1
|
Fu D, Wang W, Zhang Y, Zhang F, Yang P, Yang C, Tian Y, Yao R, Jian J, Sun Z, Zhang N, Ni Z, Rao Z, Zhao L, Guo Y. Self-assembling nanoparticle engineered from the ferritinophagy complex as a rabies virus vaccine candidate. Nat Commun 2024; 15:8601. [PMID: 39366932 PMCID: PMC11452399 DOI: 10.1038/s41467-024-52908-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Over the past decade, there has been a growing interest in ferritin-based vaccines due to their enhanced antigen immunogenicity and favorable safety profiles, with several vaccine candidates targeting various pathogens advancing to phase I clinical trials. Nevertheless, challenges associated with particle heterogeneity, improper assembly and unanticipated immunogenicity due to the bulky protein adaptor have impeded further advancement. To overcome these challenges, we devise a universal ferritin-adaptor delivery platform based on structural insights derived from the natural ferritinophagy complex of the human ferritin heavy chain (FTH1) and the nuclear receptor coactivator 4 (NCOA4). The engineered ferritinophagy (Fagy)-tag peptide demonstrate significantly enhanced binding affinity to the 24-mer ferritin nanoparticle, enabling efficient antigen presentation. Subsequently, we construct a self-assembling rabies virus (RABV) vaccine candidate by noncovalently conjugating the Fagy-tagged glycoprotein domain III (GDIII) of RABV to the ferritin nanoparticle, maintaining superior homogeneity, stability and immunogenicity. This vaccine candidate induces potent, rapid, and durable immune responses, and protects female mice against the authentic RABV challenge after single-dose administration. Furthermore, this universal, ferritin-based antigen conjugating strategy offers significant potential for developing vaccine against diverse pathogens and diseases.
Collapse
Affiliation(s)
- Dan Fu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, PR China
- College of Pharmacy, Nankai University, Tianjin, PR China
- Guangzhou Laboratory, Guangzhou, Guangdong, PR China
| | - Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, PR China
| | - Yan Zhang
- School of Public Health, Beihua University, Jilin, PR China
| | - Fan Zhang
- National Facility for Translational Medicine (Beijing), Medical Innovation Research Division, PLA General Hospital, Beijing, PR China
- Department of Oncology, The Fifth Medical Center, PLA General Hospital, Beijing, PR China
| | - Pinyi Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, PR China
| | - Chun Yang
- College of Basic Medicine, Beihua University, Jilin, PR China
| | - Yufei Tian
- Changchun Veterinary Research Institute (CVRI), Chinese Academy of Agricultural Sciences (CAAS), Jingyue Economic Development Zone, Changchun, PR China
| | - Renqi Yao
- National Facility for Translational Medicine (Beijing), Medical Innovation Research Division, PLA General Hospital, Beijing, PR China
| | - Jingwu Jian
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, PR China
| | - Zixian Sun
- Guangzhou Laboratory, Guangzhou, Guangdong, PR China
| | - Nan Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, PR China
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, Hebei, PR China
| | - Zhiyu Ni
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, Hebei, PR China
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Lei Zhao
- National Facility for Translational Medicine (Beijing), Medical Innovation Research Division, PLA General Hospital, Beijing, PR China.
- Department of Oncology, The Fifth Medical Center, PLA General Hospital, Beijing, PR China.
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, PR China.
- Guangzhou Laboratory, Guangzhou, Guangdong, PR China.
| |
Collapse
|
2
|
Wang C, Yuan F. A comprehensive comparison of DNA and RNA vaccines. Adv Drug Deliv Rev 2024; 210:115340. [PMID: 38810703 PMCID: PMC11181159 DOI: 10.1016/j.addr.2024.115340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Nucleic acid technology has revolutionized vaccine development, enabling rapid design and production of RNA and DNA vaccines for prevention and treatment of diseases. The successful deployment of mRNA and plasmid DNA vaccines against COVID-19 has further validated the technology. At present, mRNA platform is prevailing due to its higher efficacy, while DNA platform is undergoing rapid evolution because it possesses unique advantages that can potentially overcome the problems associated with the mRNA platform. To help understand the recent performances of the two vaccine platforms and recognize their clinical potentials in the future, this review compares the advantages and drawbacks of mRNA and DNA vaccines that are currently known in the literature, in terms of development timeline, financial cost, ease of distribution, efficacy, safety, and regulatory approval of products. Additionally, the review discusses the ongoing clinical trials, strategies for improvement, and alternative designs of RNA and DNA platforms for vaccination.
Collapse
Affiliation(s)
- Chunxi Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, United States
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, United States.
| |
Collapse
|
3
|
Khalid K, Poh CL. The development of DNA vaccines against SARS-CoV-2. Adv Med Sci 2023; 68:213-226. [PMID: 37364379 PMCID: PMC10290423 DOI: 10.1016/j.advms.2023.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/07/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND The COVID-19 pandemic exerted significant impacts on public health and global economy. Research efforts to develop vaccines at warp speed against SARS-CoV-2 led to novel mRNA, viral vectored, and inactivated vaccines being administered. The current COVID-19 vaccines incorporate the full S protein of the SARS-CoV-2 Wuhan strain but rapidly emerging variants of concern (VOCs) have led to significant reductions in protective efficacies. There is an urgent need to develop next-generation vaccines which could effectively prevent COVID-19. METHODS PubMed and Google Scholar were systematically reviewed for peer-reviewed papers up to January 2023. RESULTS A promising solution to the problem of emerging variants is a DNA vaccine platform since it can be easily modified. Besides expressing whole protein antigens, DNA vaccines can also be constructed to include specific nucleotide genes encoding highly conserved and immunogenic epitopes from the S protein as well as from other structural/non-structural proteins to develop effective vaccines against VOCs. DNA vaccines are associated with low transfection efficiencies which could be enhanced by chemical, genetic, and molecular adjuvants as well as delivery systems. CONCLUSIONS The DNA vaccine platform offers a promising solution to the design of effective vaccines. The challenge of limited immunogenicity in humans might be solved through the use of genetic modifications such as the addition of nuclear localization signal (NLS) peptide gene, strong promoters, MARs, introns, TLR agonists, CD40L, and the development of appropriate delivery systems utilizing nanoparticles to increase uptake by APCs in enhancing the induction of potent immune responses.
Collapse
Affiliation(s)
- Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia.
| |
Collapse
|
4
|
Liao HC, Huang MS, Chiu FF, Chai KM, Liao CL, Wu SC, Chen HW, Liu SJ. Co-delivery of a trimeric spike DNA and protein vaccine with aluminum hydroxide enhanced Th1-dominant humoral and cellular immunity against SARS-CoV-2. J Med Virol 2023; 95:e29040. [PMID: 37635380 DOI: 10.1002/jmv.29040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 08/29/2023]
Abstract
Protein subunit vaccines have been used as prophylactic vaccines for a long time. The well-established properties of these vaccines make them the first choice for the coronavirus disease 2019 (COVID-19) outbreak. However, it is not easy to develop a protein vaccine that induces cytotoxic T lymphocyte responses and requires a longer time for manufacturing, which limits the usage of this vaccine type. Here, we report the combination of a recombinant spike (S)-trimer protein with a DNA vaccine-encoded S protein as a novel COVID-19 vaccine. The recombinant S protein was formulated with different adjuvants and mixed with the DNA plasmid before injection. We found that the recombinant S protein formulated with the adjuvant aluminum hydroxide and mixed with the DNA plasmid could enhance antigen-specific antibody titers, neutralizing antibody titers. We further evaluated the IgG2a/IgG1 isotype and cytokine profiles of the specific boosted T-cell response, which indicated that the combined vaccine induced a T-helper 1 cell-biased immune response. Immunized hamsters were challenged with severe acute respiratory syndrome coronavirus 2, and the body weight of the hamsters that received the recombinant S protein with aluminum hydroxide and/or the DNA plasmid was not reduced. Alternatively, those that received control or only the DNA plasmid immunization were reduced. Interestingly, after the third day of the viral load in the lungs, the viral challenge could not be detected in hamsters immunized with the recombinant S protein in aluminum hydroxide mixed with DNA (tissue culture infectious dose < 10). The viral load in the lungs was 109 , 106 , and 107 for the phosphate-buffered saline, protein in aluminum hydroxide, and DNA-only immunizations, respectively. These results indicated that antiviral mechanisms neutralizing antibodies play important roles. Furthermore, we found that the combination of protein and DNA vaccination could induce relatively strong CD8+ T-cell responses. In summary, the protein subunit vaccine combined with a DNA vaccine could induce strong CD8+ T-cell responses to increase antiviral immunity for disease control.
Collapse
Affiliation(s)
- Hung-Chun Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Institute of Biotechnology, College of Life Science and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Min-Syuan Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Institute of Biotechnology, College of Life Science and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Fang-Feng Chiu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Kit Man Chai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Suh-Chin Wu
- Institute of Biotechnology, College of Life Science and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Rabies Vaccine: Recent Update and Comprehensive Review of in vitro and in vivo Studies. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Wang Z, Yuan Y, Chen C, Zhang C, Huang F, Zhou M, Chen H, Fu ZF, Zhao L. Colloidal Manganese Salt Improves the Efficacy of Rabies Vaccines in Mice, Cats, and Dogs. J Virol 2021; 95:e0141421. [PMID: 34495701 PMCID: PMC8577392 DOI: 10.1128/jvi.01414-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
Rabies, caused by rabies virus (RABV), remains a serious threat to public health in most countries worldwide. At present, the administration of rabies vaccines has been the most effective strategy to control rabies. Herein, we evaluate the effect of colloidal manganese salt (Mn jelly [MnJ]) as an adjuvant of rabies vaccine in mice, cats, and dogs. The results showed that MnJ promoted type I interferon (IFN-I) and cytokine production in vitro and the maturation of dendritic cells (DCs) in vitro and in vivo. Besides, MnJ serving as an adjuvant for rabies vaccines could significantly facilitate the generation of T follicular helper (Tfh) cells, germinal center (GC) B cells, plasma cells (PCs), and RABV-specific antibody-secreting cells (ASCs), consequently improve the immunogenicity of rabies vaccines, and provide better protection against virulent RABV challenge. Similarly, MnJ enhanced the humoral immune response in cats and dogs as well. Collectively, our results suggest that MnJ can facilitate the maturation of DCs during rabies vaccination, which can be a promising adjuvant candidate for rabies vaccines. IMPORTANCE Extending the humoral immune response by using adjuvants is an important strategy for vaccine development. In this study, a novel adjuvant, MnJ, supplemented in rabies vaccines was evaluated in mice, cats, and dogs. Our results in the mouse model revealed that MnJ increased the numbers of mature DCs, Tfh cells, GC B cells, PCs, and RABV-specific ASCs, resulting in enhanced immunogenicity and protection rate of rabies vaccines. We further found that MnJ had the same stimulative effect in cats and dogs. Our study provides the first evidence that MnJ serving as a novel adjuvant of rabies vaccines can boost the immune response in both a mouse and pet model.
Collapse
Affiliation(s)
- Zongmei Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chen Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chengguang Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Fei Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhen F. Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Eusébio D, Neves AR, Costa D, Biswas S, Alves G, Cui Z, Sousa Â. Methods to improve the immunogenicity of plasmid DNA vaccines. Drug Discov Today 2021; 26:2575-2592. [PMID: 34214667 DOI: 10.1016/j.drudis.2021.06.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/31/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023]
Abstract
DNA vaccines have emerged as innovative approaches that have great potential to overcome the limitations of current conventional vaccines. Plasmid DNA vaccines are often safer than other vaccines because they carry only antigen genetic information, are more stable and easier to produce, and can stimulate both humoral and cellular immune responses. Although the results of ongoing clinical trials are very promising, some limitations compromise the immunogenicity of these vaccines. Thus, this review describes different strategies that can be explored to improve the immunogenicity of plasmid DNA vaccines, including the optimization of the plasmid vector backbone, the use of different methods for vaccine delivery, the use of alternative administration routes and the inclusion of adjuvants. In combination, these improvements could lead to the successful clinical use of plasmid DNA vaccines.
Collapse
Affiliation(s)
- Dalinda Eusébio
- CICS-UBI - Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana R Neves
- CICS-UBI - Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Diana Costa
- CICS-UBI - Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad 500078, Telangana, India
| | - Gilberto Alves
- CICS-UBI - Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX 78712, USA
| | - Ângela Sousa
- CICS-UBI - Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
8
|
Park KS, Sun X, Aikins ME, Moon JJ. Non-viral COVID-19 vaccine delivery systems. Adv Drug Deliv Rev 2021; 169:137-151. [PMID: 33340620 PMCID: PMC7744276 DOI: 10.1016/j.addr.2020.12.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/20/2020] [Accepted: 12/13/2020] [Indexed: 02/08/2023]
Abstract
The novel corona virus termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread throughout the globe at a formidable speed, causing tens of millions of cases and more than one million deaths in less than a year of its report in December 2019. Since then, companies and research institutions have raced to develop SARS-CoV-2 vaccines, ranging from conventional viral and protein-based vaccines to those that are more cutting edge, including DNA- and mRNA-based vaccines. Each vaccine exhibits a different potency and duration of efficacy, as determined by the antigen design, adjuvant molecules, vaccine delivery platforms, and immunization method. In this review, we will introduce a few of the leading non-viral vaccines that are under clinical stage development and discuss delivery strategies to improve vaccine efficacy, duration of protection, safety, and mass vaccination.
Collapse
Affiliation(s)
- Kyung Soo Park
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaoqi Sun
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marisa E Aikins
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Hager S, Fittler FJ, Wagner E, Bros M. Nucleic Acid-Based Approaches for Tumor Therapy. Cells 2020; 9:E2061. [PMID: 32917034 PMCID: PMC7564019 DOI: 10.3390/cells9092061] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Within the last decade, the introduction of checkpoint inhibitors proposed to boost the patients' anti-tumor immune response has proven the efficacy of immunotherapeutic approaches for tumor therapy. Furthermore, especially in the context of the development of biocompatible, cell type targeting nano-carriers, nucleic acid-based drugs aimed to initiate and to enhance anti-tumor responses have come of age. This review intends to provide a comprehensive overview of the current state of the therapeutic use of nucleic acids for cancer treatment on various levels, comprising (i) mRNA and DNA-based vaccines to be expressed by antigen presenting cells evoking sustained anti-tumor T cell responses, (ii) molecular adjuvants, (iii) strategies to inhibit/reprogram tumor-induced regulatory immune cells e.g., by RNA interference (RNAi), (iv) genetically tailored T cells and natural killer cells to directly recognize tumor antigens, and (v) killing of tumor cells, and reprograming of constituents of the tumor microenvironment by gene transfer and RNAi. Aside from further improvements of individual nucleic acid-based drugs, the major perspective for successful cancer therapy will be combination treatments employing conventional regimens as well as immunotherapeutics like checkpoint inhibitors and nucleic acid-based drugs, each acting on several levels to adequately counter-act tumor immune evasion.
Collapse
Affiliation(s)
- Simone Hager
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | | | - Ernst Wagner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | - Matthias Bros
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany;
| |
Collapse
|
10
|
Hobernik D, Bros M. DNA Vaccines-How Far From Clinical Use? Int J Mol Sci 2018; 19:ijms19113605. [PMID: 30445702 PMCID: PMC6274812 DOI: 10.3390/ijms19113605] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Two decades ago successful transfection of antigen presenting cells (APC) in vivo was demonstrated which resulted in the induction of primary adaptive immune responses. Due to the good biocompatibility of plasmid DNA, their cost-efficient production and long shelf life, many researchers aimed to develop DNA vaccine-based immunotherapeutic strategies for treatment of infections and cancer, but also autoimmune diseases and allergies. This review aims to summarize our current knowledge on the course of action of DNA vaccines, and which factors are responsible for the poor immunogenicity in human so far. Important optimization steps that improve DNA transfection efficiency comprise the introduction of DNA-complexing nano-carriers aimed to prevent extracellular DNA degradation, enabling APC targeting, and enhanced endo/lysosomal escape of DNA. Attachment of virus-derived nuclear localization sequences facilitates nuclear entry of DNA. Improvements in DNA vaccine design include the use of APC-specific promotors for transcriptional targeting, the arrangement of multiple antigen sequences, the co-delivery of molecular adjuvants to prevent tolerance induction, and strategies to circumvent potential inhibitory effects of the vector backbone. Successful clinical use of DNA vaccines may require combined employment of all of these parameters, and combination treatment with additional drugs.
Collapse
Affiliation(s)
- Dominika Hobernik
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany.
| | - Matthias Bros
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany.
| |
Collapse
|
11
|
Shi W, Kou Y, Xiao J, Zhang L, Gao F, Kong W, Su W, Jiang C, Zhang Y. Comparison of immunogenicity, efficacy and transcriptome changes of inactivated rabies virus vaccine with different adjuvants. Vaccine 2018; 36:5020-5029. [DOI: 10.1016/j.vaccine.2018.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/29/2018] [Accepted: 07/03/2018] [Indexed: 12/12/2022]
|
12
|
Bansal A, Wu X, Olson V, D'Souza MJ. Characterization of rabies pDNA nanoparticulate vaccine in poloxamer 407 gel. Int J Pharm 2018; 545:318-328. [PMID: 29746999 DOI: 10.1016/j.ijpharm.2018.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/18/2022]
Abstract
Plasmid DNA (pDNA) vaccines have the potential for protection against a wide range of diseases including rabies but are rapid in degradation and poor in uptake by antigen-presenting cells. To overcome the limitations, we fabricated a pDNA nanoparticulate vaccine. The negatively charged pDNA was adsorbed onto the surface of cationic PLGA (poly (d, l-lactide-co-glycolide))-chitosan nanoparticles and were used as a delivery vehicle. To create a hydrogel for sustainable vaccine release, we dispersed the pDNA nanoparticles in poloxamer 407 gel which is liquid at 4 °C and turns into soft gels at 37 °C, providing ease of administration and preventing burst release of pDNA. Complete immobilization of pDNA to cationic nanoparticles was achieved at a pDNA to nanoparticles ratio (P/N) of 1/50. Cellular uptake of nanoparticles was both time and concentration dependent and followed a saturation kinetics with Vmax of 11.389 µg/mL h and Km of 139.48 µg/mL. The in vitro release studies showed the nanoparticulate vaccine has a sustained release for up to 24 days. In summary, pDNA PLGA-chitosan nanoparticles were non-cytotoxic, their buffering capacity and cell uptake were enhanced, and sustained the release of pDNA. We expect our pDNA vaccine's potency will be greatly improved in the animal studies.
Collapse
Affiliation(s)
- Amit Bansal
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA.
| | - Xianfu Wu
- Poxvirus and Rabies Branch, DHCPP, NCEZID, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Victoria Olson
- Poxvirus and Rabies Branch, DHCPP, NCEZID, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Martin J D'Souza
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA
| |
Collapse
|
13
|
Evaluation of the efficacy of the Japanese rabies RC-HL strain vaccine in domestic dogs using past and present data: Prediction based on logistic regression and meta-analysis. Prev Vet Med 2017; 147:172-177. [PMID: 29254717 DOI: 10.1016/j.prevetmed.2017.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 11/20/2022]
Abstract
Japan is one of the few rabies-free countries or territories (under the OIE standard) which still implement the policy of mandatory vaccination of domestic dogs. Under the Rabies Prevention Law enacted since 1950, pet owners in Japan are obliged to vaccinate their dogs every year. However, the national vaccination rate is estimated to average 42% over the past decade. Given this low owner compliance, there is debate over whether or not the mandatory vaccination policy should be maintained and if it were to be maintained, whether the yearly booster requirement is necessary or not. Data on 144 companion dogs vaccinated with the Japanese rabies RC-HL strain vaccine were analysed using multiple logistic regression. An extensive literature review was conducted and five previous vaccination studies were selected for meta-analysis. Results of logistic regression indicate that the proportion of dogs having a satisfactory antibody level lasting for 12 months (P_protected12) with only one vaccination was 74.7% (95% prediction interval (PI): 51.4%-90.5%). By contrast, P_protected12 for dogs vaccinated 2-4 times and 5 times or more was estimated as 96.6% (95%PI: 83.1%-99.3%) and 98.7% (95%PI: 96.9%-99.6%), respectively. Moreover, P_protected for 36 months would drop to 33.4% (95%PI: 11.4%-71.6%) for dogs vaccinated only once, while it would be 83.0% (95% PI: 39.4%-97.1%) and 93.0% (95%PI: 59.7%-99.2%) for dogs vaccinated 2-4 times and 5 times or more, respectively. The pooled P_protected for at least 12 months from meta-analysis was estimated as 83.8% (95%CI: 66.1%-97.5%) for dogs vaccinated only once, while it was estimated as 94.7% (95%CI: 87.7%-99.1%) for dogs vaccinated at least twice. Therefore, the yearly booster requirement of the current mandatory vaccination policy in Japan is reasonable in terms of its frequency. However, there is potential for future policy amendment to one that requires less frequent boosters, i.e. a booster is required within one year after primary vaccination and then every two to three years.
Collapse
|