1
|
Fouka E, Drakopanagiotakis F, Steiropoulos P. Pathogenesis of Pulmonary Manifestations in ANCA-Associated Vasculitis and Goodpasture Syndrome. Int J Mol Sci 2024; 25:5278. [PMID: 38791316 PMCID: PMC11121030 DOI: 10.3390/ijms25105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Pulmonary manifestations of vasculitis are associated with significant morbidity and mortality in affected individuals. They result from a complex interplay between immune dysregulation, which leads to vascular inflammation and tissue damage. This review explored the underlying pathogenesis of pulmonary involvement in vasculitis, encompassing various forms such as granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA), eosinophilic granulomatosis with polyangiitis (EGPA), and anti-GBM disease. Mechanisms involving ANCA and anti-GBM autoantibodies, neutrophil activation, and neutrophil extracellular trap (NETs) formation are discussed, along with the role of the complement system in inducing pulmonary injury. Furthermore, the impact of genetic predisposition and environmental factors on disease susceptibility and severity was considered, and the current treatment options were presented. Understanding the mechanisms involved in the pathogenesis of pulmonary vasculitis is crucial for developing targeted therapies and improving clinical outcomes in affected individuals.
Collapse
Affiliation(s)
- Evangelia Fouka
- Department of Respiratory Medicine, General Hospital G. Papanikolaou, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece;
| | - Fotios Drakopanagiotakis
- Department of Respiratory Medicine, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Paschalis Steiropoulos
- Department of Respiratory Medicine, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| |
Collapse
|
2
|
Zhang XD, Lin CX, Cui Z, Gu QH, Yan BJ, Liu L, Song WC, Shi Y, Debiec H, Ronco P, Zhao MH. Mapping the T cell epitopes of the M-type transmembrane phospholipase A2 receptor in primary membranous nephropathy. Kidney Int 2023; 103:580-592. [PMID: 36549363 DOI: 10.1016/j.kint.2022.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 10/09/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022]
Abstract
The M-type phospholipase A2 receptor (PLA2R) is the major autoantigen of primary membranous nephropathy (MN). Despite many studies on B-cell epitopes recognized by antibodies, little is known about T-cell epitopes. Herein, we synthesized 123 linear peptides, each consisting of 15-22 amino acids with 8-12 amino acid overlaps, across ten domains of PLA2R. Their binding capacity to risk (DRB1∗1501, DRB1∗0301) and protective (DRB1∗0901, DRB1∗0701) HLA molecules was then assessed by flow cytometry. Proliferation of CD4+ T cells from patients with anti-PLA2R positive MN was analyzed after peptide stimulation. Cytokines produced by activated peripheral blood mononuclear cells were measured by cytometric bead arrays. We identified 17 PLA2R peptides that bound to both DRB1∗1501 and DRB1∗0301 molecules with high capacity. Some of these peptides showed decreased binding to heterozygous DRB1∗1501/0901 and DRB1∗0301/0701. Ten of the 17 peptides (CysR1, CysR10, CysR12, FnII-3, CTLD3-9, CTLD3-10, CTLD3-11, CTLD5-2-1, CTLD7-1 and CTLD7-2) induced significant proliferation of CD4+ T cells from patients with MN than cells from healthy individuals. Upon activation by these peptides, peripheral blood mononuclear cells from patients with MN produced higher levels of pro-inflammatory cytokines, predominantly IL-6, TNF-α, IL-10, IL-9 and IL-17. Thus, we mapped and identified ten peptides in the CysR, FnII, CTLD3, CTLD5, and CTLD7 domains of PLA2R as potential T-cell epitopes of MN. These findings are a first step towards developing peptide-specific immunotherapies.
Collapse
Affiliation(s)
- Xiao-Dan Zhang
- Renal Division, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Cai-Xia Lin
- Renal Division, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Zhao Cui
- Renal Division, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China.
| | - Qiu-Hua Gu
- Renal Division, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Bing-Jia Yan
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Lei Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Wen-Chao Song
- Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yi Shi
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hanna Debiec
- Sorbonne Université, Paris, France; Institut National de la Santé et de la Recherche Médicale (Inserm), Unité Mixte de Recherche S1155, Paris, France
| | - Pierre Ronco
- Sorbonne Université, Paris, France; Institut National de la Santé et de la Recherche Médicale (Inserm), Unité Mixte de Recherche S1155, Paris, France; Department of Nephrology, Centre Hospitalier du Mans, Le Mans, France
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
3
|
Ponticelli C, Calatroni M, Moroni G. Anti-glomerular basement membrane vasculitis. Autoimmun Rev 2023; 22:103212. [PMID: 36252931 DOI: 10.1016/j.autrev.2022.103212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/11/2022] [Indexed: 12/27/2022]
Abstract
Antiglomerular basement membrane disease (anti-GBM) is a rare life-threatening autoimmune vasculitis that involves small vessels and it is characterized by circulating autoantibodies directed against type IV collagen antigens expressed in glomerular and alveolar basement membrane. The typical clinical manifestations are the rapidly progressive glomerulonephritis and the alveolar hemorrhage. The diagnosis is usually confirmed by the detection of anti-GBM circulating antibodies. If not rapidly recognized, anti-GBM disease can lead to end stage kidney disease (ESKD). An early diagnosis and prompt treatment with immunosuppressive therapies and plasmapheresis are crucial to prevent a poor outcome. In this review, we discuss the primary form of anti-GBM (the so called Goodpasture syndrome) but also cases associated with other autoimmune diseases such as antineutrophil-cytoplasmic-antibody (ANCA) vasculitis, membranous nephropathy, IgA nephritis and systemic lupus erythematosus (SLE), as well as the few cases of anti-GBM vasculitis complicating kidney transplantation in the Alport syndrome.
Collapse
Affiliation(s)
| | - Marta Calatroni
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; Nephrology and Dialysis Division, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Gabriella Moroni
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; Nephrology and Dialysis Division, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| |
Collapse
|
4
|
Kai H, Usui J, Tawara T, Takahashi-Kobayashi M, Ishii R, Tsunoda R, Fujita A, Nagai K, Kaneko S, Morito N, Saito C, Hamada H, Yamagata K. Anti-glomerular Basement Membrane Glomerulonephritis During the First Trimester of Pregnancy. Intern Med 2021; 60:765-770. [PMID: 32999239 PMCID: PMC7990629 DOI: 10.2169/internalmedicine.5722-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/16/2020] [Indexed: 11/18/2022] Open
Abstract
A 28-year-old woman was admitted during the eighth week of her pregnancy because her clinical course was consistent with rapid progressive glomerulonephritis (RPGN). Anti-glomerular basement membrane antibody (anti-GBM Ab) and myeloperoxidase anti-neutrophil cytoplasmic antibody (MPO-ANCA) were positive, and the anti-GBM Ab titer being extremely high. She was treated with hemodialysis, plasma exchange and prednisolone. She survived the illness; however, neither the fetus nor her kidney function could be rescued. She had human leukocyte antigen (HLA)-DRB1*1502:01, which differs from the DRB1*1501 associated with anti-GBM GN. When patients have particular symptoms, we should check the urine and serum creatinine to exclude RPGN, even in cases of pregnancy.
Collapse
Affiliation(s)
- Hirayasu Kai
- Division of Clinical Medicine, Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Joichi Usui
- Division of Clinical Medicine, Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Takashi Tawara
- Division of Clinical Medicine, Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Mayumi Takahashi-Kobayashi
- Division of Clinical Medicine, Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Ryota Ishii
- Division of Clinical Medicine, Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Ryoya Tsunoda
- Division of Clinical Medicine, Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Akiko Fujita
- Division of Clinical Medicine, Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Kei Nagai
- Division of Clinical Medicine, Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Shuzo Kaneko
- Division of Clinical Medicine, Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Naoki Morito
- Division of Clinical Medicine, Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Chie Saito
- Division of Clinical Medicine, Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Hiromi Hamada
- Division of Clinical Medicine, Department of Obstetrics & Gynecology, Faculty of Medicine, University of Tsukuba, Japan
| | - Kunihiro Yamagata
- Division of Clinical Medicine, Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| |
Collapse
|
5
|
Koneczny I, Yilmaz V, Lazaridis K, Tzartos J, Lenz TL, Tzartos S, Tüzün E, Leypoldt F. Common Denominators in the Immunobiology of IgG4 Autoimmune Diseases: What Do Glomerulonephritis, Pemphigus Vulgaris, Myasthenia Gravis, Thrombotic Thrombocytopenic Purpura and Autoimmune Encephalitis Have in Common? Front Immunol 2021; 11:605214. [PMID: 33584677 PMCID: PMC7878376 DOI: 10.3389/fimmu.2020.605214] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
IgG4 autoimmune diseases (IgG4-AID) are an emerging group of autoimmune diseases that are caused by pathogenic autoantibodies of the IgG4 subclass. It has only recently been appreciated, that members of this group share relevant immunobiological and therapeutic aspects even though different antigens, tissues and organs are affected: glomerulonephritis (kidney), pemphigus vulgaris (skin), thrombotic thrombocytopenic purpura (hematologic system) muscle-specific kinase (MuSK) in myasthenia gravis (peripheral nervous system) and autoimmune encephalitis (central nervous system) to give some examples. In all these diseases, patients’ IgG4 subclass autoantibodies block protein-protein interactions instead of causing complement mediated tissue injury, patients respond favorably to rituximab and share a genetic predisposition: at least five HLA class II genes have been reported in individual studies to be associated with several different IgG4-AID. This suggests a role for the HLA class II region and specifically the DRβ1 chain for aberrant priming of autoreactive T-cells toward a chronic immune response skewed toward the production of IgG4 subclass autoantibodies. The aim of this review is to provide an update on findings arguing for a common pathogenic mechanism in IgG4-AID in general and to provide hypotheses about the role of distinct HLA haplotypes, T-cells and cytokines in IgG4-AID.
Collapse
Affiliation(s)
- Inga Koneczny
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Vuslat Yilmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Konstantinos Lazaridis
- Department of Immunology, Laboratory of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - John Tzartos
- Tzartos NeuroDiagnostics, Athens, Greece.,1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Tobias L Lenz
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Socrates Tzartos
- Tzartos NeuroDiagnostics, Athens, Greece.,Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Erdem Tüzün
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry and Department of Neurology, Medical Faculty, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
6
|
Uematsu-Uchida M, Ohira T, Tomita S, Satonaka H, Tojo A, Ishimitsu T. Rituximab in treatment of anti-GBM antibody glomerulonephritis: A case report and literature review. Medicine (Baltimore) 2019; 98:e17801. [PMID: 31689860 PMCID: PMC6946414 DOI: 10.1097/md.0000000000017801] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RATIONALE Anti-glomerular basement membrane (GBM) disease is a T cell-mediated disease that has a poor prognosis with conventional therapy. We tested rituximab as a primary therapy to reduce anti-GBM antibody produced by B cells. PATIENT CONCERNS A 53-year old woman with complaints of a fever, headache and abdominal discomfort showed renal failure with elevated anti-GBM antibody, and renal biopsy revealed crescentic necrotizing glomerulonephritis with linear immunoglobulin G (IgG) 1 deposition along GBM. DIAGNOSES The patient's plasma contained autoantibodies against Goodpasture antigen, which is the NC domain of collagen IVα3, and CD4-positive helper T cells were found surrounding crescent glomeruli with the coexistence CD20-positive B cells. INTERVENTIONS Rituximab with steroid and plasma exchange. OUTCOMES The levels of autoantibody for Goodpasture antigen were reduced, and the patient was able to temporarily withdraw from hemodialysis. LESSONS B cell depletion with rituximab is effective as an initial therapy for anti-GBM disease.
Collapse
Affiliation(s)
- Mayu Uematsu-Uchida
- Department of Nephrology & Hypertension, Dokkyo Medical University, Mibu, Tochigi
| | - Takehiro Ohira
- Department of Nephrology & Hypertension, Dokkyo Medical University, Mibu, Tochigi
| | - Shigeki Tomita
- Department of Pathology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Hiroshi Satonaka
- Department of Nephrology & Hypertension, Dokkyo Medical University, Mibu, Tochigi
| | - Akihiro Tojo
- Department of Nephrology & Hypertension, Dokkyo Medical University, Mibu, Tochigi
| | - Toshihiko Ishimitsu
- Department of Nephrology & Hypertension, Dokkyo Medical University, Mibu, Tochigi
| |
Collapse
|
7
|
Shi Y, Jia XY, Gu QH, Wang M, Cui Z, Zhao MH. A Modified Peptide Derived from Goodpasture Autoantigen Arrested and Attenuated Kidney Injuries in a Rat Model of Anti-GBM Glomerulonephritis. J Am Soc Nephrol 2019; 31:40-53. [PMID: 31666297 DOI: 10.1681/asn.2019010067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 09/09/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND In Goodpasture disease, the noncollagenous domain 1 of the α3 chain (α3NC1) of type IV collagen is the main target antigen of antibodies against glomerular basement membrane (GBM). We previously identified a nephritogenic epitope, P14 (α3127-148), that could induce crescentic nephritis in WKY rats, and defined its core motif. Designing a modified peptide, replacing critical pathogenic residues with nonpathogenic ones (on the basis of homologous regions in α1NC1 chain of type IV collagen, known to be nonpathogenic), might provide a therapeutic option for anti-GBM GN. METHODS We synthesized a modified peptide, replacing a single amino acid, and injected it into α3-P14-immunized rats from day 0 (the early-treatment group) or a later-treatment group (from days 17 to 21). A scrambled peptide administrated with the same protocol served as a control. RESULTS The modified peptide, but not the scrambled peptide, attenuated anti-GBM GN in both treatment groups, and halted further crescent formation even after disease onset. Kidneys from the modified peptide-treated rats exhibited reductions in IgG deposits, complement activation, and infiltration by T cells and macrophages. Treatment also resulted in an anti-inflammatory cytokine profile versus a proinflammatory profile for animals not receiving the modified peptide; it also reduced α3-P14-specific T cell activation, modulated T cell differentiation by decreasing Th17 cells and enhancing the ratio of Treg/Th17 cells, and inhibited binding of α3-P14 to antibodies and MHC II molecules. CONCLUSIONS A modified peptide involving alteration of a critical motif in a nephritogenic T cell epitope alleviated anti-GBM GN in a rat model. Our findings may provide insights into an immunotherapeutic approach for autoimmune kidney disorders such as Goodpasture disease.
Collapse
Affiliation(s)
- Yue Shi
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; and
| | - Xiao-Yu Jia
- Renal Division, Peking University First Hospital, Beijing, China; .,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; and
| | - Qiu-Hua Gu
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; and
| | - Miao Wang
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; and
| | - Zhao Cui
- Renal Division, Peking University First Hospital, Beijing, China; .,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; and
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; and.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
8
|
Ebrahimi Z, Asgari S, Ahangari Cohan R, Hosseinzadeh R, Hosseinzadeh G, Arezumand R. Rational affinity enhancement of fragmented antibody by ligand-based affinity improvement approach. Biochem Biophys Res Commun 2018; 506:653-659. [DOI: 10.1016/j.bbrc.2018.10.127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 10/21/2018] [Indexed: 11/28/2022]
|