1
|
Matkivska R, Samborska I, Maievskyi O. Effect of animal venom toxins on the main links of the homeostasis of mammals (Review). Biomed Rep 2024; 20:16. [PMID: 38144889 PMCID: PMC10739175 DOI: 10.3892/br.2023.1704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The human body is affected by environmental factors. The dynamic balance between the organism and its environment results from the influence of natural, anthropogenic and social aspects. The factors of exogenous origin determine development of adaptive changes. The present article summarises the mechanisms of animal venom toxins and homeostasis disruption in the body of mammals. The mechanisms underlying pathological changes are associated with shifts in biochemical reactions. Components of the immune, nervous and endocrine systems are key in the host defense and adaptation processes in response to venom by triggering signalling pathways (PI3kinase pathway, arachidonic acid cascade). Animal venom toxins initiate the development of inflammatory processes, the synthesis of pro-inflammatory mediators (cytokines), ROS, proteolytic enzymes, activate the migration of leukocytes and macrophages. Keratinocytes and endothelial cells act as protective barriers under the action of animal venom toxins on the body of mammals. In addition, the formation of pores in cell membranes, structural changes in cell ion channels are characteristic of the action of animal venom toxins.
Collapse
Affiliation(s)
- Ruzhena Matkivska
- Department of Descriptive and Clinical Anatomy, Bogomolets National Medical University, Kyiv 03680, Ukraine
| | - Inha Samborska
- Department of Biological and General Chemistry, National Pirogov Memorial Medical University, Vinnytsya 21018, Ukraine
| | - Oleksandr Maievskyi
- Department of Clinical Medicine, Educational and Scientific Center ‘Institute of Biology and Medicine’ of Taras Shevchenko National University of Kyiv, Kyiv 03127, Ukraine
| |
Collapse
|
2
|
Gibson BG, Cox TE, Marchbank KJ. Contribution of animal models to the mechanistic understanding of Alternative Pathway and Amplification Loop (AP/AL)-driven Complement-mediated Diseases. Immunol Rev 2023; 313:194-216. [PMID: 36203396 PMCID: PMC10092198 DOI: 10.1111/imr.13141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review aimed to capture the key findings that animal models have provided around the role of the alternative pathway and amplification loop (AP/AL) in disease. Animal models, particularly mouse models, have been incredibly useful to define the role of complement and the alternative pathway in health and disease; for instance, the use of cobra venom factor and depletion of C3 provided the initial insight that complement was essential to generate an appropriate adaptive immune response. The development of knockout mice have further underlined the importance of the AP/AL in disease, with the FH knockout mouse paving the way for the first anti-complement drugs. The impact from the development of FB, properdin, and C3 knockout mice closely follows this in terms of mechanistic understanding in disease. Indeed, our current understanding that complement plays a role in most conditions at one level or another is rooted in many of these in vivo studies. That C3, in particular, has roles beyond the obvious in innate and adaptive immunity, normal physiology, and cellular functions, with or without other recognized AP components, we would argue, only extends the reach of this arm of the complement system. Humanized mouse models also continue to play their part. Here, we argue that the animal models developed over the last few decades have truly helped define the role of the AP/AL in disease.
Collapse
Affiliation(s)
- Beth G. Gibson
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| | - Thomas E. Cox
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| | - Kevin J. Marchbank
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| |
Collapse
|
3
|
Zhang Y, Lyu L, Tao Y, Ju H, Chen J. Health risks of phthalates: A review of immunotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120173. [PMID: 36113640 DOI: 10.1016/j.envpol.2022.120173] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Phthalates (PAEs) are known environmental endocrine disruptors that have been widely detected in several environments, and many studies have reported the immunotoxic effects of these compounds. Here, we reviewed relevant published studies, summarized the occurrence and major metabolic pathways of six typical PAEs (DMP, DEP, DBP, BBP, DEHP, and DOP) in water, soil, and the atmosphere, degradation and metabolic pathways under aerobic and anaerobic conditions, and explored the molecular mechanisms of the toxic effects of eleven PAEs (DEHP, DPP, DPrP, DHP, DEP, DBP, MBP, MBzP, BBP, DiNP, and DMP) on the immune system of different organisms at the gene, protein, and cellular levels. A comprehensive understanding of the mechanisms by which PAEs affect immune system function through regulation of immune gene expression and enzymes, increased ROS, immune signaling pathways, specific and non-specific immunosuppression, and interference with the complement system. By summarizing the effects of these compounds on typical model organisms, this review provides insights into the mechanisms by which PAEs affect the immune system, thus supplementing human immune experiments. Finally, we discuss the future direction of PAEs immunotoxicity research, thus providing a framework for the analysis of other environmental pollutants, as well as a basis for PAEs management and safe use.
Collapse
Affiliation(s)
- Ying Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Liang Lyu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Yue Tao
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Hanxun Ju
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Jie Chen
- Rural Energy Station of Heilongjiang Province, Harbin, 150030, PR China.
| |
Collapse
|
4
|
Cavalcante JS, Borges da Silva WRG, de Oliveira LA, Brito IMC, Muller KS, J Vidal IS, Dos Santos LD, Jorge RJB, Almeida C, de Lima Bicho C. Blood plasma proteome alteration after local tissue damage induced by Bothrops erythromelas snake venom in mice. J Proteomics 2022; 269:104742. [PMID: 36174952 DOI: 10.1016/j.jprot.2022.104742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/03/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022]
Abstract
Snakes of the genus Bothrops are responsible the most snakebites in the Brazil, causing a diverse and complex pathophysiological condition. Bothrops erythromelas is the main specie of medical relevance found in the Caatinga from the Brazilian Northeast region. The pathophysiological effects involving B. erythromelas snakebite as well as the organism reaction in response to this envenomation are not so explored. Thus, edema was induced in mice paws using 2.5 μg or 5.0 μg of B. erythromelas venom, and the percentage of edema was measured. Plasma was collected 30 minutes after the envenomation-induced in mice and analyzed by mass spectrometry. It was identified a total of 112 common plasma proteins differentially abundant among experimental groups, which are involved with the complement system and coagulation cascades, oxidative stress, neutrophil degranulation, platelets degranulation and inflammatory response. Apolipoprotein A1 (Apoa), serum amyloid protein A-4 (Saa4), adiponectin (Adipoq) showed up-regulated in mice plasma after injection of venom, while fibulin (Fbln1), factor XII (F12) and vitamin K-dependent protein Z (Proz) showed down-regulated. The results indicate a protein pattern of thrombo-inflammation to the B. erythromelas snakebite, evidencing potential biomarkers for monitoring this snakebite, new therapeutic targets and its correlations with the degree of envenomation once showed modulations in the abundance among the different groups according to the amount of venom injected into the mice.
Collapse
Affiliation(s)
- Joeliton S Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo University (UNESP - Univ Estadual Paulista), Botucatu, São Paulo, Brazil.
| | - Weslley Ruan G Borges da Silva
- Department of Biology, Center of Biological and Health Sciences, Paraíba State University (UEPB), Campina Grande, Paraíba, Brazil
| | - Laudicéia Alves de Oliveira
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo University (UNESP - Univ Estadual Paulista), Botucatu, São Paulo, Brazil
| | - Ingrid Mayara C Brito
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo University (UNESP - Univ Estadual Paulista), Botucatu, São Paulo, Brazil
| | - Kevin S Muller
- Institute of Biosciences, São Paulo University (UNESP - Univ Estadual Paulista), Botucatu, São Paulo, Brazil
| | - Ivynna Suellen J Vidal
- Graduate Program in Translational Medicine, Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | - Lucilene Delazari Dos Santos
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo University (UNESP - Univ Estadual Paulista), Botucatu, São Paulo, Brazil; Biotechnology Institute (IBTEC), São Paulo University (UNESP - Univ Estadual Paulista), Botucatu, São Paulo, Brazil
| | - Roberta Jeane Bezerra Jorge
- Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | - Cayo Almeida
- Center of Mathematics, Computing Sciences and Cognition, Federal University of ABC, São Paulo, SP, Brazil
| | - Carla de Lima Bicho
- Department of Biology, Center of Biological and Health Sciences, Paraíba State University (UEPB), Campina Grande, Paraíba, Brazil
| |
Collapse
|
5
|
Wang S, Yang W, Shi W, Chen F, Shen F, Zhang M, Su Q, Shi C, Yu Q, Chen T. Investigations on the Changes of Serum Proteins in Rabbits after Trimeresurus stejnegeri Venom Injection via Mass Spectrometry-Based Proteomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9239662. [PMID: 35783526 PMCID: PMC9249469 DOI: 10.1155/2022/9239662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
Purpose There are few studies on protein phosphorylation in the process of snake poisoning. The purpose of this study was to investigate the toxic mechanism of Trimeresurus stejnegeri at the protein level by determining the differential expression of phosphorylated proteins in rabbits after poisoning using proteomics. Methods The Trimeresurus stejnegeri venom model in rabbits was established by intramuscular injection of 20 mg/kg venom. The serum was collected and the differential expression of phosphorylated proteins in the serum was determined by the iTRAQ technology, TiO2 enriched phosphorylated peptides, and the mass spectrometry analysis. The functional analysis was conducted using ClueGO software and the related mechanism was evaluated by the network analysis of biological interaction. The expression level of related proteins was determined by the Western blotting assay. Results Compared to the control group, 77 differentially expressed proteins were observed in the model group. These proteins were closely associated with the complement and agglomerate cascade signaling pathways, the HIF signaling pathway, the pentose phosphate pathway, and the cholesterol metabolism signaling pathway. According to the results of network analysis, TF and SCL16A1 were determined as the core proteins, which were identified by the Western blotting assay. Conclusion The present study provided valuable phosphorylation signal transduction resources for investigating the toxic mechanism and the therapies for Trimeresurus stejnegeri poisoning.
Collapse
Affiliation(s)
- Shijun Wang
- Surgery of Traditional Chinese Medicine, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, Fujian, China
| | - Weilian Yang
- Surgery of Traditional Chinese Medicine, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, Fujian, China
| | - Wanling Shi
- Surgery of Traditional Chinese Medicine, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, Fujian, China
| | - Fuwei Chen
- Surgery of Traditional Chinese Medicine, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, Fujian, China
| | - Fanghua Shen
- Surgery of Traditional Chinese Medicine, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, Fujian, China
| | - Meiji Zhang
- Surgery of Traditional Chinese Medicine, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, Fujian, China
| | - Qiuxiang Su
- Surgery of Traditional Chinese Medicine, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, Fujian, China
| | - Chao Shi
- Surgery of Traditional Chinese Medicine, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, Fujian, China
| | - Qinyao Yu
- Surgery of Traditional Chinese Medicine, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, Fujian, China
| | - Tao Chen
- Surgery of Traditional Chinese Medicine, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, Fujian, China
| |
Collapse
|
6
|
Leonel TB, Gabrili JJM, Squaiella-Baptistão CC, Woodruff TM, Lambris JD, Tambourgi DV. Bothrops jararaca Snake Venom Inflammation Induced in Human Whole Blood: Role of the Complement System. Front Immunol 2022; 13:885223. [PMID: 35720304 PMCID: PMC9201114 DOI: 10.3389/fimmu.2022.885223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical manifestations of envenomation by Bothrops species are complex and characterized by prominent local effects that can progress to tissue loss, physical disability, or amputation. Systemic signs can also occur, such as hemorrhage, coagulopathy, shock, and acute kidney failure. The rapid development of local clinical manifestations is accompanied by the presence of mediators of the inflammatory process originating from tissues damaged by the bothropic venom. Considering the important role that the complement system plays in the inflammatory response, in this study, we analyzed the action of Bothrops jararaca snake venom on the complement system and cell surface receptors involved in innate immunity using an ex vivo human whole blood model. B. jararaca venom was able to induce activation of the complement system in the human whole blood model and promoted a significant increase in the production of anaphylatoxins C3a/C3a-desArg, C4a/C4a-desArg, C5a/C5a-desArg and sTCC. In leukocytes, the venom of B. jararaca reduced the expression of CD11b, CD14 and C5aR1. Inhibition of the C3 component by Cp40, an inhibitor of C3, resulted in a reduction of C3a/C3a-desArg, C5a/C5a-desArg and sTCC to basal levels in samples stimulated with the venom. Exposure to B. jararaca venom induced the production of inflammatory cytokines and chemokines such as TNF-α, IL-8/CXCL8, MCP-1/CCL2 and MIG/CXCL9 in the human whole blood model. Treatment with Cp40 promoted a significant reduction in the production of TNF-α, IL-8/CXCL8 and MCP-1/CCL2. C5aR1 inhibition with PMX205 also promoted a reduction of TNF-α and IL-8/CXCL8 to basal levels in the samples stimulated with venom. In conclusion, the data presented here suggest that the activation of the complement system promoted by the venom of the snake B. jararaca in the human whole blood model significantly contributes to the inflammatory process. The control of several inflammatory parameters using Cp40, an inhibitor of the C3 component, and PMX205, a C5aR1 antagonist, indicates that complement inhibition may represent a potential therapeutic tool in B. jararaca envenoming.
Collapse
Affiliation(s)
| | | | | | - Trent M. Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | |
Collapse
|
7
|
Biological Effects of Animal Venoms on the Human Immune System. Toxins (Basel) 2022; 14:toxins14050344. [PMID: 35622591 PMCID: PMC9143185 DOI: 10.3390/toxins14050344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Venoms are products of specialized glands and serve many living organisms to immobilize and kill prey, start digestive processes and act as a defense mechanism. Venoms affect different cells, cellular structures and tissues, such as skin, nervous, hematological, digestive, excretory and immune systems, as well as the heart, among other structures. Components of both the innate and adaptive immune systems can be stimulated or suppressed. Studying the effects on the cells and molecules produced by the immune system has been useful in many biomedical fields. The effects of venoms can be the basis for research and development of therapeutic protocols useful in the modulation of the immunological system, including different autoimmune diseases. This review focuses on the understanding of biological effects of diverse venom on the human immune system and how some of their components can be useful for the study and development of immunomodulatory drugs.
Collapse
|
8
|
Cavalcante JDS, de Almeida CAS, Clasen MA, da Silva EL, de Barros LC, Marinho AD, Rossini BC, Marino CL, Carvalho PC, Jorge RJB, Dos Santos LD. A fingerprint of plasma proteome alteration after local tissue damage induced by Bothrops leucurus snake venom in mice. J Proteomics 2022; 253:104464. [PMID: 34954398 DOI: 10.1016/j.jprot.2021.104464] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 12/21/2022]
Abstract
Bothrops spp. is responsible for about 70% of snakebites in Brazil, causing a diverse and complex pathophysiological condition. Bothrops leucurus is the main species of medical relevance found in the Atlantic coast in the Brazilian Northeast region. The pathophysiological effects involved B. leucurus snakebite as well as the organism's reaction in response to this envenoming, it has not been explored yet. Thus, edema was induced in mice paw using 1.2, 2.5, and 5.0 μg of B. leucurus venom, the percentage of edema was measured 30 min after injection and the blood plasma was collected and analyzed by shotgun proteomic strategy. We identified 80 common plasma proteins with differential abundance among the experimental groups and we can understand the early aspects of this snake envenomation, regardless of the suggestive severity of an ophidian accident. The results showed B. leucurus venom triggers a thromboinflammation scenario where family's proteins of the Serpins, Apolipoproteins, Complement factors and Component subunits, Cathepsins, Kinases, Oxidoreductases, Proteases inhibitors, Proteases, Collagens, Growth factors are related to inflammation, complement and coagulation systems, modulators platelets and neutrophils, lipid and retinoid metabolism, oxidative stress and tissue repair. Our findings set precedents for future studies in the area of early diagnosis and/or treatment of snakebites. SIGNIFICANCE: The physiopathological effects that the snake venoms can cause have been investigated through classical and reductionist tools, which allowed, so far, the identification of action mechanisms of individual components associated with specific tissue damage. The currently incomplete limitations of this knowledge must be expanded through new approaches, such as proteomics, which may represent a big leap in understanding the venom-modulated pathological process. The exploration of the complete protein set that suffer modifications by the simultaneous action of multiple toxins, provides a map of the establishment of physiopathological phenotypes, which favors the identification of multiple toxin targets, that may or may not act in synergy, as well as favoring the discovery of biomarkers and therapeutic targets for manifestations that are not neutralized by the antivenom.
Collapse
Affiliation(s)
- Joeliton Dos Santos Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Milan Avila Clasen
- Laboratory for Structural and Computational Proteomics, ICC, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, PR, Brazil
| | - Emerson Lucena da Silva
- Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Luciana Curtolo de Barros
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Aline Diogo Marinho
- Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Bruno Cesar Rossini
- Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu, SP, Brazil; Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Celso Luís Marino
- Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu, SP, Brazil; Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Paulo Costa Carvalho
- Laboratory for Structural and Computational Proteomics, ICC, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, PR, Brazil
| | - Roberta Jeane Bezerra Jorge
- Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Lucilene Delazari Dos Santos
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil; Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
9
|
Bertholim L, Chaves AFA, Oliveira AK, Menezes MC, Asega AF, Tashima AK, Zelanis A, Serrano SMT. Systemic Effects of Hemorrhagic Snake Venom Metalloproteinases: Untargeted Peptidomics to Explore the Pathodegradome of Plasma Proteins. Toxins (Basel) 2021; 13:toxins13110764. [PMID: 34822548 PMCID: PMC8622078 DOI: 10.3390/toxins13110764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 01/15/2023] Open
Abstract
Hemorrhage induced by snake venom metalloproteinases (SVMPs) is a complex phenomenon that involves capillary disruption and blood extravasation. HF3 (hemorrhagic factor 3) is an extremely hemorrhagic SVMP of Bothrops jararaca venom. Studies using proteomic approaches revealed targets of HF3 among intracellular and extracellular proteins. However, the role of the cleavage of plasma proteins in the context of the hemorrhage remains not fully understood. The main goal of this study was to analyze the degradome of HF3 in human plasma. For this purpose, approaches for the depletion of the most abundant proteins, and for the enrichment of low abundant proteins of human plasma, were used to minimize the dynamic range of protein concentration, in order to assess the proteolytic activity of HF3 on a wide spectrum of proteins, and to detect the degradation products using mass spectrometry-based untargeted peptidomics. The results revealed the hydrolysis products generated by HF3 and allowed the identification of cleavage sites. A total of 61 plasma proteins were identified as cleaved by HF3. Some of these proteins corroborate previous studies, and others are new HF3 targets, including proteins of the coagulation cascade, of the complement system, proteins acting on the modulation of inflammation, and plasma proteinase inhibitors. Overall, the data indicate that HF3 escapes inhibition and sculpts the plasma proteome by degrading key proteins and generating peptides that may act synergistically in the hemorrhagic process.
Collapse
Affiliation(s)
- Luciana Bertholim
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.B.); (A.F.A.C.); (A.K.O.); (M.C.M.); (A.F.A.)
| | - Alison F. A. Chaves
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.B.); (A.F.A.C.); (A.K.O.); (M.C.M.); (A.F.A.)
| | - Ana K. Oliveira
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.B.); (A.F.A.C.); (A.K.O.); (M.C.M.); (A.F.A.)
| | - Milene C. Menezes
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.B.); (A.F.A.C.); (A.K.O.); (M.C.M.); (A.F.A.)
| | - Amanda F. Asega
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.B.); (A.F.A.C.); (A.K.O.); (M.C.M.); (A.F.A.)
| | - Alexandre K. Tashima
- Department of Biochemistry, Escola Paulista de Medicina, Federal University of Sao Paulo, Sao Paulo 04023-901, SP, Brazil;
| | - Andre Zelanis
- Functional Proteomics Laboratory, Department of Science and Technology, Federal University of São Paulo (UNIFESP), 330 Talim St., São José dos Campos 12231-280, SP, Brazil;
| | - Solange M. T. Serrano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.B.); (A.F.A.C.); (A.K.O.); (M.C.M.); (A.F.A.)
- Correspondence:
| |
Collapse
|
10
|
Silva de França F, Villas-Boas IM, Cogliati B, Woodruff TM, Reis EDS, Lambris JD, Tambourgi DV. C5a-C5aR1 Axis Activation Drives Envenomation Immunopathology by the Snake Naja annulifera. Front Immunol 2021; 12:652242. [PMID: 33936074 PMCID: PMC8082402 DOI: 10.3389/fimmu.2021.652242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 12/03/2022] Open
Abstract
Systemic complement activation drives a plethora of pathological conditions, but its role in snake envenoming remains obscure. Here, we explored complement's contribution to the physiopathogenesis of Naja annulifera envenomation. We found that N. annulifera venom promoted the generation of C3a, C4a, C5a, and the soluble Terminal Complement Complex (sTCC) mediated by the action of snake venom metalloproteinases. N. annulifera venom also induced the release of lipid mediators and chemokines in a human whole-blood model. This release was complement-mediated, since C3/C3b and C5a Receptor 1 (C5aR1) inhibition mitigated the effects. In an experimental BALB/c mouse model of envenomation, N. annulifera venom promoted lipid mediator and chemokine production, neutrophil influx, and swelling at the injection site in a C5a-C5aR1 axis-dependent manner. N. annulifera venom induced systemic complementopathy and increased interleukin and chemokine production, leukocytosis, and acute lung injury (ALI). Inhibition of C5aR1 with the cyclic peptide antagonist PMX205 rescued mice from these systemic reactions and abrogated ALI development. These data reveal hitherto unrecognized roles for complement in envenomation physiopathogenesis, making complement an interesting therapeutic target in envenomation by N. annulifera and possibly by other snake venoms.
Collapse
Affiliation(s)
| | | | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Trent M. Woodruff
- Neuroinflammation Laboratory, School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Edimara da Silva Reis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | |
Collapse
|
11
|
O'Connell LA, O'Connell JD, Paulo JA, Trauger SA, Gygi SP, Murray AW. Rapid toxin sequestration modifies poison frog physiology. J Exp Biol 2021; 224:jeb.230342. [PMID: 33408255 DOI: 10.1242/jeb.230342] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
Poison frogs sequester chemical defenses from their diet of leaf litter arthropods for defense against predation. Little is known about the physiological adaptations that confer this unusual bioaccumulation ability. We conducted an alkaloid-feeding experiment with the Diablito poison frog (Oophaga sylvatica) to determine how quickly alkaloids are accumulated and how toxins modify frog physiology using quantitative proteomics. Diablito frogs rapidly accumulated the alkaloid decahydroquinoline within 4 days, and dietary alkaloid exposure altered protein abundance in the intestines, liver and skin. Many proteins that increased in abundance with decahydroquinoline accumulation are plasma glycoproteins, including the complement system and the toxin-binding protein saxiphilin. Other protein classes that change in abundance with decahydroquinoline accumulation are membrane proteins involved in small molecule transport and metabolism. Overall, this work shows that poison frogs can rapidly accumulate alkaloids, which alter carrier protein abundance, initiate an immune response, and alter small molecule transport and metabolism dynamics across tissues.
Collapse
Affiliation(s)
- Lauren A O'Connell
- Department of Biology, Stanford University, Stanford, CA 94305, USA .,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Jeremy D O'Connell
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sunia A Trauger
- Harvard Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
12
|
Teixeira C, Fernandes CM, Leiguez E, Chudzinski-Tavassi AM. Inflammation Induced by Platelet-Activating Viperid Snake Venoms: Perspectives on Thromboinflammation. Front Immunol 2019; 10:2082. [PMID: 31572356 PMCID: PMC6737392 DOI: 10.3389/fimmu.2019.02082] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/16/2019] [Indexed: 01/01/2023] Open
Abstract
Envenomation by viperid snakes is characterized by systemic thrombotic syndrome and prominent local inflammation. To date, the mechanisms underlying inflammation and blood coagulation induced by Viperidae venoms have been viewed as distinct processes. However, studies on the mechanisms involved in these processes have revealed several factors and signaling molecules that simultaneously act in both the innate immune and hemostatic systems, suggesting an overlap between both systems during viper envenomation. Moreover, distinct classes of venom toxins involved in these effects have also been identified. However, the interplay between inflammation and hemostatic alterations, referred as to thromboinflammation, has never been addressed in the investigation of viper envenomation. Considering that platelets are important targets of viper snake venoms and are critical for the process of thromboinflammation, in this review, we summarize the inflammatory effects and mechanisms induced by viper snake venoms, particularly from the Bothrops genus, which strongly activate platelet functions and highlight selected venom components (metalloproteases and C-type lectins) that both stimulate platelet functions and exhibit pro-inflammatory activities, thus providing insights into the possible role(s) of thromboinflammation in viper envenomation.
Collapse
Affiliation(s)
- Catarina Teixeira
- Laboratory of Pharmacology, Butantan Institute, São Paulo, Brazil.,Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Cristina Maria Fernandes
- Laboratory of Pharmacology, Butantan Institute, São Paulo, Brazil.,Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Elbio Leiguez
- Laboratory of Pharmacology, Butantan Institute, São Paulo, Brazil.,Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil.,Laboratory of Molecular Biology, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
13
|
Štibrániová I, Bartíková P, Holíková V, Kazimírová M. Deciphering Biological Processes at the Tick-Host Interface Opens New Strategies for Treatment of Human Diseases. Front Physiol 2019; 10:830. [PMID: 31333488 PMCID: PMC6617849 DOI: 10.3389/fphys.2019.00830] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022] Open
Abstract
Ticks are obligatory blood-feeding ectoparasites, causing blood loss and skin damage in their hosts. In addition, ticks also transmit a number of various pathogenic microorganisms that cause serious diseases in humans and animals. Ticks evolved a wide array of salivary bioactive compounds that, upon injection into the host skin, inhibit or modulate host reactions such as hemostasis, inflammation and wound healing. Modulation of the tick attachment site in the host skin involves mainly molecules which affect physiological processes orchestrated by cytokines, chemokines and growth factors. Suppressing host defense reactions is crucial for tick survival and reproduction. Furthermore, pharmacologically active compounds in tick saliva have a promising therapeutic potential for treatment of some human diseases connected with disorders in hemostasis and immune system. These disorders are often associated to alterations in signaling pathways and dysregulation or overexpression of specific cytokines which, in turn, affect mechanisms of angiogenesis, cell motility and cytoskeletal regulation. Moreover, tick salivary molecules were found to exert cytotoxic and cytolytic effects on various tumor cells and have anti-angiogenic properties. Elucidation of the mode of action of tick bioactive molecules on the regulation of cell processes in their mammalian hosts could provide new tools for understanding the complex changes leading to immune disorders and cancer. Tick bioactive molecules may also be exploited as new pharmacological inhibitors of the signaling pathways of cytokines and thus help alleviate patient discomfort and increase patient survival. We review the current knowledge about tick salivary peptides and proteins that have been identified and functionally characterized in in vitro and/or in vivo models and their therapeutic perspective.
Collapse
Affiliation(s)
- Iveta Štibrániová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavlína Bartíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viera Holíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
14
|
Luchini LSG, Pidde G, Squaiella-Baptistão CC, Tambourgi DV. Complement System Inhibition Modulates the Pro-Inflammatory Effects of a Snake Venom Metalloproteinase. Front Immunol 2019; 10:1137. [PMID: 31231362 PMCID: PMC6558526 DOI: 10.3389/fimmu.2019.01137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022] Open
Abstract
Envenomation by Bothrops snakes causes prominent local effects, including pain, oedema, local bleeding, blistering and necrosis, and systemic manifestations, such as hemorrhage, hypotension, shock and acute renal failure. These snake venoms are able to activate the complement system and induce the generation of anaphylatoxins, whose mechanisms include the direct cleavage of complement components by snake venom metalloproteinases and serine proteinases present in the venoms. A metalloproteinase able to activate the three complement pathways and generate active anaphylatoxins, named C-SVMP, was purified from the venom of Bothrops pirajai. Considering the inflammatory nature of Bothrops venoms and the complement-activation property of C-SVMP, in the present work, we investigated the inflammatory effects of C-SVMP in a human whole blood model. The role of the complement system in the inflammatory process and its modulation by the use of compstatin were also investigated. C-SVMP was able to activate the complement system in the whole blood model, generating C3a/C3a desArg, C5a/C5a desArg and SC5b-9. This protein was able to promote an increase in the expression of CD11b, CD14, C3aR, C5aR1, TLR2, and TLR4 markers in leukocytes. Inhibition of component C3 by compstatin significantly reduced the production of anaphylatoxins and the Terminal Complement Complex (TCC) in blood plasma treated with the toxin, as well as the expression of CD11b, C3aR, and C5aR on leukocytes. C-SVMP was able to induce increased production of the cytokines IL-1β and IL-6 and the chemokines CXCL8/IL-8, CCL2/MCP-1, and CXCL9/MIG in the human whole blood model. The addition of compstatin to the reactions caused a significant reduction in the production of IL-1β, CXCL8/IL-8, and CCL2/MCP-1 in cells treated with C-SVMP. We therefore conclude that C-SVMP is able to activate the complement system, which leads to an increase in the inflammatory process. The data obtained with the use of compstatin indicate that complement inhibition may significantly control the inflammatory process initiated by Bothrops snake venom toxins.
Collapse
Affiliation(s)
| | - Giselle Pidde
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil
| | | | | |
Collapse
|
15
|
Kalogeropoulos K, Treschow AF, Auf dem Keller U, Escalante T, Rucavado A, Gutiérrez JM, Laustsen AH, Workman CT. Protease Activity Profiling of Snake Venoms Using High-Throughput Peptide Screening. Toxins (Basel) 2019; 11:toxins11030170. [PMID: 30893860 PMCID: PMC6468401 DOI: 10.3390/toxins11030170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 01/22/2023] Open
Abstract
Snake venom metalloproteinases (SVMPs) and snake venom serine proteinases (SVSPs) are among the most abundant enzymes in many snake venoms, particularly among viperids. These proteinases are responsible for some of the clinical manifestations classically seen in viperid envenomings, including hemorrhage, necrosis, and coagulopathies. The objective of this study was to investigate the enzymatic activities of these proteins using a high-throughput peptide library to screen for the proteinase targets of the venoms of five viperid (Echis carinatus, Bothrops asper, Daboia russelii, Bitis arietans, Bitis gabonica) and one elapid (Naja nigricollis) species of high medical importance. The proteinase activities of these venoms were each tested against 360 peptide substrates, yielding 2160 activity profiles. A nonlinear regression model that accurately described the observed enzymatic activities was fitted to the experimental data, allowing for the comparison of cleavage rates across species. In this study, previously unknown protein targets of snake venom proteinases were identified, potentially implicating novel human and animal proteins that may be involved in the pathophysiology of viper envenomings. The functional relevance of these targets was further evaluated and discussed. These new findings may contribute to our understanding of the clinical manifestations and underlying biochemical mechanisms of snakebite envenoming by viperid species.
Collapse
Affiliation(s)
| | | | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark.
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | | | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark.
| |
Collapse
|
16
|
Dobrovolskaia M, Neun BW, Szénási G, Szebeni J. Plasma samples from mouse strains and humans demonstrate different susceptibilities to complement activation. PRECISION NANOMEDICINE 2018. [DOI: 10.33218/prnano1(3).181029.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Complement activation can be evaluated in vitro using plasma or serum from animals and human donors, and in vivo using animal models. Despite many years of research, there is no harmonized approach for the selection of matrix and animal models. Herein, we present an in vitro study investigating intra- and inter-species variability in the complement activation. We used the liposomal formulation of amphotericin, Ambisome, as a model particle to assess the magnitude of the complement activation in plasma derived from various mouse strains and individual human donors. We demonstrated that mouse strains differ in the magnitude of the complement activation by liposomes and cobra venom factor (CVF) in vitro. Inter-individual variability in complement activation by Ambisome and CVF was also observed when plasma from individual human donors was analyzed. Such variability in both mouse and human plasma could not be explained by the levels of complement regulatory factors H and I. Moreover, even though mouse plasma was less sensitive to the complement activation by CVF than human plasma, it was equally sensitive to the activation by Ambisome. Our study demonstrates the importance of mouse strain selection for in vitro complement activation analysis. It also shows that traditional positive controls (e.g., CVF) are not predictive of the degree of complement activation by nanomedicines. The study also suggests that besides complement inhibitory factors, other elements contribute to the inter- and intra-species variability in complement activation by nanomedicines.
Collapse
|
17
|
Venom from Bothrops lanceolatus, a Snake Species Native to Martinique, Potently Activates the Complement System. J Immunol Res 2018; 2018:3462136. [PMID: 30116749 PMCID: PMC6079423 DOI: 10.1155/2018/3462136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/30/2018] [Indexed: 12/22/2022] Open
Abstract
Bothrops lanceolatus snake venom causes systemic thrombotic syndrome but also local inflammation involving extensive oedema, pain, and haemorrhage. Systemic thrombotic syndrome may lead to fatal pulmonary embolism and myocardial and cerebral infarction. Here, we investigated the ability of B. lanceolatus venom to activate the Complement system (C) in order to improve the understanding of venom-induced local inflammation. Data presented show that B. lanceolatus venom is able to activate all C-pathways. In human serum, the venom strongly induced the generation of anaphylatoxins, such as C5a and C4a, and the Terminal Complement complex. The venom also induced cleavage of purified human components C3, C4, and C5, with the production of biologically active C5a. Furthermore, the venom enzymatically inactivated the soluble C-regulator and the C1-inhibitor (C1-INH), and significantly increased the expression of bound C-regulators, such as MCP and CD59, on the endothelial cell membrane. Our observations that B. lanceolatus venom activates the three Complement activation pathways, resulting in anaphylatoxins generation, may suggest that this could play an important role in local inflammatory reaction and systemic thrombosis caused by the venom. Inactivation of C1-INH, which is also an important inhibitor of several coagulation proteins, may also contribute to inflammation and thrombosis. Thus, further in vivo studies may support the idea that therapeutic management of systemic B. lanceolatus envenomation could include the use of Complement inhibitors as adjunct therapy.
Collapse
|
18
|
|
19
|
Boldrini-França J, Cologna CT, Pucca MB, Bordon KDCF, Amorim FG, Anjolette FAP, Cordeiro FA, Wiezel GA, Cerni FA, Pinheiro-Junior EL, Shibao PYT, Ferreira IG, de Oliveira IS, Cardoso IA, Arantes EC. Minor snake venom proteins: Structure, function and potential applications. Biochim Biophys Acta Gen Subj 2017; 1861:824-838. [DOI: 10.1016/j.bbagen.2016.12.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
|
20
|
Menaldo DL, Bernardes CP, Jacob-Ferreira AL, Nogueira-Santos CG, Casare-Ogasawara TM, Pereira-Crott LS, Sampaio SV. Effects of Bothrops atrox venom and two isolated toxins on the human complement system: Modulation of pathways and generation of anaphylatoxins. Mol Immunol 2016; 80:91-100. [DOI: 10.1016/j.molimm.2016.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/18/2016] [Accepted: 10/25/2016] [Indexed: 10/20/2022]
|
21
|
|
22
|
Pedroso A, Matioli SR, Murakami MT, Pidde-Queiroz G, Tambourgi DV. Adaptive evolution in the toxicity of a spider's venom enzymes. BMC Evol Biol 2015; 15:290. [PMID: 26690570 PMCID: PMC4687385 DOI: 10.1186/s12862-015-0561-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/08/2015] [Indexed: 11/10/2022] Open
Abstract
Background Sphingomyelinase D is the main toxin present in the venom of Loxosceles spiders. Several isoforms present in these venoms can be structurally classified in two groups. Class I Sphingomyelinase D contains a single disulphide bridge and variable loop. Class II Sphingomyelinase D presents an additional intrachain disulphide bridge that links a flexible loop with a catalytic loop. These classes exhibit differences in their toxic potential. In this paper we address the distribution of the structural classes of SMase D within and among species of spiders and also their evolutionary origin by means of phylogenetic analyses. We also conducted tests to assess the action of natural selection in their evolution combined to structural modelling of the affected sites. Results The majority of the Class I enzymes belong to the same clade, which indicates a recent evolution from a single common ancestor. Positively selected sites are located on the catalytic interface, which contributes to a distinct surface charge distribution between the classes. Sites that may prevent the formation of an additional bridge were found in Class I enzymes. Conclusions The evolution of Sphingomyelinase D has been driven by natural selection toward an increase in noxiousness, and this might help explain the toxic variation between classes. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0561-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aurélio Pedroso
- Laboratório de Imunoquímica, Instituto Butantan, São Paulo, S.P., Brazil.
| | - Sergio Russo Matioli
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, S.P., Brazil.
| | - Mario Tyago Murakami
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, S.P., Brazil.
| | | | - Denise V Tambourgi
- Laboratório de Imunoquímica, Instituto Butantan, São Paulo, S.P., Brazil.
| |
Collapse
|
23
|
Romano JD, Tatonetti NP. VenomKB, a new knowledge base for facilitating the validation of putative venom therapies. Sci Data 2015; 2:150065. [PMID: 26601758 PMCID: PMC4658572 DOI: 10.1038/sdata.2015.65] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 09/28/2015] [Indexed: 11/09/2022] Open
Abstract
Animal venoms have been used for therapeutic purposes since the dawn of recorded history. Only a small fraction, however, have been tested for pharmaceutical utility. Modern computational methods enable the systematic exploration of novel therapeutic uses for venom compounds. Unfortunately, there is currently no comprehensive resource describing the clinical effects of venoms to support this computational analysis. We present VenomKB, a new publicly accessible knowledge base and website that aims to act as a repository for emerging and putative venom therapies. Presently, it consists of three database tables: (1) Manually curated records of putative venom therapies supported by scientific literature, (2) automatically parsed MEDLINE articles describing compounds that may be venom derived, and their effects on the human body, and (3) automatically retrieved records from the new Semantic Medline resource that describe the effects of venom compounds on mammalian anatomy. Data from VenomKB may be selectively retrieved in a variety of popular data formats, are open-source, and will be continually updated as venom therapies become better understood.
Collapse
Affiliation(s)
- Joseph D Romano
- Department of Biomedical Informatics, Columbia University Medical Center, New York, New York 10032, USA.,Department of Systems Biology, Columbia University Medical Center, New York, New York 10032, USA.,Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA
| | - Nicholas P Tatonetti
- Department of Biomedical Informatics, Columbia University Medical Center, New York, New York 10032, USA.,Department of Systems Biology, Columbia University Medical Center, New York, New York 10032, USA.,Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
24
|
Tsai M, Starkl P, Marichal T, Galli SJ. Testing the 'toxin hypothesis of allergy': mast cells, IgE, and innate and acquired immune responses to venoms. Curr Opin Immunol 2015. [PMID: 26210895 DOI: 10.1016/j.coi.2015.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Work in mice indicates that innate functions of mast cells, particularly degradation of venom toxins by mast cell-derived proteases, can enhance resistance to certain arthropod or reptile venoms. Recent reports indicate that acquired Th2 immune responses associated with the production of IgE antibodies, induced by Russell's viper venom or honeybee venom, or by a component of honeybee venom, bee venom phospholipase 2 (bvPLA2), can increase the resistance of mice to challenge with potentially lethal doses of either of the venoms or bvPLA2. These findings support the conclusion that, in contrast to the detrimental effects associated with allergic type 2 (Th2) immune responses, mast cells and IgE-dependent immune responses to venoms can contribute to innate and adaptive resistance to venom-induced pathology and mortality.
Collapse
Affiliation(s)
- Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philipp Starkl
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas Marichal
- GIGA-Research and Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Villas Boas IM, Pidde-Queiroz G, Magnoli FC, Gonçalves-de-Andrade RM, van den Berg CW, Tambourgi DV. A serine protease isolated from the bristles of the Amazonic caterpillar, Premolis semirufa, is a potent complement system activator. PLoS One 2015; 10:e0118615. [PMID: 25760458 PMCID: PMC4356561 DOI: 10.1371/journal.pone.0118615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/21/2015] [Indexed: 12/20/2022] Open
Abstract
Background The caterpillar of the moth Premolis semirufa, commonly named pararama, is found in the Brazilian Amazon region. Accidental contact with the caterpillar bristles causes an intense itching sensation, followed by symptoms of an acute inflammation, which last for three to seven days after the first incident. After multiple accidents a chronic inflammatory reaction, called “Pararamose”, characterized by articular synovial membrane thickening with joint deformities common to chronic synovitis, frequently occurs. Although complement mediated inflammation may aid the host defense, inappropriate or excessive activation of the complement system and generation of anaphylatoxins can lead to inflammatory disorder and pathologies. The aim of the present study was to evaluate, in vitro, whether the Premolis semirufa’s bristles extract could interfere with the human complement system. Results The bristles extract was able to inhibit the haemolytic activity of the alternative pathway, as well as the activation of the lectin pathway, but had no effect on the classical pathway, and this inhibition seemed to be caused by activation and consumption of complement components. The extract induced the production of significant amounts of all three anaphylatoxins, C3a, C4a and C5a, promoted direct cleavage of C3, C4 and C5 and induced a significant generation of terminal complement complexes in normal human serum. By using molecular exclusion chromatography, a serine protease of 82 kDa, which activates complement, was isolated from P. semirufa bristles extract. The protease, named here as Ps82, reduced the haemolytic activity of the alternative and classical pathways and inhibited the lectin pathway. In addition, Ps82 induced the cleavage of C3, C4 and C5 and the generation of C3a and C4a in normal human serum and it was capable to cleave human purified C5 and generate C5a. The use of Phenanthroline, metalloprotease inhibitor, in the reactions did not significantly interfere with the activity of the Ps82, whereas the presence of PMSF, serine protease inhibitor, totally blocked the activity. Conclusion These data show that a serine protease present in the Premolis semirufa’s bristles extract has the ability to activate the complement system, which may contribute to the inflammatory process presented in humans after envenomation.
Collapse
Affiliation(s)
| | | | | | | | - Carmen W. van den Berg
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Denise V. Tambourgi
- Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
26
|
Melis JPM, Strumane K, Ruuls SR, Beurskens FJ, Schuurman J, Parren PWHI. Complement in therapy and disease: Regulating the complement system with antibody-based therapeutics. Mol Immunol 2015; 67:117-30. [PMID: 25697848 DOI: 10.1016/j.molimm.2015.01.028] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 12/23/2022]
Abstract
Complement is recognized as a key player in a wide range of normal as well as disease-related immune, developmental and homeostatic processes. Knowledge of complement components, structures, interactions, and cross-talk with other biological systems continues to grow and this leads to novel treatments for cancer, infectious, autoimmune- or age-related diseases as well as for preventing transplantation rejection. Antibodies are superbly suited to be developed into therapeutics with appropriate complement stimulatory or inhibitory activity. Here we review the design, development and future of antibody-based drugs that enhance or dampen the complement system.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul W H I Parren
- Genmab, Utrecht, The Netherlands; Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|