1
|
Firestone K, Gopalakrishna KP, Rogers LM, Peters A, Gaddy JA, Nichols C, Hall MH, Varela HN, Carlin SM, Hillebrand GH, Giacobe EJ, Aronoff DM, Hooven TA. A CRISPRi Library Screen in Group B Streptococcus Identifies Surface Immunogenic Protein (Sip) as a Mediator of Multiple Host Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627252. [PMID: 39677656 PMCID: PMC11643019 DOI: 10.1101/2024.12.06.627252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Group B Streptococcus (GBS; Streptococcus agalactiae) is an important pathobiont capable of colonizing various host environments, contributing to severe perinatal infections. Surface proteins play critical roles in GBS-host interactions, yet comprehensive studies of these proteins' functions have been limited by genetic manipulation challenges. This study leveraged a CRISPR interference (CRISPRi) library to target genes encoding surface-trafficked proteins in GBS, identifying their roles in modulating macrophage cytokine responses. Bioinformatic analysis of 654 GBS genomes revealed 66 conserved surface protein genes. Using a GBS strain expressing chromosomally integrated dCas9, we generated and validated CRISPRi strains targeting these genes. THP-1 macrophage-like cells were exposed to ethanol-killed GBS variants, and pro-inflammatory cytokines TNF-α and IL-1β were measured. Notably, knockdown of the sip gene, encoding the Surface Immunogenic Protein (Sip), significantly increased IL-1β secretion, implicating Sip in caspase-1-dependent regulation. Further, Δsip mutants demonstrated impaired biofilm formation, reduced adherence to human fetal membranes, and diminished uterine persistence in a mouse colonization model. These findings suggest Sip modulates GBS-host interactions critical for pathogenesis, underscoring its potential as a therapeutic target or vaccine component.
Collapse
Affiliation(s)
- K Firestone
- Indiana University School of Medicine, Department of Medicine
| | - K P Gopalakrishna
- California Institute of Technology, Division of Chemistry and Chemical Engineering, Pasadena, CA, USA
| | - L M Rogers
- Indiana University School of Medicine, Department of Medicine
| | - A Peters
- University of Pittsburgh, Dietrich School of Arts and Sciences, Pittsburgh, PA, USA
| | - J A Gaddy
- Vanderbilt University Medical Center, Department of Medicine, Nashville, TN, USA
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, TN, USA
- Vanderbilt University, Center for Medicine, Health, and Society, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, TN, USA
| | - C Nichols
- Vanderbilt University Medical Center, Department of Medicine, Nashville, TN, USA
| | - M H Hall
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, TN, USA
| | - H N Varela
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S M Carlin
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - G H Hillebrand
- Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - E J Giacobe
- Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - D M Aronoff
- Indiana University School of Medicine, Department of Medicine
| | - T A Hooven
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- R.K. Mellon Institute for Pediatric Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Díaz-Dinamarca DA, Salazar ML, Escobar DF, Castillo BN, Valdebenito B, Díaz P, Manubens A, Salazar F, Troncoso MF, Lavandero S, Díaz J, Becker MI, Vásquez AE. Surface immunogenic protein from Streptococcus agalactiae and Fissurella latimarginata hemocyanin are TLR4 ligands and activate MyD88- and TRIF dependent signaling pathways. Front Immunol 2023; 14:1186188. [PMID: 37790926 PMCID: PMC10544979 DOI: 10.3389/fimmu.2023.1186188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
The development of vaccine adjuvants is of interest for the management of chronic diseases, cancer, and future pandemics. Therefore, the role of Toll-like receptors (TLRs) in the effects of vaccine adjuvants has been investigated. TLR4 ligand-based adjuvants are the most frequently used adjuvants for human vaccines. Among TLR family members, TLR4 has unique dual signaling capabilities due to the recruitment of two adapter proteins, myeloid differentiation marker 88 (MyD88) and interferon-β adapter inducer containing the toll-interleukin-1 receptor (TIR) domain (TRIF). MyD88-mediated signaling triggers a proinflammatory innate immune response, while TRIF-mediated signaling leads to an adaptive immune response. Most studies have used lipopolysaccharide-based ligands as TLR4 ligand-based adjuvants; however, although protein-based ligands have been proven advantageous as adjuvants, their mechanisms of action, including their ability to undergo structural modifications to achieve optimal immunogenicity, have been explored less thoroughly. In this work, we characterized the effects of two protein-based adjuvants (PBAs) on TLR4 signaling via the recruitment of MyD88 and TRIF. As models of TLR4-PBAs, we used hemocyanin from Fissurella latimarginata (FLH) and a recombinant surface immunogenic protein (rSIP) from Streptococcus agalactiae. We determined that rSIP and FLH are partial TLR4 agonists, and depending on the protein agonist used, TLR4 has a unique bias toward the TRIF or MyD88 pathway. Furthermore, when characterizing gene products with MyD88 and TRIF pathway-dependent expression, differences in TLR4-associated signaling were observed. rSIP and FLH require MyD88 and TRIF to activate nuclear factor kappa beta (NF-κB) and interferon regulatory factor (IRF). However, rSIP and FLH have a specific pattern of interleukin 6 (IL-6) and interferon gamma-induced protein 10 (IP-10) secretion associated with MyD88 and TRIF recruitment. Functionally, rSIP and FLH promote antigen cross-presentation in a manner dependent on TLR4, MyD88 and TRIF signaling. However, FLH activates a specific TRIF-dependent signaling pathway associated with cytokine expression and a pathway dependent on MyD88 and TRIF recruitment for antigen cross-presentation. Finally, this work supports the use of these TLR4-PBAs as clinically useful vaccine adjuvants that selectively activate TRIF- and MyD88-dependent signaling to drive safe innate immune responses and vigorous Th1 adaptive immune responses.
Collapse
Affiliation(s)
- Diego A. Díaz-Dinamarca
- Sección de Biotecnología, Subdepartamento, Innovación, Desarrollo, Transferencia Tecnológica (I+D+T) y Evaluación de Tecnologías Sanitarias (ETESA), Instituto de Salud Pública, Santiago, Chile
- Laboratorio de Inmunología, Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Michelle L. Salazar
- Laboratorio de Inmunología, Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - Daniel F. Escobar
- Sección de Biotecnología, Subdepartamento, Innovación, Desarrollo, Transferencia Tecnológica (I+D+T) y Evaluación de Tecnologías Sanitarias (ETESA), Instituto de Salud Pública, Santiago, Chile
| | - Byron N. Castillo
- Laboratorio de Inmunología, Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - Bastián Valdebenito
- Sección de Biotecnología, Subdepartamento, Innovación, Desarrollo, Transferencia Tecnológica (I+D+T) y Evaluación de Tecnologías Sanitarias (ETESA), Instituto de Salud Pública, Santiago, Chile
| | - Pablo Díaz
- Sección de Biotecnología, Subdepartamento, Innovación, Desarrollo, Transferencia Tecnológica (I+D+T) y Evaluación de Tecnologías Sanitarias (ETESA), Instituto de Salud Pública, Santiago, Chile
| | | | - Fabián Salazar
- Laboratorio de Inmunología, Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
- Investigación y Desarrollo, BIOSONDA S.A., Santiago, Chile
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Mayarling F. Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Janepsy Díaz
- Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago, Chile
| | - María Inés Becker
- Laboratorio de Inmunología, Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
- Investigación y Desarrollo, BIOSONDA S.A., Santiago, Chile
| | - Abel E. Vásquez
- Sección de Biotecnología, Subdepartamento, Innovación, Desarrollo, Transferencia Tecnológica (I+D+T) y Evaluación de Tecnologías Sanitarias (ETESA), Instituto de Salud Pública, Santiago, Chile
- Facultad de Ciencias de la Salud, Escuela de Medicina, Universidad del Alba, Santiago, Chile
| |
Collapse
|
3
|
Díaz-Dinamarca DA, Salazar ML, Castillo BN, Manubens A, Vasquez AE, Salazar F, Becker MI. Protein-Based Adjuvants for Vaccines as Immunomodulators of the Innate and Adaptive Immune Response: Current Knowledge, Challenges, and Future Opportunities. Pharmaceutics 2022; 14:1671. [PMID: 36015297 PMCID: PMC9414397 DOI: 10.3390/pharmaceutics14081671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/03/2022] Open
Abstract
New-generation vaccines, formulated with subunits or nucleic acids, are less immunogenic than classical vaccines formulated with live-attenuated or inactivated pathogens. This difference has led to an intensified search for additional potent vaccine adjuvants that meet safety and efficacy criteria and confer long-term protection. This review provides an overview of protein-based adjuvants (PBAs) obtained from different organisms, including bacteria, mollusks, plants, and humans. Notably, despite structural differences, all PBAs show significant immunostimulatory properties, eliciting B-cell- and T-cell-mediated immune responses to administered antigens, providing advantages over many currently adopted adjuvant approaches. Furthermore, PBAs are natural biocompatible and biodegradable substances that induce minimal reactogenicity and toxicity and interact with innate immune receptors, enhancing their endocytosis and modulating subsequent adaptive immune responses. We propose that PBAs can contribute to the development of vaccines against complex pathogens, including intracellular pathogens such as Mycobacterium tuberculosis, those with complex life cycles such as Plasmodium falciparum, those that induce host immune dysfunction such as HIV, those that target immunocompromised individuals such as fungi, those with a latent disease phase such as Herpes, those that are antigenically variable such as SARS-CoV-2 and those that undergo continuous evolution, to reduce the likelihood of outbreaks.
Collapse
Affiliation(s)
- Diego A. Díaz-Dinamarca
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7750000, Chile
| | - Michelle L. Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
| | - Byron N. Castillo
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
| | - Augusto Manubens
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Biosonda Corporation, Santiago 7750000, Chile
| | - Abel E. Vasquez
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7750000, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Providencia, Santiago 8320000, Chile
| | - Fabián Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, UK
| | - María Inés Becker
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Biosonda Corporation, Santiago 7750000, Chile
| |
Collapse
|
4
|
Brokaw A, Furuta A, Dacanay M, Rajagopal L, Adams Waldorf KM. Bacterial and Host Determinants of Group B Streptococcal Vaginal Colonization and Ascending Infection in Pregnancy. Front Cell Infect Microbiol 2021; 11:720789. [PMID: 34540718 PMCID: PMC8446444 DOI: 10.3389/fcimb.2021.720789] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Group B streptococcus (GBS) is a gram-positive bacteria that asymptomatically colonizes the vaginal tract. However, during pregnancy maternal GBS colonization greatly predisposes the mother and baby to a wide range of adverse outcomes, including preterm birth (PTB), stillbirth, and neonatal infection. Although many mechanisms involved in GBS pathogenesis are partially elucidated, there is currently no approved GBS vaccine. The development of a safe and effective vaccine that can be administered during or prior to pregnancy remains a principal objective in the field, because current antibiotic-based therapeutic strategies do not eliminate all cases of invasive GBS infections. Herein, we review our understanding of GBS disease pathogenesis at the maternal-fetal interface with a focus on the bacterial virulence factors and host defenses that modulate the outcome of infection. We follow GBS along its path from an asymptomatic colonizer of the vagina to an invasive pathogen at the maternal-fetal interface, noting factors critical for vaginal colonization, ascending infection, and vertical transmission to the fetus. Finally, at each stage of infection we emphasize important host-pathogen interactions, which, if targeted therapeutically, may help to reduce the global burden of GBS.
Collapse
Affiliation(s)
- Alyssa Brokaw
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Anna Furuta
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Matthew Dacanay
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Lakshmi Rajagopal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Kristina M Adams Waldorf
- Department of Global Health, University of Washington, Seattle, WA, United States.,Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States.,Department of Obstetrics and Gynecology, University of Washington and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Garcia-Vello P, Speciale I, Chiodo F, Molinaro A, De Castro C. Carbohydrate-based adjuvants. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 35-36:57-68. [PMID: 33388128 DOI: 10.1016/j.ddtec.2020.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/28/2020] [Accepted: 09/25/2020] [Indexed: 06/12/2023]
Abstract
Carbohydrate adjuvants are safe and biocompatible compounds usable as sustained delivery systems and stimulants of ongoing humoral and cellular immune responses, being especially suitable for the development of vaccines against intracellular pathogens where alum is useless. The development of new adjuvants is difficult and expensive, however, in the last two years, seven new carbohydrate-based adjuvants have been patented, also there are twelve ongoing clinical trials of vaccines that contain carbohydrate-based adjuvants, as well as numerous publications on their mechanism of action and safety. More research is necessary to improve the existent adjuvants and develop innovative ones.
Collapse
Affiliation(s)
- Pilar Garcia-Vello
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples (NA), Italy.
| | - Immacolata Speciale
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples (NA), Italy
| | - Fabrizio Chiodo
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples (NA), Italy
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Portici (NA), Italy.
| |
Collapse
|
6
|
Diaz-Dinamarca DA, Hernandez C, Escobar DF, Soto DA, Muñoz GA, Badilla JF, Manzo RA, Carrión F, Kalergis AM, Vasquez AE. Mucosal Vaccination with Lactococcus lactis-Secreting Surface Immunological Protein Induces Humoral and Cellular Immune Protection against Group B Streptococcus in a Murine Model. Vaccines (Basel) 2020; 8:vaccines8020146. [PMID: 32224855 PMCID: PMC7349291 DOI: 10.3390/vaccines8020146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/22/2022] Open
Abstract
Group B Streptococcus (GBS) is the primary etiological agent of sepsis and meningitis in newborns and is associated with premature birth and stillbirth. The development of a licensed vaccine is one of the pending challenges for the World Health Organization. Previously, we showed that oral immunization with surface immune protein (SIP) decreases vaginal colonization of GBS and generates functional opsonizing antibodies, which was determined by opsonophagocytic assays (OPA) in vitro. We also showed that the protein has an adjuvant vaccine profile. Therefore, an oral vaccine based on SIP may be an attractive alternative to employ in the development of new vaccines against GBS. Lactococcus lactis is a highlighted oral vaccine probiotic inducer of the mucosal immune response. This bacterium could serve as an antigen-delivering vehicle for the development of an edible vaccine and has been used in clinical trials. In this study, we showed that an oral vaccine with a recombinant L. lactis strain secreting SIP from GBS (rL. lactis-SIP) can induce protective humoral and cellular immunity in an experimental model of GBS vaginal colonization in C57BL/6 mice. Mice immunized with rL. lactis-SIP were protected against clinical symptoms and bacterial colonization after GBS vaginal colonization. Our rL. lactis-SIP vaccine also induces an increase of immunoglobulin G (IgG) and immunoglobulin A (IgA) specifically against SIP. The adoptive transfer of serum from vaccinated mice to naïve mice generated protection against GBS vaginal colonization. Moreover, the rL.lactis-SIP strain induces the activation of SIP-specific T cells, which could decrease GBS vaginal colonization and generate protective antibodies when transferred to other mice. Our experimental observations strongly support the notion that rL. lactis-SIP induces protective humoral and cellular immunity and could be considered as a novel alternative in the development of vaccines for GBS.
Collapse
Affiliation(s)
- Diego A. Diaz-Dinamarca
- Sección de Biotecnología, Instituto de Salud Pública de Chile, Santiago 780050, Chile; (D.A.D.-D.); (C.H.); (D.F.E.); (D.A.S.); (G.A.M.); (J.F.B.); (R.A.M.)
| | - Carlos Hernandez
- Sección de Biotecnología, Instituto de Salud Pública de Chile, Santiago 780050, Chile; (D.A.D.-D.); (C.H.); (D.F.E.); (D.A.S.); (G.A.M.); (J.F.B.); (R.A.M.)
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8380453, Chile;
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmaceuticas, Universidad de Chile, Independencia, Santiago 8380492, Chile
| | - Daniel F. Escobar
- Sección de Biotecnología, Instituto de Salud Pública de Chile, Santiago 780050, Chile; (D.A.D.-D.); (C.H.); (D.F.E.); (D.A.S.); (G.A.M.); (J.F.B.); (R.A.M.)
| | - Daniel A. Soto
- Sección de Biotecnología, Instituto de Salud Pública de Chile, Santiago 780050, Chile; (D.A.D.-D.); (C.H.); (D.F.E.); (D.A.S.); (G.A.M.); (J.F.B.); (R.A.M.)
| | - Guillermo A. Muñoz
- Sección de Biotecnología, Instituto de Salud Pública de Chile, Santiago 780050, Chile; (D.A.D.-D.); (C.H.); (D.F.E.); (D.A.S.); (G.A.M.); (J.F.B.); (R.A.M.)
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8380453, Chile;
| | - Jesús F. Badilla
- Sección de Biotecnología, Instituto de Salud Pública de Chile, Santiago 780050, Chile; (D.A.D.-D.); (C.H.); (D.F.E.); (D.A.S.); (G.A.M.); (J.F.B.); (R.A.M.)
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8380453, Chile;
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomas, Santiago 8320000, Chile
| | - Ricardo A. Manzo
- Sección de Biotecnología, Instituto de Salud Pública de Chile, Santiago 780050, Chile; (D.A.D.-D.); (C.H.); (D.F.E.); (D.A.S.); (G.A.M.); (J.F.B.); (R.A.M.)
| | - Flavio Carrión
- Programa de Inmunología Traslacional, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610315, Chile;
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8380453, Chile;
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Abel E. Vasquez
- Sección de Biotecnología, Instituto de Salud Pública de Chile, Santiago 780050, Chile; (D.A.D.-D.); (C.H.); (D.F.E.); (D.A.S.); (G.A.M.); (J.F.B.); (R.A.M.)
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomas, Santiago 8320000, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 8320000, Chile
- Correspondence: ; Tel.: +562-2575-5513
| |
Collapse
|
7
|
Diaz-Dinamarca DA, Manzo RA, Soto DA, Avendaño-Valenzuela MJ, Bastias DN, Soto PI, Escobar DF, Vasquez-Saez V, Carrión F, Pizarro-Ortega MS, Wilson CAM, Berrios J, Kalergis AM, Vasquez AE. Surface Immunogenic Protein of Streptococcus Group B is an Agonist of Toll-Like Receptors 2 and 4 and a Potential Immune Adjuvant. Vaccines (Basel) 2020; 8:vaccines8010029. [PMID: 31963234 PMCID: PMC7157747 DOI: 10.3390/vaccines8010029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 12/19/2022] Open
Abstract
Vaccine-induced protection against pathogens, especially subunit-based vaccines, are related to antigen properties but mainly in their ability to stimulate the immune system by the use of an adjuvant. Modern vaccines are formulated with a high level of antigen purity, where an efficient adjuvant is necessary. In this context, the use of protein Toll-Like Receptor (TLR) agonists as vaccine adjuvants has been highlighted because of their optimal immunogenicity and minimal toxicity. The Surface Immunogenic Protein (SIP) from Group B Streptococcus (GBS) has gained importance as a new potential protein-based vaccine. Recently, we reported that recombinant SIP (rSIP) expressed by E. coli and purified by High Performance Liquid Chromatography (HPLC) alone induces a protective humoral immune response. In this study, we present the immunomodulatory properties of rSIP as a protein-based adjuvant, as an agonist of TLR. To this end, we showed that C57BL/6 bone marrow-derived dendritic cells pulsed by rSIP resulted in enhanced CD40, CD80, CD86, and Major Histocompatibility Complex (MHC) class II as well as increased secretion proinflammatory cytokines Interleukin (IL)-6, Interferon (IFN)-γ, Tumor Necrosis Factor (TNF)-α, and IL-10. Next, we investigated the in vivo effect of rSIP in the absence or presence of ovalbumin (OVA) on antigen-specific antibody secretion in C57BL/6 mice. Immunization with rSIP plus OVA showed that anti-OVA IgG2a and IgG1a increased significantly compared with OVA alone in C57BL/6 mice. Also, the immunization of rSIP plus OVA generates increased serum cytokines levels characterized by IL-12p70, IL-10, IL-4, and IFN-γ. Interestingly, we observed that rSIP stimulate Toll Like Receptor (TLR)2 and TLR4, individually expressed by Human embryonic kidney (HEK) 293-derived TLR reporter cells. These findings suggest that rSIP is a new potential protein TLR agonist adjuvant and may be employed in the development of new vaccines.
Collapse
Affiliation(s)
- Diego A. Diaz-Dinamarca
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.S.P.-O.); (A.M.K.)
| | - Ricardo A. Manzo
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
| | - Daniel A. Soto
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
| | - María José Avendaño-Valenzuela
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.S.P.-O.); (A.M.K.)
| | - Diego N. Bastias
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.S.P.-O.); (A.M.K.)
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomas, Santiago 8320000, Chile
| | - Paulina I. Soto
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
| | - Daniel F. Escobar
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
| | - Valeria Vasquez-Saez
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
| | - Flavio Carrión
- Programa de Inmunología Traslacional, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 8320000, Chile;
| | - Magdalena S. Pizarro-Ortega
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.S.P.-O.); (A.M.K.)
| | - Christian A. M. Wilson
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8320000, Chile;
| | - Julio Berrios
- Escuela de Ingeniería en Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile;
| | - Alexis M. Kalergis
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.S.P.-O.); (A.M.K.)
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Abel E. Vasquez
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomas, Santiago 8320000, Chile
- Facultad de Ciencia, Universidad San Sebastián, Providencia, Santiago 8320000, Chile
- Correspondence: ; Tel.: +56-2-2575-5513
| |
Collapse
|