1
|
Davies AM, Beavil RL, Barbolov M, Sandhar BS, Gould HJ, Beavil AJ, Sutton BJ, McDonnell JM. Crystal structures of the human IgD Fab reveal insights into C H1 domain diversity. Mol Immunol 2023; 159:28-37. [PMID: 37267832 DOI: 10.1016/j.molimm.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023]
Abstract
Antibodies of the IgD isotype remain the least well characterized of the mammalian immunoglobulin isotypes. Here we report three-dimensional structures for the Fab region of IgD, based on four different crystal structures, at resolutions of 1.45-2.75 Å. These IgD Fab crystals provide the first high-resolution views of the unique Cδ1 domain. Structural comparisons identify regions of conformational diversity within the Cδ1 domain, as well as among the homologous domains of Cα1, Cγ1 and Cμ1. The IgD Fab structure also possesses a unique conformation of the upper hinge region, which may contribute to the overall disposition of the very long linker sequence between the Fab and Fc regions found in human IgD. Structural similarities observed between IgD and IgG, and differences with IgA and IgM, are consistent with predicted evolutionary relationships for the mammalian antibody isotypes.
Collapse
Affiliation(s)
- Anna M Davies
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Rebecca L Beavil
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Momchil Barbolov
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Balraj S Sandhar
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Hannah J Gould
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Andrew J Beavil
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Brian J Sutton
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - James M McDonnell
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom.
| |
Collapse
|
2
|
Mirete-Bachiller S, Gambón-Deza F. Immunoglobulins genes in Neoceratodus forsteri and Protopterus annectens explain the origin of the immunoglobulins of the animals that passed ashore. Mol Immunol 2022; 152:97-105. [DOI: 10.1016/j.molimm.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/07/2022]
|
3
|
Yoshinaga K, Oshio H, Prasetio B, Hayashida H, Maeda E, Matsumoto M. Four immunoglobulin isotypes and IgD splice variants in urodele amphibians. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103963. [PMID: 33301796 DOI: 10.1016/j.dci.2020.103963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/21/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Until recently, different families of urodele amphibians were thought to express distinct subsets of immunoglobulin (Ig) isotypes. In this study, we explored cDNAs encoding Ig heavy-chains (H-chains) in three species of urodele amphibians. We found that Cynops pyrrhogaster, Pleurodeles waltl, and Ambystoma mexicanum each carry genes encoding four Ig H-chain isotypes, including IgM, IgY, IgD, and IgX, similar to those found in anuran amphibians. We also found that urodele IgDs have a long constant region similar to those found in anuran, reptiles, and bony fishes. We also found several putative IgD splice variants. Our findings indicated that P. waltl IgP is not a novel isotype but an IgD splice variant. Altogether, our findings indicate that IgD splice variants may be universally expressed among amphibian species.
Collapse
Affiliation(s)
- Keisuke Yoshinaga
- Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College, Hirayama Shin-Machi 2627, Yatsushiro, Kumamoto, 866-8501, Japan.
| | - Hiroto Oshio
- Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College, Hirayama Shin-Machi 2627, Yatsushiro, Kumamoto, 866-8501, Japan
| | - Billy Prasetio
- Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College, Hirayama Shin-Machi 2627, Yatsushiro, Kumamoto, 866-8501, Japan
| | - Haruka Hayashida
- Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College, Hirayama Shin-Machi 2627, Yatsushiro, Kumamoto, 866-8501, Japan
| | - Eriko Maeda
- Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College, Hirayama Shin-Machi 2627, Yatsushiro, Kumamoto, 866-8501, Japan
| | - Mizuki Matsumoto
- Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College, Hirayama Shin-Machi 2627, Yatsushiro, Kumamoto, 866-8501, Japan
| |
Collapse
|
4
|
Gouania willdenowi is a teleost fish without immunoglobulin genes. Mol Immunol 2021; 132:102-107. [PMID: 33578305 DOI: 10.1016/j.molimm.2021.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 02/04/2023]
Abstract
Immunoglobulin (Ig) genes encode antibodies in jawed vertebrates. They are essential elements of the adaptive immune response. Ig exists in soluble form or as part of the B cell membrane antigen receptor (BCR). Studies of Ig genes in fish genomes reveal the absence of Ig genes in Gouania willdenowi by deletion of the entire Ig locus from the canonical chromosomal region. The genes coding for integral BCR proteins, CD79a and CD79b, are also absent. Genes exist for T α/β lymphocyte receptors but not for the T γ/δ receptors. The results of the genomic analysis are independently corroborated with RNA-Seq transcriptomes from other Gobiesocidae species. From the transcriptome studies, Ig is also absent from these other Gobiesocidae species, Acyrtus sp. and Tomicodon sp. Present evidence suggests that Ig is missing from all species of the Gobiesocidae family.
Collapse
|
5
|
Olivieri DN, Mirete-Bachiller S, Gambón-Deza F. Insights into the evolution of IG genes in Amphibians and reptiles. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103868. [PMID: 32949685 DOI: 10.1016/j.dci.2020.103868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Immunoglobulins are essential proteins of the immune system to neutralize pathogens. Gene encoding B cell receptors and antibodies (Ig genes) first appeared with the emergence of early vertebrates having a jaw, and are now present in all extant jawed vertebrates, or Gnathostomata. The genes have undergone evolutionary changes. In particular, genomic structural changes corresponding to genes of the adaptive immune system were coincident or in parallel with the adaptation of vertebrates from the sea to land. In cartilaginous fish exist IgM, IgD/W, and IgNAR and in bony fish IgM, IgT, IgD. Amphibians and reptiles witnessed significant modifications both in the structure and orientation of IG genes. In particular, for these amphibians and Amniota that adapted to land, IgM and IgD genes were retained, but other isotypes arose, including genes for IgA(X)1, IgA(X)2, and IgY. Recent progress in high throughput genome sequencing is helping to uncover the IG gene structure of all jawed vertebrates. In this work, we review the work and present knowledge of immunoglobulin genes in genomes of amphibians and reptiles.
Collapse
Affiliation(s)
- David N Olivieri
- Centro de Intelixencia Artificial, Ourense, Spain; ESEI, Dept. Informatics, Universidade de Vigo. As Lagoas S/n, Ourense, Spain.
| | | | | |
Collapse
|
6
|
Immunoglobulin and T cell receptor genes in Chinese crocodile lizard Shinisaurus crocodilurus. Mol Immunol 2018; 101:160-166. [DOI: 10.1016/j.molimm.2018.06.263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 11/21/2022]
|
7
|
Olivieri DN, Gambón Deza F. Immunoglobulin genes in Primates. Mol Immunol 2018; 101:353-363. [PMID: 30036801 DOI: 10.1016/j.molimm.2018.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 11/27/2022]
Abstract
Five classes of immunoglobulins are known to exist in mammals. The number of isotypes of classes G, E and A varies among species for unknown reasons. Here, a study of the presence of immunoglobulin genes in Primates was carried out from the genomes and transcriptomes deposited in the NCBI repository. For this, a machine learning application based upon neural networks was implemented that scans the genomes and identifies the exon sequences that encode the immunoglobulin CH domains. From these exons, the immunoglobulins that each species possess can be inferred. Also, the presence of sequences outside the IGHC locus was found which were produced by retrotranscription of RNA that are probably not viable. From this study, the distribution of immunoglobulin genes across primate orders is described in detail. In Prosimians, IgD genes are not found; in Platyrrhines, a gene is identified for each of the immunoglobulin classes but the IgD gene does not have the CH2 exon; in the Cercopithecidae family, a gene is detected for each class in the Colobinae family, while in Cercopithecidae the genes for IgG have been duplicated several times. In hominids, a greater number of duplications that include the genes that code for IgA and IgE are observed. These results indicate that from the appearance of the Cercopithecidae, there is an evolutionary instability in the Ig locus.
Collapse
Affiliation(s)
- David N Olivieri
- School of Computer Science, University of Vigo, Ourense 32004, Spain.
| | | |
Collapse
|
8
|
Staley M, Conners MG, Hall K, Miller LJ. Linking stress and immunity: Immunoglobulin A as a non-invasive physiological biomarker in animal welfare studies. Horm Behav 2018; 102:55-68. [PMID: 29705025 DOI: 10.1016/j.yhbeh.2018.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/08/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022]
Abstract
As the animal welfare community strives to empirically assess how care and management practices can help maintain or even enhance welfare, the development of tools for non-invasively measuring physiological biomarkers is essential. Of the suite of physiological biomarkers, Immunoglobulin A (IgA), particularly the secretory form (Secretory IgA or SIgA), is at the forefront because of its crucial role in mucosal immunity and links to physical health, stress, and overall psychological well-being. While interpretation of changes in SIgA concentrations on short time scales is complex, long-term SIgA patterns are consistent: conditions that create chronic stress lead to suppression of SIgA. In contrast, when welfare is enhanced, SIgA is predicted to stabilize at higher concentrations. In this review, we examine how SIgA concentrations are reflective of both physiological stress and immune function. We then review the literature associating SIgA concentrations with various metrics of animal welfare and provide detailed methodological considerations for SIgA monitoring. Overall, our aim is to provide an in-depth discussion regarding the value of SIgA as physiological biomarker to studies aiming to understand the links between stress and immunity.
Collapse
Affiliation(s)
- Molly Staley
- Chicago Zoological Society - Brookfield Zoo, 3300 Golf Rd, Brookfield, IL 60513, United States.
| | - Melinda G Conners
- Chicago Zoological Society - Brookfield Zoo, 3300 Golf Rd, Brookfield, IL 60513, United States
| | - Katie Hall
- Chicago Zoological Society - Brookfield Zoo, 3300 Golf Rd, Brookfield, IL 60513, United States
| | - Lance J Miller
- Chicago Zoological Society - Brookfield Zoo, 3300 Golf Rd, Brookfield, IL 60513, United States
| |
Collapse
|
9
|
Zhang X, Calvert RA, Sutton BJ, Doré KA. IgY: a key isotype in antibody evolution. Biol Rev Camb Philos Soc 2017; 92:2144-2156. [DOI: 10.1111/brv.12325] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 01/31/2017] [Accepted: 02/09/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Xiaoying Zhang
- Department of Basic Veterinary, College of Veterinary Medicine; Northwest A&F University; Yangling 712100 China
| | - Rosaleen A. Calvert
- The Randall Division of Cell & Molecular Biophysics, King's College London; London SE1 1UL U.K
| | - Brian J. Sutton
- The Randall Division of Cell & Molecular Biophysics, King's College London; London SE1 1UL U.K
| | - Katy A. Doré
- The Randall Division of Cell & Molecular Biophysics, King's College London; London SE1 1UL U.K
| |
Collapse
|
10
|
Akula S, Hellman L. The Appearance and Diversification of Receptors for IgM During Vertebrate Evolution. Curr Top Microbiol Immunol 2017; 408:1-23. [PMID: 28884191 DOI: 10.1007/82_2017_22] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three different receptors that interact with the constant domains of IgM have been identified: the polymeric immunoglobulin (Ig) receptor (PIGR), the dual receptor for IgA/IgM (FcαµR) and the IgM receptor (FcµR). All of them are related in structure and located in the same chromosomal region in mammals. The functions of the PIGRs are to transport IgM and IgA into the intestinal lumen and to saliva and tears, whereas the FcαµRs enhance uptake of immune complexes and antibody coated bacteria and viruses by B220+ B cells and phagocytes, as well as dampening the Ig response to thymus-independent antigens. The FcµRs have broad-spectrum effects on B-cell development including effects on IgM homeostasis, B-cell survival, humoral immune responses and also in autoantibody formation. The PIGR is the first of these receptors to appear during vertebrate evolution and is found in bony fish and all tetrapods but not in cartilaginous fish. The FcµR is present in all extant mammalian lineages and also in the Chinese and American alligators, suggesting its appearance with early reptiles. Currently the FcαµR has only been found in mammals and is most likely the evolutionary youngest of the three receptors. In bony fish, the PIGR has either 2, 3, 4, 5 or 6 extracellular Ig-like domains, whereas in amphibians, reptiles and birds it has 4 domains, and 5 in all mammals. The increase in domain number from 4 to 5 in mammals has been proposed to enhance the interaction with IgA. Both the FcαµRs and the FcµRs contain only one Ig domain; the domain that confers Ig binding. In both of these receptors this domain shows the highest degree of sequence similarity to domain 1 of the PIGR. All Ig domains of these three receptors are V type domains, indicating they all have the same origin although they have diversified extensively in function during vertebrate evolution by changing expression patterns and cytoplasmic signaling motifs.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, 751 24, Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, 751 24, Uppsala, Sweden.
| |
Collapse
|
11
|
Olivieri DN, Garet E, Estevez O, Sánchez-Espinel C, Gambón-Deza F. Genomic structure and expression of immunoglobulins in Squamata. Mol Immunol 2016; 72:81-91. [DOI: 10.1016/j.molimm.2016.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 02/24/2016] [Accepted: 03/02/2016] [Indexed: 11/24/2022]
|