1
|
Yu KQ, Li CF, Ye L, Song Y, Wang YH, Lin YR, Liao ST, Mei ZC, Lv L. Long Non-Coding RNA ANRIL Regulates Inflammatory Factor Expression in Ulcerative Colitis Via the miR-191-5p/SATB1 Axis. Inflammation 2024; 47:513-529. [PMID: 37985573 DOI: 10.1007/s10753-023-01925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023]
Abstract
Ulcerative colitis, an inflammatory bowel disease, manifests with symptoms such as abdominal pain, diarrhea, and mucopurulent feces. The long non-coding RNA (lncRNA) ANRIL exhibits significantly reduced expression in UC, yet its specific mechanism is unknown. This study revealed that ANRIL is involved in the progression of UC by inhibiting IL-6 and TNF-α via miR-191-5P/SATB1 axis. We found that in patients with UC, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were significantly overexpressed in inflamed colon sites, whereas ANRIL was significantly under-expressed and associated with disease severity. The downregulation of ANRIL resulted in the increased expression of IL-6 and TNF-α in LPS-treated FHCs. ANRIL directly targeted miR-191-5p, thereby inhibiting its expression and augmenting SATB1 expression. Moreover, overexpression of miR-191-5p abolished ANRIL-mediated inhibition of IL-6 and TNF-α production. Dual luciferase reporter assays revealed the specific binding of miR-191-5p to ANRIL and SATB1. Furthermore, the downregulation of ANRIL promoted DSS-induced colitis in mice. Together, we provide evidence that ANRIL plays a critical role in regulating IL-6 and TNF-α expression in UC by modulating the miR-191-5p/SATB1 axis. Our study provides novel insights into progression and molecular therapeutic strategies in UC.
Collapse
Affiliation(s)
- Ke-Qi Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, Chongqing, 400010, China
| | - Chuan-Fei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, Chongqing, 400010, China
| | - Lu Ye
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, Chongqing, 400010, China
| | - Ya Song
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, Chongqing, 400010, China
| | - Yan-Hui Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, Chongqing, 400010, China
| | - Yu-Ru Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, Chongqing, 400010, China
| | - Sheng-Tao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, Chongqing, 400010, China.
| | - Zhe-Chuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, Chongqing, 400010, China.
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, Chongqing, 400010, China.
| |
Collapse
|
2
|
Leyva-Díaz E. CUT homeobox genes: transcriptional regulation of neuronal specification and beyond. Front Cell Neurosci 2023; 17:1233830. [PMID: 37744879 PMCID: PMC10515288 DOI: 10.3389/fncel.2023.1233830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
CUT homeobox genes represent a captivating gene class fulfilling critical functions in the development and maintenance of multiple cell types across a wide range of organisms. They belong to the larger group of homeobox genes, which encode transcription factors responsible for regulating gene expression patterns during development. CUT homeobox genes exhibit two distinct and conserved DNA binding domains, a homeodomain accompanied by one or more CUT domains. Numerous studies have shown the involvement of CUT homeobox genes in diverse developmental processes such as body axis formation, organogenesis, tissue patterning and neuronal specification. They govern these processes by exerting control over gene expression through their transcriptional regulatory activities, which they accomplish by a combination of classic and unconventional interactions with the DNA. Intriguingly, apart from their roles as transcriptional regulators, they also serve as accessory factors in DNA repair pathways through protein-protein interactions. They are highly conserved across species, highlighting their fundamental importance in developmental biology. Remarkably, evolutionary analysis has revealed that CUT homeobox genes have experienced an extraordinary degree of rearrangements and diversification compared to other classes of homeobox genes, including the emergence of a novel gene family in vertebrates. Investigating the functions and regulatory networks of CUT homeobox genes provides significant understanding into the molecular mechanisms underlying embryonic development and tissue homeostasis. Furthermore, aberrant expression or mutations in CUT homeobox genes have been associated with various human diseases, highlighting their relevance beyond developmental processes. This review will overview the well known roles of CUT homeobox genes in nervous system development, as well as their functions in other tissues across phylogeny.
Collapse
|
3
|
Nomura A, Kobayashi T, Seo W, Ohno-Oishi M, Kakugawa K, Muroi S, Yoshida H, Endo TA, Moro K, Taniuchi I. Identification of a novel enhancer essential for Satb1 expression in T H2 cells and activated ILC2s. Life Sci Alliance 2023; 6:e202301897. [PMID: 37193606 PMCID: PMC10189277 DOI: 10.26508/lsa.202301897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023] Open
Abstract
The genome organizer, special AT-rich binding protein-1 (SATB1), functions to globally regulate gene networks during primary T cell development and plays a pivotal role in lineage specification in CD4+ helper-, CD8+ cytotoxic-, and FOXP3+ regulatory-T cell subsets. However, it remains unclear how Satb1 gene expression is controlled, particularly in effector T cell function. Here, by using a novel reporter mouse strain expressing SATB1-Venus and genome editing, we have identified a cis-regulatory enhancer, essential for maintaining Satb1 expression specifically in TH2 cells. This enhancer is occupied by STAT6 and interacts with Satb1 promoters through chromatin looping in TH2 cells. Reduction of Satb1 expression, by the lack of this enhancer, resulted in elevated IL-5 expression in TH2 cells. In addition, we found that Satb1 is induced in activated group 2 innate lymphoid cells (ILC2s) through this enhancer. Collectively, these results provide novel insights into how Satb1 expression is regulated in TH2 cells and ILC2s during type 2 immune responses.
Collapse
Affiliation(s)
- Aneela Nomura
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Tetsuro Kobayashi
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Wooseok Seo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Michiko Ohno-Oishi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Kiyokazu Kakugawa
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Sawako Muroi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Hideyuki Yoshida
- Laboratory for YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Takaho A Endo
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School for Medicine, Osaka University, Osaka, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| |
Collapse
|
4
|
Nüssing S, Miosge LA, Lee K, Olshansky M, Barugahare A, Roots CM, Sontani Y, Day EB, Koutsakos M, Kedzierska K, Goodnow CC, Russ BE, Daley SR, Turner SJ. SATB1 ensures appropriate transcriptional programs within naïve CD8
+
T cells. Immunol Cell Biol 2022; 100:636-652. [PMID: 35713361 PMCID: PMC9542893 DOI: 10.1111/imcb.12566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Simone Nüssing
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity University of Melbourne Parkville VIC Australia
| | - Lisa A Miosge
- John Curtin School of Medical Research Australian National University Canberra ACT Australia
| | - Kah Lee
- Department of Microbiology, Immunity Theme, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Moshe Olshansky
- Department of Microbiology, Immunity Theme, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | | | - Carla M Roots
- John Curtin School of Medical Research Australian National University Canberra ACT Australia
| | - Yovina Sontani
- John Curtin School of Medical Research Australian National University Canberra ACT Australia
| | - E Bridie Day
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity University of Melbourne Parkville VIC Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity University of Melbourne Parkville VIC Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity University of Melbourne Parkville VIC Australia
| | - Christopher C Goodnow
- John Curtin School of Medical Research Australian National University Canberra ACT Australia
- Garvan Institute of Medical Research & Cellular Genomics Futures Institute University of New South Wales Darlinghurst NSW Australia
| | - Brendan E Russ
- Department of Microbiology, Immunity Theme, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Stephen R Daley
- John Curtin School of Medical Research Australian National University Canberra ACT Australia
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health Queensland University of Technology Brisbane QLD Australia
| | - Stephen J Turner
- Department of Microbiology, Immunity Theme, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| |
Collapse
|
5
|
Papadogkonas G, Papamatheakis DA, Spilianakis C. 3D Genome Organization as an Epigenetic Determinant of Transcription Regulation in T Cells. Front Immunol 2022; 13:921375. [PMID: 35812421 PMCID: PMC9257000 DOI: 10.3389/fimmu.2022.921375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
In the heart of innate and adaptive immunity lies the proper spatiotemporal development of several immune cell lineages. Multiple studies have highlighted the necessity of epigenetic and transcriptional regulation in cell lineage specification. This mode of regulation is mediated by transcription factors and chromatin remodelers, controlling developmentally essential gene sets. The core of transcription and epigenetic regulation is formulated by different epigenetic modifications determining gene expression. Apart from “classic” epigenetic modifications, 3D chromatin architecture is also purported to exert fundamental roles in gene regulation. Chromatin conformation both facilitates cell-specific factor binding at specified regions and is in turn modified as such, acting synergistically. The interplay between global and tissue-specific protein factors dictates the epigenetic landscape of T and innate lymphoid cell (ILC) lineages. The expression of global genome organizers such as CTCF, YY1, and the cohesin complexes, closely cooperate with tissue-specific factors to exert cell type-specific gene regulation. Special AT-rich binding protein 1 (SATB1) is an important tissue-specific genome organizer and regulator controlling both long- and short-range chromatin interactions. Recent indications point to SATB1’s cooperation with the aforementioned factors, linking global to tissue-specific gene regulation. Changes in 3D genome organization are of vital importance for proper cell development and function, while disruption of this mechanism can lead to severe immuno-developmental defects. Newly emerging data have inextricably linked chromatin architecture deregulation to tissue-specific pathophysiological phenotypes. The combination of these findings may shed light on the mechanisms behind pathological conditions.
Collapse
Affiliation(s)
- George Papadogkonas
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Dionysios-Alexandros Papamatheakis
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Charalampos Spilianakis
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
- *Correspondence: Charalampos Spilianakis,
| |
Collapse
|
6
|
Abstract
The regulatory circuits that define developmental decisions of thymocytes are still incompletely resolved. SATB1 protein is predominantly expressed at the CD4+CD8+cell stage exerting its broad transcription regulation potential with both activatory and repressive roles. A series of post-translational modifications and the presence of potential SATB1 protein isoforms indicate the complexity of its regulatory potential. The most apparent mechanism of its involvement in gene expression regulation is via the orchestration of long-range chromatin loops between genes and their regulatory elements. Multiple SATB1 perturbations in mice uncovered a link to autoimmune diseases while clinical investigations on cancer research uncovered that SATB1 has a promoting role in several types of cancer and can be used as a prognostic biomarker. SATB1 is a multivalent tissue-specific factor with a broad and yet undetermined regulatory potential. Future investigations on this protein could further uncover T cell-specific regulatory pathways and link them to (patho)physiology.
Collapse
Affiliation(s)
- Tomas Zelenka
- Department of Biology, University of Crete , Heraklion, Crete, Greece.,Gene Regulation & Genomics, Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas , Heraklion, Crete, Greece
| | - Charalampos Spilianakis
- Department of Biology, University of Crete , Heraklion, Crete, Greece.,Gene Regulation & Genomics, Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas , Heraklion, Crete, Greece
| |
Collapse
|
7
|
Patta I, Madhok A, Khare S, Gottimukkala KP, Verma A, Giri S, Dandewad V, Seshadri V, Lal G, Misra-Sen J, Galande S. Dynamic regulation of chromatin organizer SATB1 via TCR-induced alternative promoter switch during T-cell development. Nucleic Acids Res 2020; 48:5873-5890. [PMID: 32392347 PMCID: PMC7293019 DOI: 10.1093/nar/gkaa321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
The chromatin organizer SATB1 is highly enriched in thymocytes and is essential for T-cell development. Although SATB1 regulates a large number of genes important for T-cell development, the mechanism(s) regulating expression of SATB1 during this process remain elusive. Using chromatin immune precipitation-seq-based occupancy profiles of H3K4me3 and H3Kme1 at Satb1 gene locus, we predicted four different alternative promoters of Satb1 in mouse thymocytes and characterized them. The expression of Satb1 transcript variants with distinct 5′ UTRs occurs in a stage-specific manner during T-cell development and is dependent on TCR signaling. The observed discrepancy between the expression levels of SATB1 mRNA and protein in developing thymocytes can be explained by the differential translatability of Satb1 transcript variants as confirmed by polysome profiling and in vitro translation assay. We show that Satb1 alternative promoters exhibit lineage-specific chromatin accessibility during T-cell development from progenitors. Furthermore, TCF1 regulates the Satb1 P2 promoter switch during CD4SP development, via direct binding to the Satb1 P2 promoter. CD4SP T cells from TCF1 KO mice exhibit downregulation of P2 transcript variant expression as well as low levels of SATB1 protein. Collectively, these results provide unequivocal evidence toward alternative promoter switch-mediated developmental stage-specific regulation of SATB1 in thymocytes.
Collapse
Affiliation(s)
- Indumathi Patta
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Ayush Madhok
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Satyajeet Khare
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India.,Symbiosis School of Biological Sciences, Pune, Maharashtra 412115, India
| | - Kamalvishnu P Gottimukkala
- National Institute on Aging, NIH and School of Medicine Immunology Graduate Program, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Anjali Verma
- National Institute on Aging, NIH and School of Medicine Immunology Graduate Program, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Shilpi Giri
- National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Vishal Dandewad
- National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Vasudevan Seshadri
- National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Girdhari Lal
- National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Jyoti Misra-Sen
- National Institute on Aging, NIH and School of Medicine Immunology Graduate Program, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| |
Collapse
|
8
|
SATB1 as oncogenic driver and potential therapeutic target in head & neck squamous cell carcinoma (HNSCC). Sci Rep 2020; 10:8615. [PMID: 32451408 PMCID: PMC7248088 DOI: 10.1038/s41598-020-65077-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/26/2020] [Indexed: 01/05/2023] Open
Abstract
The Special AT-rich sequence binding protein 1 (SATB1) is a genome organizer protein that controls gene expression of numerous genes by regulating chromatin architecture and targeting chromatin-remodeling/-modifying enzymes onto specific chromatin regions. SATB1 is overexpressed in various tumors. In head and neck squamous cell carcinoma (HNSCC), SATB1 upregulation is correlated with TNM classification, metastasis, poor prognosis and reduced overall survival. In this paper, we comprehensively analyze cellular and molecular effects of SATB1 in a large set of primary cell lines from primary HNSCC or metastases, using RNAi-mediated knockdown in vitro and, therapeutically, in tumor xenograft mouse models in vivo. In a series of 15 cell lines, major differences in SATB1 levels are observed. In various 2-D and 3-D assays, growth inhibition upon efficient siRNA-mediated SATB1 knockdown depends on the cell line rather than initial SATB1 levels. Inhibitory effects are found to be based on cell cycle deceleration, apoptosis induction, decreased HER3 and Heregulin A&B expression, and effects on EMT genes. In vivo, systemic treatment of tumor xenograft-bearing mice with siRNAs formulated in polymeric nanoparticles inhibits tumor growth of two HNSCC xenograft models, resulting from therapeutic SATB1 reduction and concomitant decrease of proliferation and induction of apoptosis. In conclusion, SATB1 represents a promising target in HNSCC, affecting crucial cellular processes and molecular pathways.
Collapse
|
9
|
Luo X, Xu L, Wu X, Tan H, Liu L. Decreased SATB1 expression promotes AML cell proliferation through NF-κB activation. Cancer Cell Int 2019; 19:134. [PMID: 31130823 PMCID: PMC6525380 DOI: 10.1186/s12935-019-0850-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/07/2019] [Indexed: 12/28/2022] Open
Abstract
Background Special AT-rich sequence-binding protein 1 (SATB1) is a chromatin-remodeling protein that regulates gene expressions in different types of cancer. Up-regulation of SATB1 is linked with progression of tumors. Our previous study showed that SATB1 expression was decreased in T cell leukemia/lymphoma. The contrary roles of SATB1 in solid organ tumors and hematology malignancy may provide hints to study the function of SATB1. Methods To characterize SATB1 mRNA and protein expression in acute myeloid leukemia (AML), we performed qRT-PCR and Western blot on bone marrow mononuclear cells from 52 newly diagnosed AML patients. Stable HL-60 cell lines with knockdown of SATB1 by shRNAs sequences (HL-60 SATB1-shRNA1 and HL-60 SATB1-shRNA2) were established. Cell proliferation, cell cycle and cell invasiveness were analyzed. Murine model was established using HL-60 SATB1-shRNAs treated nude mice and tumorigenicity was compared to study the role of SATB1 in vivo. Global gene expression profiles were analyzed in HL-60 cells with SATB1 knockdown to investigate the mechanisms underlying the regulation of AML cell growth by SATB1. Results We found that SATB1 expression was significantly decreased in patients with AML compared to normal control, and was increased after complete remission of AML. Knockdown of SATB1 enhanced the proliferation of HL-60 cells and accelerated S phase entry in vitro, and promoted the tumor growth in vivo. Global gene expression profiles were analyzed in HL-60 cells with SATB1 knockdown and the differentially expressed genes were involved in NF-κB, MAPK and PI3 K/Akt signaling pathways. Nuclear NF-κB p65 levels were significantly increased in SATB1 depleted HL-60 cells. Conclusions Decreased SATB1 expression promotes AML cell proliferation through NF-κB activation. SATB1 could be a predictor for better response to treatment in AML.
Collapse
Affiliation(s)
- Xiaodan Luo
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| | - Lihua Xu
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| | - Xiaohong Wu
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| | - Huo Tan
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| | - Lian Liu
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| |
Collapse
|
10
|
Poglio S, Merlio JP. SATB1 Is a Pivotal Epigenetic Biomarker in Cutaneous T-Cell Lymphomas. J Invest Dermatol 2019; 138:1694-1696. [PMID: 30032787 DOI: 10.1016/j.jid.2018.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 12/17/2022]
Abstract
The SATB1 protein has been the focus of two recent studies of cutaneous T-cell lymphomas. Fredholm et al. observed a stage-related decrease of SATB1 expression in epidermotropic cutaneous T-cell lymphomas. SATB1 was negatively regulated by STAT5 through microRNA-155, which in turn triggered enhanced expression of T helper type 2 cytokines such as IL-5 and IL-9. In parallel, Sun et al. found that SATB1 expression was up-regulated by promoter demethylation in a subset of cutaneous anaplastic lymphoma and was associated with T helper type 17 polarization in patients with better therapeutic responses.
Collapse
Affiliation(s)
- Sandrine Poglio
- INSERM U1053, Bordeaux Research in Translational Oncology University Bordeaux, Bordeaux, France
| | - Jean-Philippe Merlio
- INSERM U1053, Bordeaux Research in Translational Oncology University Bordeaux, Bordeaux, France; Tumor Bank and Tumor Biology Laboratory, Centre Hospitalier Universitaire de Bordeaux, Pessac, France.
| |
Collapse
|
11
|
Khare SP, Shetty A, Biradar R, Patta I, Chen ZJ, Sathe AV, Reddy PC, Lahesmaa R, Galande S. NF-κB Signaling and IL-4 Signaling Regulate SATB1 Expression via Alternative Promoter Usage During Th2 Differentiation. Front Immunol 2019; 10:667. [PMID: 31001272 PMCID: PMC6454056 DOI: 10.3389/fimmu.2019.00667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
SATB1 is a genome organizer protein that is expressed in a lineage specific manner in CD4+ T-cells. SATB1 plays a crucial role in expression of multiple genes throughout the thymic development and peripheral differentiation of T cells. Although SATB1 function has been subjected to intense investigation, regulation of SATB1 gene expression remains poorly understood. Analysis of RNA-seq data revealed multiple transcription start sites at the upstream regulatory region of SATB1. We further demonstrated that SATB1 gene is expressed via alternative promoters during T-helper (Th) cell differentiation. The proximal promoter “P1” is used more by the naïve and activated CD4+ T-cells whereas the middle “P2” and the distal “P3” promoters are used at a significantly higher level by polarized T-helper cells. Cytokine and TCR signaling play crucial roles toward SATB1 alternative promoter usage. Under Th2 polarization conditions, transcription factor STAT6, which operates downstream of the cytokine signaling binds to the P2 and P3 promoters. Genetic perturbation by knockout and chemical inhibition of STAT6 activation resulted in the loss of P2 and P3 promoter activity. Moreover, chemical inhibition of activation of NF-κB, a transcription factor that operates downstream of the TCR signaling, also resulted in reduced P2 and P3 promoter usage. Furthermore, usage of the P1 promoter correlated with lower SATB1 protein expression whereas P2 and P3 promoter usage correlated with higher SATB1 protein expression. Thus, the promoter switch might play a crucial role in fine-tuning of SATB1 protein expression in a cell type specific manner.
Collapse
Affiliation(s)
- Satyajeet P Khare
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, India.,Symbiosis School of Biological Sciences, Pune, India
| | - Ankitha Shetty
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, India.,Turku Center for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Rahul Biradar
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, India
| | - Indumathi Patta
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, India
| | - Zhi Jane Chen
- Turku Center for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Ameya V Sathe
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, India
| | - Puli Chandramouli Reddy
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, India
| | - Riitta Lahesmaa
- Turku Center for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Sanjeev Galande
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
12
|
Gao Y, Sun J, Yi S, Tu P, Wang Y. Response to Gagat et al. J Invest Dermatol 2019; 139:1611-1612. [PMID: 30876801 DOI: 10.1016/j.jid.2019.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Yumei Gao
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Jingru Sun
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Shengguo Yi
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Ping Tu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.
| |
Collapse
|
13
|
Nüssing S, Koay HF, Sant S, Loudovaris T, Mannering SI, Lappas M, D Udekem Y, Konstantinov IE, Berzins SP, Rimmelzwaan GF, Turner SJ, Clemens EB, Godfrey DI, Nguyen TH, Kedzierska K. Divergent SATB1 expression across human life span and tissue compartments. Immunol Cell Biol 2019; 97:498-511. [PMID: 30803026 PMCID: PMC6618325 DOI: 10.1111/imcb.12233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/03/2018] [Accepted: 01/09/2019] [Indexed: 01/01/2023]
Abstract
Special AT-rich binding protein-1 (SATB1) is a global chromatin organizer capable of activating or repressing gene transcription in mice and humans. The role of SATB1 is pivotal for T-cell development, with SATB1-knockout mice being neonatally lethal, although the exact mechanism is unknown. Moreover, SATB1 is dysregulated in T-cell lymphoma and proposed to suppress transcription of the Pdcd1 gene, encoding the immune checkpoint programmed cell death protein 1 (PD-1). Thus, SATB1 expression in T-cell subsets across different tissue compartments in humans is of potential importance for targeting PD-1. Here, we comprehensively analyzed SATB1 expression across different human tissues and immune compartments by flow cytometry and correlated this with PD-1 expression. We investigated SATB1 protein levels in pediatric and adult donors and assessed expression dynamics of this chromatin organizer across different immune cell subsets in human organs, as well as in antigen-specific T cells directed against acute and chronic viral infections. Our data demonstrate that SATB1 expression in humans is the highest in T-cell progenitors in the thymus, and then becomes downregulated in mature T cells in the periphery. Importantly, SATB1 expression in peripheral mature T cells is not static and follows fine-tuned expression dynamics, which appear to be tissue- and antigen-dependent. Furthermore, SATB1 expression negatively correlates with PD-1 expression in virus-specific CD8+ T cells. Our study has implications for understanding the role of SATB1 in human health and disease and suggests an approach for modulating PD-1 in T cells, highly relevant to human malignancies or chronic viral infections.
Collapse
Affiliation(s)
- Simone Nüssing
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging at the University of Melbourne, Parkville, VIC, Australia
| | - Sneha Sant
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Thomas Loudovaris
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.,Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics & Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Yves D Udekem
- Department of Cardiothoracic Surgery, Royal Children's Hospital and Melbourne Children's Centre for Cardiovascular Genomics and Regenerative Medicine, Parkville, VIC, Australia
| | - Igor E Konstantinov
- Department of Cardiothoracic Surgery, Royal Children's Hospital and Melbourne Children's Centre for Cardiovascular Genomics and Regenerative Medicine, Parkville, VIC, Australia
| | - Stuart P Berzins
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.,School of Health and Life Sciences, Federation University Australia, Ballarat, VIC, Australia.,Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia
| | - Guus F Rimmelzwaan
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands.,Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Stephen J Turner
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging at the University of Melbourne, Parkville, VIC, Australia
| | - Thi Ho Nguyen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| |
Collapse
|
14
|
Yasuda K, Kitagawa Y, Kawakami R, Isaka Y, Watanabe H, Kondoh G, Kohwi-Shigematsu T, Sakaguchi S, Hirota K. Satb1 regulates the effector program of encephalitogenic tissue Th17 cells in chronic inflammation. Nat Commun 2019; 10:549. [PMID: 30710091 PMCID: PMC6358604 DOI: 10.1038/s41467-019-08404-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
The genome organizer, special AT-rich sequence-binding protein-1 (Satb1), plays a pivotal role in the regulation of global gene networks in a cell type-dependent manner and is indispensable for the development of multiple cell types, including mature CD4+ T, CD8+ T, and Foxp3+ regulatory T cells in the thymus. However, it remains unknown how the differentiation and effector program of the Th subsets in the periphery are regulated by Satb1. Here, we demonstrate that Satb1 differentially regulates gene expression profiles in non-pathogenic and pathogenic Th17 cells and promotes the pathogenic effector program of encephalitogenic Th17 cells by regulating GM-CSF via Bhlhe40 and inhibiting PD-1 expression. However, Satb1 is dispensable for the differentiation and non-pathogenic functions of Th17 cells. These results indicate that Satb1 regulates the specific gene expression and function of effector Th17 cells in tissue inflammation.
Collapse
Affiliation(s)
- Keiko Yasuda
- Laboratory of Experimental Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yohko Kitagawa
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Ryoji Kawakami
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Hitomi Watanabe
- Laboratory of Integrative Biological Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Gen Kondoh
- Laboratory of Integrative Biological Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.
| | - Keiji Hirota
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.
- Laboratory of Integrative Biological Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
15
|
SATB family chromatin organizers as master regulators of tumor progression. Oncogene 2018; 38:1989-2004. [PMID: 30413763 DOI: 10.1038/s41388-018-0541-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
SATB (Special AT-rich binding protein) family proteins have emerged as key regulators that integrate higher-order chromatin organization with the regulation of gene expression. Studies over the past decade have elucidated the specific roles of SATB1 and SATB2, two closely related members of this family, in cancer progression. SATB family chromatin organizers play diverse and important roles in regulating the dynamic equilibrium of apoptosis, cell invasion, metastasis, proliferation, angiogenesis, and immune modulation. This review highlights cellular and molecular events governed by SATB1 influencing the structural organization of chromatin and interacting with several co-activators and co-repressors of transcription towards tumor progression. SATB1 expression across tumor cell types generates cellular and molecular heterogeneity culminating in tumor relapse and metastasis. SATB1 exhibits dynamic expression within intratumoral cell types regulated by the tumor microenvironment, which culminates towards tumor progression. Recent studies suggested that cell-specific expression of SATB1 across tumor recruited dendritic cells (DC), cytotoxic T lymphocytes (CTL), T regulatory cells (Tregs) and tumor epithelial cells along with tumor microenvironment act as primary determinants of tumor progression and tumor inflammation. In contrast, SATB2 is differentially expressed in an array of cancer types and is involved in tumorigenesis. Survival analysis for patients across an array of cancer types correlated with expression of SATB family chromatin organizers suggested tissue-specific expression of SATB1 and SATB2 contributing to disease prognosis. In this context, it is pertinent to understand molecular players, cellular pathways, genetic and epigenetic mechanisms governed by cell types within tumors regulated by SATB proteins. We propose that patient survival analysis based on the expression profile of SATB chromatin organizers would facilitate their unequivocal establishment as prognostic markers and therapeutic targets for cancer therapy.
Collapse
|
16
|
Lu XF, Zeng D, Liang WQ, Chen CF, Sun SM, Lin HY. FoxM1 is a promising candidate target in the treatment of breast cancer. Oncotarget 2018; 9:842-852. [PMID: 29416660 PMCID: PMC5787517 DOI: 10.18632/oncotarget.23182] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/16/2017] [Indexed: 02/05/2023] Open
Abstract
Forkhead box protein M1(FoxM1) is a member of forkhead superfamily transcription factors. Emerging evidences have progressively contributed to our understanding on a central role of FoxM1 in human cancers. However, perspectives on the function of FoxM1 in breast cancer (BC) remain conflicting, and mostly were from basic research. Here, we explored the expression profile and prognostic values of FoxM1 based on analysis of pooled clinical datasets derived from online accessible databases, including ONCOMINE, Breast Cancer Gene-Expression Miner v4.0, and Kaplan-Meier plotter. It was found that, FoxM1 mRNA expression was significantly higher in breast tumor versus normal control. FoxM1expression profile presented a distinct pattern in different molecular subtypes of BC patients. Higher expression of FoxM1 was correlated to low mRNA expression of estrogen receptor 1 (ESR1), erb-B2 receptor tyrosine kinase 2 (ERBB2), and was inversely associated with the expression of classical luminal regulators forkhead box protein A1 (FoxA1) and GATA binding protein 3 (GATA3). Elevated FoxM1 expression predicted shorter distance metastasis free survival (DMFS) in BC patients, particularly with estrogen receptor (ER) positive and Luminal A, Luminal B subtypes of BC. More interestingly, elevated FoxM1 expression predicted poor survival in breast cancer patients, especially in the ER (+), progesterone receptor (PR) (+) subgroups and BC patients received adjuvant chemotherapy only or treated with tamoxifen only. These results implied that FoxM1 is an essential prognostic factor and promising candidate target in the treatment of breast cancer.
Collapse
Affiliation(s)
- Xiao-Feng Lu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Wei-Quan Liang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chun-Fa Chen
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Shu-Ming Sun
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hao-Yu Lin
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
17
|
Wang X, Yu X, Wang Q, Lu Y, Chen H. Expression and clinical significance of SATB1 and TLR4 in breast cancer. Oncol Lett 2017; 14:3611-3615. [PMID: 28927120 PMCID: PMC5587979 DOI: 10.3892/ol.2017.6571] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022] Open
Abstract
This study investigated the expression of special AT-rich sequence-binding protein 1 (SATB1) and toll-like receptor 4 (TLR4) protein in breast cancer and its clinical significance. We collected breast cancer tissues from 120 patients and adjacent non-cancerous tissue from 53 patients. SATB1 was expressed in 89 cases of breast cancer (74.17%) and in 7 cases of adjacent non-cancerous tissue (13.21%). TLR4 was expressed in 70 cases of breast cancer tissues (58.33%) and in 48 cases of adjacent non-cancerous tissue (90.57%). The differences of SATB and TLR4 in breast cancer and adjacent non-cancerous tissue were statistically significant. We found a negative correlation between the expression of SATB1 and TLR4 (r=−0.624, P<0.05). The expression of SATB1 and TLR4 were not significantly correlated with age, menopause, and PR and HER-2 protein expression, but were significantly correlated with tumor size, local lymphatic metastasis, histopathological grade, tumor stage, and ER protein expression (P<0.05). Overall, SATB1 and TLR4 proteins are involved in the development of breast cancer, a finding of great significance to identify therapeutic targets and prognosis markers for breast cancer.
Collapse
Affiliation(s)
- Xuebo Wang
- Department of Clinical Laboratory, Yuhuangding Hospital of Yantai, Yantai, Shandong 264000, P.R. China
| | - Xiumei Yu
- Department of Clinical Laboratory, Yuhuangding Hospital of Yantai, Yantai, Shandong 264000, P.R. China
| | - Qingli Wang
- Department of Cardiology, The People's Hospital of Zhangqiu, Zhangqiu, Shandong 250200, P.R. China
| | - Yingying Lu
- Department of Clinical Laboratory, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Haixia Chen
- Department of Clinical Laboratory, Yeda Hospital of Yantai, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
18
|
Long noncoding RNA lncKdm2b: A critical player in the maintenance of group 3 innate lymphoid cells. Cell Mol Immunol 2017; 15:5-7. [PMID: 28690327 DOI: 10.1038/cmi.2017.55] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 12/13/2022] Open
|