1
|
Franc V, Zhu J, Heck AJR. Comprehensive Proteoform Characterization of Plasma Complement Component C8αβγ by Hybrid Mass Spectrometry Approaches. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1099-1110. [PMID: 29532326 PMCID: PMC6003997 DOI: 10.1007/s13361-018-1901-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 09/27/2023]
Abstract
The human complement hetero-trimeric C8αβγ (C8) protein assembly (~ 150 kDa) is an important component of the membrane attack complex (MAC). C8 initiates membrane penetration and coordinates MAC pore formation. Here, we charted in detail the structural micro-heterogeneity within C8, purified from human plasma, combining high-resolution native mass spectrometry and (glyco)peptide-centric proteomics. The intact C8 proteoform profile revealed at least ~ 20 co-occurring MS signals. Additionally, we employed ion exchange chromatography to separate purified C8 into four distinct fractions. Their native MS analysis revealed even more detailed structural micro-heterogeneity on C8. Subsequent peptide-centric analysis, by proteolytic digestion of C8 and LC-MS/MS, provided site-specific quantitative profiles of different types of C8 glycosylation. Combining all this data provides a detailed specification of co-occurring C8 proteoforms, including experimental evidence on N-glycosylation, C-mannosylation, and O-glycosylation. In addition to the known N-glycosylation sites, two more N-glycosylation sites were detected on C8. Additionally, we elucidated the stoichiometry of all C-mannosylation sites in all the thrombospondin-like (TSP) domains of C8α and C8β. Lastly, our data contain the first experimental evidence of O-linked glycans located on C8γ. Albeit low abundant, these O-glycans are the first PTMs ever detected on this subunit. By placing the observed PTMs in structural models of free C8 and C8 embedded in the MAC, it may be speculated that some of the newly identified modifications may play a role in the MAC formation. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Jing Zhu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
- Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Dang Y, Meng X, Wang S, Li L, Zhang M, Hu M, Xu X, Shen Y, Lv L, Wang R, Li J. Mannose-binding lectin and its roles in immune responses in grass carp (Ctenopharyngodon idella) against Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2018; 72:367-376. [PMID: 29129586 DOI: 10.1016/j.fsi.2017.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
The complement system is a crucial component of the innate immune system that links innate and adaptive immunity via four pathways. Mannose-binding lectin (MBL), the initiating molecule of the lectin pathway, plays a significant role in the innate immune system in mammals and fish. Herein, we identified an MBL homolog (gcMBL) in grass carp (Ctenopharyngodon idella). The full-length 948 bp gcMBL cDNA includes a 741 bp open reading frame encoding a 246 amino acid protein with a signal peptide, collagen triple helix repeat domain, and a C-type lectin-like/link domain. The gcMBL protein shares low similarity with MBL counterparts in other species, and is most closely related to Cyprinus carpio MBL. Transcription of gcMBL was widely distributed in different tissues, and was induced by Aeromonas hydrophila in vivo and in vitro. Expression of gcMBL was also affected by LPS and flagellin stimulation in vitro. In cells over-expressing gcMBL, transcripts of almost all components except gcC5 were up-regulated, and gcMBL, gcIL1β, gcTNF-α, gcIFN, gcCD59, gcC5aR and gcITGβ-2 were significantly up-regulated following exposure to A. hydrophila or stimulation by bacterial PAMPs. Meanwhile, gcMBL deficiency achieved by RNAi down-regulated transcript levels following A. hydrophila challenge, and gcMBL induced NF-κB signalling. These findings indicate a vital role of gcMBL in innate immunity in grass carp.
Collapse
Affiliation(s)
- Yunfei Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo, PR China
| | - Xinzhan Meng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Shentong Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Lisen Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Meng Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Moyan Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Xiaoyan Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, PR China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, PR China
| | - Yubang Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, PR China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, PR China
| | - Liqun Lv
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, PR China
| | - Rongquan Wang
- Key Laboratory of Conventional Freshwater Fish Breeding and Health Culture Technology Germplasm Resources, Suzhou Shenhang Eco-technology Development Limited Company, Suzhou, PR China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, PR China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, PR China.
| |
Collapse
|
3
|
Morgan BP, Boyd C, Bubeck D. Molecular cell biology of complement membrane attack. Semin Cell Dev Biol 2017; 72:124-132. [PMID: 28647534 DOI: 10.1016/j.semcdb.2017.06.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 06/10/2017] [Accepted: 06/14/2017] [Indexed: 12/11/2022]
Abstract
The membrane attack complex (MAC) is the pore-forming toxin of the complement system, a relatively early evolutionary acquisition that confers upon complement the capacity to directly kill pathogens. The MAC is more than just a bactericidal missile, having the capacity when formed on self-cells to initiate a host of cell activation events that can have profound consequences for tissue homeostasis in the face of infection or injury. Although the capacity of complement to directly kill pathogens has been recognised for over a century, and the pore-forming killing mechanism for at least 50 years, there remains considerable uncertainty regarding precisely how MAC mediates its killing and cell activation activities. A recent burst of new information on MAC structure provides context and opportunity to re-assess the ways in which MAC kills bacteria and modulates cell functions. In this brief review we will describe key aspects of MAC evolution, function and structure and seek to use the new structural information to better explain how the MAC works.
Collapse
Affiliation(s)
- B Paul Morgan
- Systems Immunity University Research Institute, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF144XN, UK.
| | - Courtney Boyd
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College, 506 Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Doryen Bubeck
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College, 506 Sir Ernst Chain Building, London SW7 2AZ, UK
| |
Collapse
|
4
|
Neely AE, Mandigo KA, Robinson RL, Ness TL, Weiland MH. Chimeric approach for narrowing a membrane-inserting region within human perforin. Protein Eng Des Sel 2016; 30:105-111. [PMID: 27980121 DOI: 10.1093/protein/gzw069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 11/13/2022] Open
Abstract
Perforin is a pore-forming, immune protein that functions to deliver an apoptotic cocktail of proteins into a target pathogen. Recent studies of the bacterial cholesterol-dependent cytolysins (CDCs) have provided a model for perforin's pore-forming mechanism. Both perforin and CDC family members share a conserved β-sheet flanked by two clusters of α-helices. Within the CDCs, these helices refold into two transmembrane β-hairpins, TMH1 and TMH2. Based upon structural conservation and electron microscopy imaging, the analogous helices within perforin are predicted to also be membrane inserting; however, these regions are approximately twice the length of the CDC TMHs. To test the membrane-insertion potential of one of these regions, chimeras were created using a well-characterized CDC, perfringolysin-O (PFO), as the backbone of these constructs. PFO's TMH2 region was replaced with perforin's corresponding helical region. Although hemolytic activity was observed, the chimera was poorly soluble. A second chimera contained the same region truncated to match the length of the PFO TMH2 region. The truncated chimera demonstrated improved solubility, significant hemolytic activity and the ability to form pores characteristic of those created by PFO. These results provide the first evidence that perforin's helices function as TMHs and more importantly narrows the residues responsible for membrane insertion.
Collapse
Affiliation(s)
- Amy E Neely
- Department of Chemistry and Physics, Armstrong State University, Savannah, GA 31419, USA
| | - Kimberly A Mandigo
- Department of Chemistry and Physics, Armstrong State University, Savannah, GA 31419, USA
| | - Rebekah L Robinson
- Department of Chemistry and Physics, Armstrong State University, Savannah, GA 31419, USA.,Department of Biology, Armstrong State University, Savannah, GA 31419, USA
| | - Traci L Ness
- Department of Biology, Armstrong State University, Savannah, GA 31419, USA
| | - Mitch H Weiland
- Department of Chemistry and Physics, Armstrong State University, Savannah, GA 31419, USA
| |
Collapse
|
5
|
Reboul CF, Whisstock JC, Dunstone MA. Giant MACPF/CDC pore forming toxins: A class of their own. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:475-86. [PMID: 26607011 DOI: 10.1016/j.bbamem.2015.11.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023]
Abstract
Pore Forming Toxins (PFTs) represent a key mechanism for permitting the passage of proteins and small molecules across the lipid membrane. These proteins are typically produced as soluble monomers that self-assemble into ring-like oligomeric structures on the membrane surface. Following such assembly PFTs undergo a remarkable conformational change to insert into the lipid membrane. While many different protein families have independently evolved such ability, members of the Membrane Attack Complex PerForin/Cholesterol Dependent Cytolysin (MACPF/CDC) superfamily form distinctive giant β-barrel pores comprised of up to 50 monomers and up to 300Å in diameter. In this review we focus on recent advances in understanding the structure of these giant MACPF/CDC pores as well as the underlying molecular mechanisms leading to their formation. Commonalities and evolved variations of the pore forming mechanism across the superfamily are discussed. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
Affiliation(s)
- Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Australia
| | - Michelle A Dunstone
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Australia; Department of Microbiology, Monash University, Melbourne, Australia
| |
Collapse
|
6
|
Mi Li, Lianqing Liu, Ning Xi, Yuechao Wang, Xiubin Xiao, Weijing Zhang. Quantitative Analysis of Drug-Induced Complement-Mediated Cytotoxic Effect on Single Tumor Cells Using Atomic Force Microscopy and Fluorescence Microscopy. IEEE Trans Nanobioscience 2015; 14:84-94. [DOI: 10.1109/tnb.2014.2370759] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Abstract
The complement terminal pathway clears pathogens by generating cytotoxic membrane attack complex (MAC) pores on target cells. For more than 40 years, biochemical and cellular assays have been used to characterize the lytic nature of the MAC and to define its protein composition. Although models for pore formation have been inferred from structures of bacterial cytolysins, it was only recently that we were able to visualize how complement components come together during MAC assembly. This review highlights structural analyses of terminal pathway complexes to explore molecular mechanisms underlying MAC formation.
Collapse
Affiliation(s)
- Doryen Bubeck
- Department of Life Sciences, Sir Ernst Chain Building, South Kensington Campus, Imperial College London , London SW7 2AZ, U.K
| |
Collapse
|