibit Aryl Hydrocarbon Receptor (AhR) Signaling and AhR-Mediated Potentiation of Mast Cell Activation. Int J Mol Sci 2023; 24:9997. [PMID: 37373144 DOI: 10.3390/ijms24129997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Ethyl caffeate (EC) is a natural phenolic compound that is present in several medicinal plants used to treat inflammatory disorders. However, its anti-inflammatory mechanisms are not fully understood. Here, we report that EC inhibits aryl hydrocarbon receptor (AhR) signaling and that this is associated with its anti-allergic activity. EC inhibited AhR activation, induced by the AhR ligands FICZ and DHNA in AhR signaling-reporter cells and mouse bone marrow-derived mast cells (BMMCs), as assessed by AhR target gene expressions such as CYP1A1. EC also inhibited the FICZ-induced downregulation of AhR expression and DHNA-induced IL-6 production in BMMCs. Furthermore, the pretreatment of mice with orally administered EC inhibited DHNA-induced CYP1A1 expression in the intestine. Notably, both EC and CH-223191, a well-established AhR antagonist, inhibited IgE-mediated degranulation in BMMCs grown in a cell culture medium containing significant amounts of AhR ligands. Furthermore, oral administration of EC or CH-223191 to mice inhibited the PCA reaction associated with the suppression of constitutive CYP1A1 expression within the skin. Collectively, EC inhibited AhR signaling and AhR-mediated potentiation of mast cell activation due to the intrinsic AhR activity in both the culture medium and normal mouse skin. Given the AhR control of inflammation, these findings suggest a novel mechanism for the anti-inflammatory activity of EC.
Collapse
Affiliation(s)
- Phuc-Tan Nguyen
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Yuki Nakamura
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Nguyen Quoc Vuong Tran
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kayoko Ishimaru
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Thuy-An Nguyen
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Yoshiaki Kobayashi
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Fumie Watanabe-Saito
- The Institute of Enology and Viticulture, University of Yamanashi, Yamanashi 400-0005, Japan
| | - Tohru Okuda
- The Institute of Enology and Viticulture, University of Yamanashi, Yamanashi 400-0005, Japan
| | - Nobuhiro Nakano
- Atopy Research Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Atsuhito Nakao
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- Atopy Research Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Yamanashi GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| |
Collapse
|
2
|
Khazaal AQ, Haque N, Krager CR, Krager SL, Chambers C, Wilber A, Tischkau SA. Aryl hydrocarbon receptor affects circadian-regulated lipolysis through an E-Box-dependent mechanism. Mol Cell Endocrinol 2023; 559:111809. [PMID: 36283500 PMCID: PMC10509633 DOI: 10.1016/j.mce.2022.111809] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
An internal circadian clock regulates timing of systemic energy homeostasis. The central clock in the hypothalamic suprachiasmatic nucleus (SCN) directs local clocks in peripheral tissues such as liver, muscle, and adipose tissue to synchronize metabolism with food intake and rest/activity cycles. Aryl hydrocarbon receptor (AhR) interacts with the molecular circadian clockworks. Activation of AhR dampens rhythmic expression of core clock genes, which may lead to metabolic dysfunction. Given the importance of appropriately-timed adipose tissue function to regulation of energy homeostasis, this study focused on mechanisms by which AhR may influence clock-controlled adipose tissue activity. We hypothesized that AhR activation in adipose tissue would impair lipolysis by dampening adipose rhythms, leading to a decreased lipolysis rate during fasting, and subsequently, altered serum glucose concentrations. Levels of clock gene and lipolysis gene transcripts in mouse mesenchymal stem cells (BMSCs) differentiated into mature adipocytes were suppressed by the AhR agonist β-napthoflavone (BNF), in an AhR dependent manner. BNF altered rhythms of core clock gene and lipolysis gene transcripts in C57bl6/J mice. BNF reduced serum free fatty acids, glycerol and liver glycogen. Chromatin immunoprecipitation indicated that BNF increased binding of AhR to E-Box elements in clock gene and lipolysis gene promoters. These data establish a link between AhR activation and impaired lipolysis, specifically by altering adipose tissue rhythmicity. In response to the decreased available energy from impaired lipolysis, the body increases glycogenolysis, thereby degrading more glycogen to provide necessary energy.
Collapse
Affiliation(s)
- Ali Qasim Khazaal
- Biotechnology Department, College of Science, University of Baghdad, Baghdad, Iraq; Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Nazmul Haque
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Callie R Krager
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Stacey L Krager
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Christopher Chambers
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Andrew Wilber
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Shelley A Tischkau
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA; Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA.
| |
Collapse
|
3
|
Bucher K, Rodriguez-Bocanegra E, Fischer MD. Benefits and Shortcomings of Laboratory Model Systems in the Development of Genetic Therapies. Klin Monbl Augenheilkd 2022; 239:263-269. [PMID: 35316853 DOI: 10.1055/a-1757-9879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Gene therapeutic approaches promise treatment or even a cure of diseases that were previously untreatable. Retinal gene therapies tested in clinical trials comprise a wide range of different strategies, including gene supplementation therapies, in vivo gene editing, modulation of splicing mechanisms, or the suppression of gene expression. To guarantee efficient transfer of genetic material into the respective target cells while avoiding major adverse effects, the development of genetic therapies requires appropriate in vitro model systems that allow tests of efficacy and safety of the gene therapeutic approach. In this review, we introduce various in vitro models of different levels of complexity used in the development of genetic therapies and discuss their respective benefits and shortcomings using the example of adeno-associated virus-based retinal gene therapy.
Collapse
Affiliation(s)
- Kirsten Bucher
- University Eye Hospital, University Hospital Tübingen Clinic of Ophthalmology, Tubingen, Germany.,Institute for Ophthalmic Research, University Hospital Tübingen Clinic of Ophthalmology, Tubingen, Germany
| | | | - M Dominik Fischer
- University Eye Hospital, University Hospital Tübingen Clinic of Ophthalmology, Tubingen, Germany.,Institute for Ophthalmic Research, University Hospital Tübingen Clinic of Ophthalmology, Tubingen, Germany.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom of Great Britain and Northern Ireland.,Department of Clinical Neurosciences, University of Oxford Nuffield Laboratory of Ophthalmology, Oxford, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
4
|
Choudhary M, Malek G. The Aryl Hydrocarbon Receptor: A Mediator and Potential Therapeutic Target for Ocular and Non-Ocular Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21186777. [PMID: 32947781 PMCID: PMC7555571 DOI: 10.3390/ijms21186777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which senses environmental, dietary or metabolic signals to mount a transcriptional response, vital in health and disease. As environmental stimuli and metabolic products have been shown to impact the central nervous system (CNS), a burgeoning area of research has been on the role of the AHR in ocular and non-ocular neurodegenerative diseases. Herein, we summarize our current knowledge, of AHR-controlled cellular processes and their impact on regulating pathobiology of select ocular and neurodegenerative diseases. We catalogue animal models generated to study the role of the AHR in tissue homeostasis and disease pathogenesis. Finally, we discuss the potential of targeting the AHR pathway as a therapeutic strategy, in the context of the maladies of the eye and brain.
Collapse
Affiliation(s)
- Mayur Choudhary
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, P.O. Box 3802, Durham, NC 27705, USA
- Correspondence: (M.C.); (G.M.)
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, P.O. Box 3802, Durham, NC 27705, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27705, USA
- Correspondence: (M.C.); (G.M.)
| |
Collapse
|
5
|
van Essen MF, Schlagwein N, van Gijlswijk-Janssen DJ, Anholts JDH, Eikmans M, Ruben JM, van Kooten C. Culture medium used during small interfering RNA (siRNA) transfection determines the maturation status of dendritic cells. J Immunol Methods 2020; 479:112748. [PMID: 31958452 DOI: 10.1016/j.jim.2020.112748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/14/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022]
Abstract
Gene silencing using small interfering ribonucleic acids (siRNA) is a powerful method to interfere with gene expression, allowing for the functional exploration of specific genes. siRNA interference can be applied in both cell lines, as well as in primary, non-dividing cell types like dendritic cells. However, the efficacy in different cell types is variable and requires optimization. Here, we showed that the type of culture medium used during lipid-based siRNA-mediated transfection acts as a critical factor, affecting dendritic cell activation. Transfection of immature monocyte-derived dendritic cells in RPMI medium, but not in IMDM, showed increased transcript levels of pro-inflammatory cytokines. Moreover, the expression of co-stimulatory molecules was enhanced, thereby increasing the T cell stimulatory capacity. Our data demonstrates that the choice of medium should be critically examined as one of the variables while optimizing cell transfection.
Collapse
Affiliation(s)
- Mieke F van Essen
- Div. of Nephrology and Transplant Medicine, Dept. of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| | - Nicole Schlagwein
- Div. of Nephrology and Transplant Medicine, Dept. of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Daniëlle J van Gijlswijk-Janssen
- Div. of Nephrology and Transplant Medicine, Dept. of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Jacqueline D H Anholts
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Michael Eikmans
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Jurjen M Ruben
- Div. of Nephrology and Transplant Medicine, Dept. of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Cees van Kooten
- Div. of Nephrology and Transplant Medicine, Dept. of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
6
|
The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat Rev Immunol 2019; 19:184-197. [PMID: 30718831 DOI: 10.1038/s41577-019-0125-8] [Citation(s) in RCA: 682] [Impact Index Per Article: 136.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The environment, diet, microbiota and body's metabolism shape complex biological processes in health and disease. However, our understanding of the molecular pathways involved in these processes is still limited. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that integrates environmental, dietary, microbial and metabolic cues to control complex transcriptional programmes in a ligand-specific, cell-type-specific and context-specific manner. In this Review, we summarize our current knowledge of AHR and the transcriptional programmes it controls in the immune system. Finally, we discuss the role of AHR in autoimmune and neoplastic diseases of the central nervous system, with a special focus on the gut immune system, the gut-brain axis and the therapeutic potential of targeting AHR in neurological disorders.
Collapse
|
7
|
Rannug A, Rannug U. The tryptophan derivative 6-formylindolo[3,2-b]carbazole, FICZ, a dynamic mediator of endogenous aryl hydrocarbon receptor signaling, balances cell growth and differentiation. Crit Rev Toxicol 2018; 48:555-574. [PMID: 30226107 DOI: 10.1080/10408444.2018.1493086] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is not essential to survival, but does act as a key regulator of many normal physiological events. The role of this receptor in toxicological processes has been studied extensively, primarily employing the high-affinity ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, regulation of physiological responses by endogenous AHR ligands remains to be elucidated. Here, we review developments in this field, with a focus on 6-formylindolo[3,2-b]carbazole (FICZ), the endogenous ligand with the highest affinity to the receptor reported to date. The binding of FICZ to different isoforms of the AHR seems to be evolutionarily well conserved and there is a feedback loop that controls AHR activity through metabolic degradation of FICZ via the highly inducible cytochrome P450 1A1. Several investigations provide strong evidence that FICZ plays a critical role in normal physiological processes and can ameliorate immune diseases with remarkable efficiency. Low levels of FICZ are pro-inflammatory, providing resistance to pathogenic bacteria, stimulating the anti-tumor functions, and promoting the differentiation of cancer cells by repressing genes in cancer stem cells. In contrast, at high concentrations FICZ behaves in a manner similar to TCDD, exhibiting toxicity toward fish and bird embryos, immune suppression, and activation of cancer progression. The findings are indicative of a dual role for endogenously activated AHR in barrier tissues, aiding clearance of infections and suppressing immunity to terminate a vicious cycle that might otherwise lead to disease. There is not much support for the AHR ligand-specific immune responses proposed, the differences between FICZ and TCDD in this context appear to be explained by the rapid metabolism of FICZ.
Collapse
Affiliation(s)
- Agneta Rannug
- a Karolinska Institutet, Institute of Environmental Medicine , Stockholm , Sweden
| | - Ulf Rannug
- b Department of Molecular Biosciences , The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| |
Collapse
|
8
|
Janosik T, Rannug A, Rannug U, Wahlström N, Slätt J, Bergman J. Chemistry and Properties of Indolocarbazoles. Chem Rev 2018; 118:9058-9128. [PMID: 30191712 DOI: 10.1021/acs.chemrev.8b00186] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The indolocarbazoles are an important class of nitrogen heterocycles which has evolved significantly in recent years, with numerous studies focusing on their diverse biological effects, or targeting new materials with potential applications in organic electronics. This review aims at providing a broad survey of the chemistry and properties of indolocarbazoles from an interdisciplinary point of view, with particular emphasis on practical synthetic aspects, as well as certain topics which have not been previously accounted for in detail, such as the occurrence, formation, biological activities, and metabolism of indolo[3,2- b]carbazoles. The literature of the past decade forms the basis of the text, which is further supplemented with older key references.
Collapse
Affiliation(s)
- Tomasz Janosik
- Research Institutes of Sweden , Bioscience and Materials, RISE Surface, Process and Formulation , SE-151 36 Södertälje , Sweden
| | - Agneta Rannug
- Institute of Environmental Medicine , Karolinska Institutet , SE-171 77 Stockholm , Sweden
| | - Ulf Rannug
- Department of Molecular Biosciences, The Wenner-Gren Institute , Stockholm University , SE-106 91 Stockholm , Sweden
| | | | - Johnny Slätt
- Department of Chemistry, Applied Physical Chemistry , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Jan Bergman
- Karolinska Institutet , Department of Biosciences and Nutrition , SE-141 83 Huddinge , Sweden
| |
Collapse
|
9
|
Optimization of Ex Vivo Murine Bone Marrow Derived Immature Dendritic Cells: A Comparative Analysis of Flask Culture Method and Mouse CD11c Positive Selection Kit Method. BONE MARROW RESEARCH 2018; 2018:3495086. [PMID: 29682352 PMCID: PMC5842714 DOI: 10.1155/2018/3495086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/24/2017] [Accepted: 12/07/2017] [Indexed: 11/18/2022]
Abstract
12-14 days of culturing of bone marrow (BM) cells containing various growth factors is widely used method for generating dendritic cells (DCs) from suspended cell population. Here we compared flask culture method and commercially available CD11c Positive Selection kit method. Immature BMDCs' purity of adherent as well as suspended cell population was generated in the decreasing concentration of recombinant-murine granulocyte-macrophage colony-stimulating factor (rmGM-CSF) in nontreated tissue culture flasks. The expression of CD11c, MHCII, CD40, and CD86 was measured by flow cytometry. We found significant difference (P < 0.05) between the two methods in the adherent cells population but no significant difference was observed between the suspended cell populations with respect to CD11c+ count. However, CD11c+ was significantly higher in both adhered and suspended cell population by culture method but kit method gave more CD11c+ from suspended cells population only. On the other hand, using both methods, immature DC expressed moderate level of MHC class II molecules as well as low levels of CD40 and CD86. Our findings suggest that widely used culture method gives the best results in terms of yield, viability, and purity of BMDCs from both adherent and suspended cell population whereas kit method works well for suspended cell population.
Collapse
|
10
|
Liu Q, Yin W, Han L, Lv J, Li B, Lin Y, Mi Q, He R, Lu C. Diarylheptanoid from rhizomes of Curcuma kwangsiensis (DCK) inhibited imiquimod-induced dendritic cells activation and Th1/Th17 differentiation. Int Immunopharmacol 2018; 56:339-348. [PMID: 29454234 DOI: 10.1016/j.intimp.2018.01.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/16/2018] [Accepted: 01/29/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND OBJECT Dendritic cells (DCs) are critical for initiating the activation and differentiation of T cells in inflammatory diseases including psoriasis. Curcuma kwangsiensis S.G. Lee & C.F. Liang is a herb for treating psoriasis and we previously found Diarylheptanoid from rhizomes of Curcuma kwangsiensis (DCK) inhibited keratinocytes proliferation. However, it is unknown whether DCK influences DC functions. Thus we aimed to explore whether DCK affect the major immunological functions of DCs. MATERIALS AND METHODS Primary DCs derived from mouse bone marrow cells and spleen were used for examining their general immunological functions, and OVA-specific T cells from OT-II mice were used for examining the DC-mediated T-helper (Th) 1 and Th17 cells differentiation and effect. RESULTS We demonstrated DCK suppressed DC uptake of FITC-labeled ovalbumin (OVA) and DC maturation characterized by decreased MHCII, CD80 and CD86 following imiquimod (IMQ) stimulation. DCK also reduced DC expression of the lymphoid-homing chemokine receptor CCR7, and DC migration towards CCL21, the ligand for CCR7. Importantly, DCK significantly reduced the production of proinflammatory cytokines including IL-12, IL-6 and IL-1β by IMQ-stimulated DCs. Moreover, in the coculture of OVA323-339 peptide-pulsed DCs and OVA-specific T cells from OT-II mice, DCK significantly inhibited T cell proliferation and the differentiation of Th1 and Th17 cells. Furthermore, DCK treatment greatly reduced phosphorylation of p65-associated cell signaling pathway in IMQ-stimulated DCs. CONCLUSION These data together demonstrate a potential role of DCK in suppressing the biological function of DCs, and provide a possible mechanism for understanding the effects of herb Curcuma kwangsiensis in treating psoriasis.
Collapse
Affiliation(s)
- Qing Liu
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200030, China.
| | - Wei Yin
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200030, China
| | - Ling Han
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Jiaoyan Lv
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200030, China
| | - Bingji Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200030, China
| | - Yuli Lin
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200030, China
| | - Qingsheng Mi
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI 48202, USA
| | - Rui He
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200030, China.
| | - Chuanjian Lu
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| |
Collapse
|
11
|
Jurado-Manzano BB, Zavala-Reyes D, Turrubiartes-Martínez EA, Portales-Pérez DP, González-Amaro R, Layseca-Espinosa E. FICZ generates human tDCs that induce CD4 + CD25 high Foxp3 + Treg-like cell differentiation. Immunol Lett 2017; 190:84-92. [PMID: 28765071 DOI: 10.1016/j.imlet.2017.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 02/01/2023]
Abstract
Dendritic cells (DCs) play a central role in the maintenance of immune homeostasis, their participation as professional antigen presenting cells is essential to the initiation of the adaptive immune response as well as to the induction of tolerance. The recently described role of the aryl hydrocarbon receptor (AhR) in the immune system, particularly in the modulation of the adaptive immune response has attracted the attention as a potential player in the induction of immune tolerance. However, the effects of AhR activation through endogenous ligands on human DCs have been poorly evaluated. In this study, we investigated the effect of FICZ, a natural AhR ligand, on monocyte-derived dendritic cells (Mo-DCs) from healthy subjects. We found that the activation of AhR through FICZ during DCs differentiation and maturation processes resulted in a decreased expression of CD83, an increased expression of the enzyme IDO and a reduced production of the pro-inflammatory cytokines IL-6 and TNF-α. More importantly, FICZ-treated DCs were able to induce the differentiation of naive T lymphocytes into CD4+ CD25high Foxp3+ T reg-like cells. Our results show that the activation of the AhR on human DCs induces a tolerogenic phenotype with potential implications in immunotherapy.
Collapse
Affiliation(s)
- Brenda B Jurado-Manzano
- Department of Immunology, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Daniel Zavala-Reyes
- Department of Immunology, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico; Research Center of Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Edgar A Turrubiartes-Martínez
- Laboratory of Genetics and Molecular Diagnostic, Faculty of Chemical Science, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Diana P Portales-Pérez
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Science, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico; Research Center of Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Roberto González-Amaro
- Department of Immunology, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico; Research Center of Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Esther Layseca-Espinosa
- Department of Immunology, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico; Research Center of Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico.
| |
Collapse
|
12
|
Surface-bound bovine serum albumin carrier protein as present in recombinant cytokine preparations amplifies T helper 17 cell polarization. Sci Rep 2016; 6:36598. [PMID: 27808281 PMCID: PMC5093436 DOI: 10.1038/srep36598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/17/2016] [Indexed: 11/18/2022] Open
Abstract
Understanding of T helper 17 lineage (TH17) polarization has been significantly promoted by cell culture experiments that reduce the complexity of the in vivo environment. We here investigated TH17 amplification by coating of cytokine preparations. Cytokine preparations coated to the surface compared to the same amount given in solution significantly enhanced TH17 polarization assessed by flow cytometry and interleukin (IL)-17A, IL-17F and RORγt mRNA expression. T cell proliferation and TH1 polarization were similarly enhanced while TREG polarization was impeded. TH17 amplification was replicated by coating the plate with low amounts of FCS or albumin as used as carrier protein for cytokines (0.5 μl 0.1%). It was unaltered by filtration, protein digestion and arylhydrocarbon receptor blockade, not replicated by LPS and independent of integrin stimulation. TH17 amplification required anti-CD3 stimulation and was T cell intrinsic. Supernatants of CD4+ cells polarized on coated cytokine preparations with carrier albumin conferred amplification to fresh splenocytes. Coating markedly elevated CD4+ IL-22 mRNA expression and IL-22 blockade significantly reduced TH17 amplification. Our data show TH17 amplification by coated albumin in the low amounts present in recombinant cytokine preparations. This unexpected adjuvant like effect underscores the need for controls also for temporal and spatial factors in cell culture.
Collapse
|
13
|
Lewis JM, Bürgler CD, Fraser JA, Liao H, Golubets K, Kucher CL, Zhao PY, Filler RB, Tigelaar RE, Girardi M. Mechanisms of chemical cooperative carcinogenesis by epidermal Langerhans cells. J Invest Dermatol 2015; 135:1405-1414. [PMID: 25233073 PMCID: PMC4364923 DOI: 10.1038/jid.2014.411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/13/2014] [Accepted: 08/22/2014] [Indexed: 01/14/2023]
Abstract
Cutaneous squamous cell carcinoma (SCC) is the most prevalent invasive malignancy with metastatic potential. The epidermis is exposed to a variety of environmental DNA-damaging chemicals, principal among which are polyaromatic hydrocarbons (PAHs) ubiquitous in the environment, tobacco smoke, and broiled meats. Langerhans cells (LCs) comprise a network of dendritic cells situated adjacent to basal, suprabasal, and follicular infundibular keratinocytes that when mutated can give rise to SCC, and LC-intact mice are markedly more susceptible than LC-deficient mice to chemical carcinogenesis provoked by initiation with the model PAH, 7,12-dimethylbenz[a]anthracene (DMBA). LCs rapidly internalize and accumulate DMBA as numerous membrane-independent cytoplasmic foci. Repopulation of LC-deficient mice using fetal liver LC-precursors restores DMBA-induced tumor susceptibility. LC expression of p450 enzyme CYP1B1 is required for maximal rapid induction of DNA-damage within adjacent keratinocytes and their efficient neoplastic transformation; however, effects of tumor progression also attributable to the presence of LC were revealed as CYP1B1 independent. Thus, LCs make multifaceted contributions to cutaneous carcinogenesis, including via the handling and metabolism of chemical mutagens. Such findings suggest a cooperative carcinogenesis role for myeloid-derived cells resident within cancer susceptible epithelial tissues principally by influencing early events in malignant transformation.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene/adverse effects
- 9,10-Dimethyl-1,2-benzanthracene/metabolism
- Animals
- Carcinogenesis/metabolism
- Carcinoma, Squamous Cell/chemically induced
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Cytochrome P-450 CYP1B1/deficiency
- Cytochrome P-450 CYP1B1/genetics
- Cytochrome P-450 CYP1B1/metabolism
- Disease Models, Animal
- Keratinocytes/metabolism
- Keratinocytes/pathology
- Langerhans Cells/metabolism
- Langerhans Cells/pathology
- Mice
- Mice, Knockout
- Mutagens/adverse effects
- Mutagens/metabolism
- Skin Neoplasms/chemically induced
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
Collapse
Affiliation(s)
- Julia M Lewis
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christina D Bürgler
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Juliet A Fraser
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Haihui Liao
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kseniya Golubets
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Peter Y Zhao
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Renata B Filler
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Robert E Tigelaar
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
14
|
Ishikawa T, Takahashi S, Morita K, Okinaga H, Teramoto T. Induction of AhR-mediated gene transcription by coffee. PLoS One 2014; 9:e102152. [PMID: 25007155 PMCID: PMC4090196 DOI: 10.1371/journal.pone.0102152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 06/16/2014] [Indexed: 11/29/2022] Open
Abstract
Background Aryl hydrocarbon receptor (AhR) is classically known to be activated by xenobiotics such as dioxins and polycyclic aromatic hydrocarbons (PAHs). Although it has been reported that PAHs are contained in roasted coffee beans, in general coffee beverages are not considered to be AhR activators. We tested whether exposure to coffee would activate AhR in cultured cells. Methods HepG2 cells stably expressing an AhR-responsive reporter gene were treated with coffee samples. Also, expression of CYP1A1, an endogenous AhR-responsive gene, was quantitated by RT-PCR and Western blotting in HepG2, Caco-2, and MCF-7 cells, after treatment with coffee. In order to obtain sensitive and reproducible results, all the experiments were performed with the cells placed in either phosphate-buffered saline (PBS) or pure serum, instead of routinely-used culture medium, whose intrinsic AhR-stimulating activity turned out to be so strong as to interfere with the analyses. Results All the coffee samples tested robustly stimulated AhR-mediated transcription in the reporter gene assays. Of note, to what extent coffee and other AhR agonists activated AhR was different, depending on whether the experiments were done in PBS or serum. CYP1A1 mRNA was induced by coffee, in HepG2, Caco-2, and MCF-7 cells placed in either PBS or serum. CYP1A1 protein expression, which was not detected in these cells incubated in PBS, was also increased by coffee in cells placed in serum. Conclusions By using culture medium-free experimental settings, we have shown that coffee is a strong AhR activator. Our observation may help elucidate as-yet-unrecognized effects of coffee on human health.
Collapse
Affiliation(s)
- Toshio Ishikawa
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Satoshi Takahashi
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Koji Morita
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Hiroko Okinaga
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Tamio Teramoto
- Teikyo Academic Research Center, Teikyo University, Tokyo, Japan
| |
Collapse
|
15
|
Toward understanding the role of aryl hydrocarbon receptor in the immune system: current progress and future trends. BIOMED RESEARCH INTERNATIONAL 2014; 2014:520763. [PMID: 24527450 PMCID: PMC3914515 DOI: 10.1155/2014/520763] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/14/2013] [Indexed: 01/03/2023]
Abstract
The immune system is regulated by distinct signaling pathways that control the development and function of the immune cells. Accumulating evidence suggest that ligation of aryl hydrocarbon receptor (Ahr), an environmentally responsive transcription factor, results in multiple cross talks that are capable of modulating these pathways and their downstream responsive genes. Most of the immune cells respond to such modulation, and many inflammatory response-related genes contain multiple xenobiotic-responsive elements (XREs) boxes upstream. Active research efforts have investigated the physiological role of Ahr in inflammation and autoimmunity using different animal models. Recently formed paradigm has shown that activation of Ahr by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 3,3′-diindolylmethane (DIM) prompts the differentiation of CD4+Foxp3+ regulatory T cells (Tregs) and inhibits T helper (Th)-17 suggesting that Ahr is an innovative therapeutic strategy for autoimmune inflammation. These promising findings generate a basis for future clinical practices in humans. This review addresses the current knowledge on the role of Ahr in different immune cell compartments, with a particular focus on inflammation and autoimmunity.
Collapse
|
16
|
Vogel CFA, Wu D, Goth SR, Baek J, Lollies A, Domhardt R, Grindel A, Pessah IN. Aryl hydrocarbon receptor signaling regulates NF-κB RelB activation during dendritic-cell differentiation. Immunol Cell Biol 2013; 91:568-75. [PMID: 23999131 PMCID: PMC3806313 DOI: 10.1038/icb.2013.43] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 12/26/2022]
Abstract
How the aryl hydrocarbon receptor (AhR) regulates dendritic-cell (DC) differentiation is unknown. We show that activation of AhR by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) caused enhanced differentiation from immature DCs (IDCs) to mature DCs (MDCs) in the bone-marrow-derived DCs (BMDC) from B6 wild-type mice but not in the BMDCs from AhR-null mice as indicated by the expression of CD11c and class II major histocompatibility complex (MHC). Enhanced maturation of BMDCs was associated with elevated levels of CD86 and an increased AhR-dependent nuclear accumulation of nuclear factor-kappa-light-chain enhancer of activated B cell (NF-κB) member RelB in BMDCs. The expression of interleukin (IL) 10 and chemokine DC-CK1 was suppressed, whereas that of CXCL2, CXCL3 and IL-22 was significantly increased in AhR-activated BMDCs. Furthermore, TCDD induced expression of the regulatory enzymes indoleamine 2,3-dioxygenase (IDO1) and indoleamine 2,3-dioxygenase-like 1 (IDO2). Increased expression of IDO2 was associated with coexpression of the cell-surface marker CCR6. Interestingly, mRNA expression of the chemokine receptor CCR6 was drastically decreased in AhR-null IDCs and MDCs. Overall, these data demonstrate that AhR modifies the maturation of BMDCs associated with the induction of the regulatory enzyme IDO and altered expression of cytokine, chemokines and DC-specific surface markers and receptors.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Department of Environmental Toxicology, University of California at Davis, Davis, CA, USA
- Center for Health and the Environment, University of California at Davis, Davis, CA, USA
| | - Dalei Wu
- Center for Health and the Environment, University of California at Davis, Davis, CA, USA
| | - Samuel R Goth
- School of Veterinary Medicine: Molecular Biosciences, University of California at Davis, Davis, CA, USA
| | - Jaeeun Baek
- Center for Health and the Environment, University of California at Davis, Davis, CA, USA
| | - Anna Lollies
- Center for Health and the Environment, University of California at Davis, Davis, CA, USA
| | - Rowena Domhardt
- Center for Health and the Environment, University of California at Davis, Davis, CA, USA
| | - Annemarie Grindel
- Center for Health and the Environment, University of California at Davis, Davis, CA, USA
| | - Isaac N Pessah
- School of Veterinary Medicine: Molecular Biosciences, University of California at Davis, Davis, CA, USA
| |
Collapse
|