1
|
Zhou Y, Yu S, She X, Zhou X. Study on the reduction of Tartary buckwheat allergenicity during Pediococcus pentosaceus fermentation by HPLC-MS/MS analysis. Food Chem X 2023; 19:100773. [PMID: 37780276 PMCID: PMC10534089 DOI: 10.1016/j.fochx.2023.100773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 10/03/2023] Open
Abstract
Tartary buckwheat contains more valuable nutrients than common buckwheat, but it also contains allergenic proteins that induce allergic reactions through an IgE-mediated response. Our study demonstrated that fermentation by Pediococcus pentosaceus degrades allergenic proteins in Tartary buckwheat, as confirmed by HPLC-MS/MS analysis of polypeptides. Our results showed significant degradation of the protein after 16 h of Pediococcus pentosaceus fermentation (PP16), leading to a reduction in IgE-binding activity. Comparison with unfermented Tartary buckwheat (UTB) peptides yielded 2042 fragments, of which 756 fragments associated with allergenic proteins were upregulated. Among them, the expression of 213 fragments was reduced by 71.83%. By performing bioactivity prediction on potential allergenic peptide fragments, we identified six peptide fragments derived from Fagt 1, potentially contributing to the residual allergenicity in PP16. These suggest that Pediococcus pentosaceus fermentation can effectively destroy allergen epitopes and mitigate the allergenicity of Tartary buckwheat.
Collapse
Affiliation(s)
- Yiming Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Siyuan Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xuanming She
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaoli Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
2
|
Yongliang B, Meiguo X, Roumin L, Weijun H, Shuyan H, Rong Z, Yiping G. Metabolomics and water migration analysis provides valuable insights into nutrient generation in Tartary buckwheat ( Fagopyrum tataricum) seed germination. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2117797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Bai Yongliang
- College of Food Science and Technology, Foshan University, Foshan, People’s Republic of China
- Key laboratory of Guangdong Food Intelligent Manufactory, Foshan University, Foshan, People’s Republic of China
| | - Xin Meiguo
- College of Food Science and Technology, Foshan University, Foshan, People’s Republic of China
- Key laboratory of Guangdong Food Intelligent Manufactory, Foshan University, Foshan, People’s Republic of China
| | - Lin Roumin
- College of Food Science and Technology, Foshan University, Foshan, People’s Republic of China
| | - He Weijun
- College of Food Science and Technology, Foshan University, Foshan, People’s Republic of China
| | - He Shuyan
- College of Food Science and Technology, Foshan University, Foshan, People’s Republic of China
| | - Zeng Rong
- College of Food Science and Technology, Foshan University, Foshan, People’s Republic of China
| | - Guo Yiping
- College of Food Science and Technology, Foshan University, Foshan, People’s Republic of China
| |
Collapse
|
3
|
Feng W, Shi H, Xu W, Song P. Heterologous expression and physicochemical characteristics identification of Kunitz protease inhibitor in Brassica napus. 3 Biotech 2022; 12:81. [PMID: 35251883 PMCID: PMC8882505 DOI: 10.1007/s13205-022-03149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/11/2022] [Indexed: 11/01/2022] Open
Abstract
A Kunitz protease inhibitor gene (RTI; rti) was cloned from rapeseed and expressed in a Pichia pastoris expression system for the first time. After isolation and purification, the physical and chemical characteristics of the inhibitor were analyzed. The results showed that the induced expression level of the recombinant RTI reached 628 mg/L, and the specific activity of the inhibitor reached 69.6 TIU/mg protein at the shake flask fermentation level; the recombinant RTI retained more than 70% inhibitory activity between 30 and 90 °C and more than 80% inhibitory activity between pH 2.0-11.0. The metal ions Cu2+ and CO2+ and the organic reagents methanol, ethanol, acetone, and chloroform inhibit its activity. The recombinant RTI interacts with trypsin in a noncompetitive manner and has a strong and specific inhibitory effect on trypsin, a typical Kunitz trypsin inhibitor from plants. Combined with its good physical and chemical properties, recombinant RTI has the potential to be developed into an insect resistance protein.
Collapse
Affiliation(s)
- Wei Feng
- grid.411351.30000 0001 1119 5892School of Life Sciences, Liaocheng University, Liaocheng, 252000 China
| | - Haiying Shi
- grid.411351.30000 0001 1119 5892School of Life Sciences, Liaocheng University, Liaocheng, 252000 China
| | - Wei Xu
- grid.411351.30000 0001 1119 5892School of Life Sciences, Liaocheng University, Liaocheng, 252000 China
| | - Peng Song
- grid.411351.30000 0001 1119 5892School of Life Sciences, Liaocheng University, Liaocheng, 252000 China
| |
Collapse
|
4
|
Zhu F. Buckwheat proteins and peptides: Biological functions and food applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.081] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Li H, Zhou H, Zhang J, Fu X, Ying Z, Liu X. Proteinaceous α-amylase inhibitors: purification, detection methods, types and mechanisms. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1876087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Haochun Zhou
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Jian Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Xiaohang Fu
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Zhiwei Ying
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
6
|
Core epitope analysis of 16 kDa allergen from tartary buckwheat. Food Chem 2020; 346:128953. [PMID: 33412487 DOI: 10.1016/j.foodchem.2020.128953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 11/21/2022]
Abstract
Tartary buckwheat is widely accepted as its nutritionalvalue. Some allergic reactions hinder its utilization. This research focused on evaluating the core epitope of 16 kDa allergen (Fag t 2) in tartary buckwheat. Six B- and seven T cell epitopes of Fag t 2 were predicted, and six B cell epitope-mutants were expressed in Pichia pastoris. Bioinformatics analysis and SDS-PAGE demonstrated that the molecular weight, isoelectric point and spatial structures of six mutant allergens were similar with Fag t 2, with the same signal peptide sequences and α-amylase inhibitor domain. There was no significant change in mutants' spatial conformation confirmed by Circular Dichroism. The position K132N and peptides at 108-117 and 132-141 were the core B- and T cell epitopes of Fag t 2 confirmed by competitive inhibition ELISA and dot blot. This result was of great significance on the study of allergen epitopes in prevention and treatment of hypersensitivity.
Collapse
|
7
|
Ruan J, Zhou Y, Yan J, Zhou M, Woo SH, Weng W, Cheng J, Zhang K. Tartary Buckwheat: An Under-utilized Edible and Medicinal Herb for Food and Nutritional Security. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1734610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jingjun Ruan
- College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuexia Zhou
- College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Jun Yan
- Schools of Pharmacy and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sun-Hee Woo
- College of Agriculture, Life & Environment Science, Chungbuk National University, Chungbuk, Korea (Republic Of)
| | - Wenfeng Weng
- College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Jianping Cheng
- College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|