1
|
Moqbel Hassan Alzubaydi N, Oun Ali Z, Al-Asadi S, Al-Kahachi R. Design and characterization of a multi-epitope vaccine targeting Chlamydia abortus using immunoinformatics approach. J Biomol Struct Dyn 2024; 42:6660-6677. [PMID: 37774751 DOI: 10.1080/07391102.2023.2240891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/06/2023] [Indexed: 10/01/2023]
Abstract
Chlamydiosis is a widespread ailment affecting humans, livestock, and wildlife, caused by C. abortus, a member of the Chlamydia genus. This disease leads to reproductive disorders in bovines and poses a zoonotic risk, resulting in adverse outcomes such as abortion, stillbirths, weak offspring, endometritis, repeat breeding, and perinatal mortality. However, current chlamydiosis vaccines have limitations in terms of safety, efficacy, and stability, necessitating the development of effective and safe alternatives. In this study, our objective was to design a multi-epitope vaccine (MEV) targeting all strains of C. abortus using bioinformatics and immunoinformatics approaches. We identified highly antigenic and non-allergic proteins (yidC, yajC, secY, CAB503, and CAB746) using VaxiJen and AlgPred tools. Physicochemical analyses and secondary structure predictions confirmed protein stability through ProtParam and SOPMA methods. Furthermore, we employed IEDB-AR, NETMHCpan, and ToxinPred2 tools to predict cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL), and B-cell epitopes, resulting in the identification of conserved epitopes for further analysis. The MEV construct, consisting of 545 amino acids, incorporated the adjuvant Beta defensin-3, along with 9 CTL epitopes and 21 HTL epitopes linked by EAAAK, KK, and AAY linkers. We assessed the safety and immunogenicity of the vaccine through comprehensive evaluations of antigenicity, toxicity, allergenicity, and physicochemical properties. Structural stability and quality were examined using 3D modeling via the ab initio approach with the Robetta platform. Molecular docking analysis explored the compatibility of the MEV with Toll-like receptor 9 (TLR9) using ClusPro, while molecular dynamics simulation with the DESMOND Maestro software predicted the stability and flexibility of the docked complex. Despite promising in silico findings, further wet lab investigations are crucial to validate the safety and efficacy of the MEV. Successful development and validation of this MEV hold significant potential in combatting chlamydiosis in both animal and human populations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Zainab Oun Ali
- Department of Radiology Techniques, College of Health and Medical Techniques, Middle Technical University, Baghdad, Iraq
| | - Sura Al-Asadi
- Department of Laboratory Techniques, College of Health and Medical Techniques, Middle Technical University, Baghdad, Iraq
| | - Rusul Al-Kahachi
- Department of Scholarships and Cultural Relationship, Republic of Iraq Ministry of Higher Education and Scientific Research, Baghdad, Iraq
| |
Collapse
|
2
|
Pan X, Guo X, Shi J. Design of a novel multiepitope vaccine with CTLA-4 extracellular domain against Mycoplasma pneumoniae: A vaccine-immunoinformatics approach. Vaccine 2024; 42:3883-3898. [PMID: 38777697 DOI: 10.1016/j.vaccine.2024.04.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Community-acquired pneumonia often stems from the macrolide-resistant strain of Mycoplasma pneumoniae, yet no effective vaccine exists against it. METHODS This study proposes a vaccine-immunoinformatics strategy for Mycoplasma pneumoniae and other pathogenic microbes. Specifically, dominant B and T cell epitopes of the Mycoplasma pneumoniae P30 adhesion protein were identified through immunoinformatics method. The vaccine sequence was then constructed by coupling with CTLA-4 extracellular region, a novel molecular adjuvant for antigen-presenting cells. Subsequently, the vaccine's physicochemical properties, antigenicity, and allergenicity were verified. Molecular dynamics modeling was employed to confirm interaction with TLR-2, TLR-4, B7-1, and B7-2. Finally, the vaccine underwent in silico cloning for expression. RESULTS The vaccine exhibited both antigenicity and non-allergenicity. Molecular dynamics simulation, post-docking with TLR-2, TLR-4, B7-1, and B7-2, demonstrated stable interaction between the vaccine and these molecules. In silico cloning confirmed effective expression of the vaccine gene in insect baculovirus vectors. CONCLUSION This vaccine-immunoinformatics approach holds promise for the development of vaccines against Mycoplasma pneumoniae and other pathogenic non-viral and non-bacterial microbes.
Collapse
Affiliation(s)
- Xiaohong Pan
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Xiaomei Guo
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China; Kunming Medical University, Kunming, Yunnan, China
| | - Jiandong Shi
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China; National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan China.
| |
Collapse
|
3
|
Yazdani Z, Rafiei A, Ghoreyshi M, Abediankenari S. In Silico Analysis of a Candidate Multi-epitope Peptide Vaccine Against Human Brucellosis. Mol Biotechnol 2024; 66:769-783. [PMID: 36940016 PMCID: PMC10026239 DOI: 10.1007/s12033-023-00698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/13/2023] [Indexed: 03/21/2023]
Abstract
Brucellosis is one of the neglected endemic zoonoses in the world. Vaccination appears to be a promising health strategy to prevent it. This study used advanced computational techniques to develop a potent multi-epitope vaccine for human brucellosis. Seven epitopes from four main brucella species that infect humans were selected. They had significant potential to induce cellular and humoral responses. They showed high antigenic ability without the allergenic characteristic. In order to improve its immunogenicity, suitable adjuvants were also added to the structure of the vaccine. The physicochemical and immunological properties of the vaccine were evaluated. Then its two and three-dimensional structure was predicted. The vaccine was docked with toll-like receptor4 to assess its ability to stimulate innate immune responses. For successful expression of the vaccine protein in Escherichia coli, in silico cloning, codon optimization, and mRNA stability were evaluated. The immune simulation was performed to reveal the immune response profile of the vaccine after injection. The designed vaccine showed the high ability to induce immune response, especially cellular responses to human brucellosis. It showed the appropriate physicochemical properties, a high-quality structure, and a high potential for expression in a prokaryotic system.
Collapse
Affiliation(s)
- Zahra Yazdani
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Students Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mehrafarin Ghoreyshi
- Students Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Immunogenetics Research Center, Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
4
|
Zhang S, Nan F, Jiang S, Zhou X, Niu D, Li J, Wang H, Zhang X, Zhang X, Wang B. CRM197-conjugated peptides vaccine of HCMV pp65 and gH induce maturation of DC and effective viral-specific T cell responses. Virulence 2023; 14:2169488. [PMID: 36723437 PMCID: PMC9897769 DOI: 10.1080/21505594.2023.2169488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection is prevalent worldwide, and there is currently no licenced HCMV vaccine to control it. Therefore, developing an effective HCMV vaccine is a significant priority. Because of their excellent immunogenicity, the crucial components of HCMV, phosphoprotein 65 (pp65) and glycoproteins H (gH) are potential target proteins for HCMV vaccine design. In this study, we predicted and screened the dominant antigenic epitopes of B and T cells from pp65 and gH conjugated with the carrier protein cross-reacting material 197 (CRM197) to form three peptide-CRM197 vaccines (pp65-CRM197, gH-CRM197, and pp65-CRM197+gH-CRM197). Furthermore, the immunogenicity of the peptide-CRM197 vaccines and their effects on dendritic cells (DCs) were explored. The results showed that three peptide-CRM197 vaccines could induce maturation of DCs through the p38 MAPK signalling pathway and promote the release of proinflammatory factors, such as TNF-α and interleukin (IL) -6. Meanwhile, the peptide-CRM197 vaccines could effectively activate T cell and humoral immunity, which were far better than the inactivated HCMV vaccine. In conclusion, we constructed three peptide-CRM197 vaccines, which could induce multiple immune effects, providing a novel approach for HCMV vaccine design.
Collapse
Affiliation(s)
- Shuyun Zhang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China,CONTACT Bin Wang Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine Qingdao University, Qingdao, China
| | - Fulong Nan
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China,CONTACT Bin Wang Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine Qingdao University, Qingdao, China
| | - Shasha Jiang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaoqiong Zhou
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Delei Niu
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jun Li
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hui Wang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xueming Zhang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xianjuan Zhang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Bin Wang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China,CONTACT Bin Wang Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Shi D, Chen Y, Chen M, Zhou T, Xu F, Zhang C, Wang C, Li Z. Bioinformatics analysis of Omp19 and Omp25 proteins for designing multi-epitope vaccines against Brucella. Medicine (Baltimore) 2023; 102:e33182. [PMID: 36930131 PMCID: PMC10019172 DOI: 10.1097/md.0000000000033182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
Brucellosis is a zoonotic disease caused by Brucella. There is no effective vaccine against human brucellosis. Omp19 and Omp25 are the outer membrane proteins of Brucella. They are widely expressed and highly conserved in Brucella and have high immunogenicity. Herein, we aim to identify multi-epitope vaccine candidates based on Omp19 and Omp25. We analyzed the physicochemical properties and protein structure of Omp19 and Omp25, and predicted the corresponding B cell and T cell epitopes using bioinformatics analysis. Omp19 and Omp25 were composed of 177 amino acids and 213 amino acids, respectively. They were both stable hydrophilic proteins. The instability indices were 44.8 and 23, respectively. The hydrophilicity was -0.1 and -0.317, respectively. In the secondary structure of Omp19 and Omp25 proteins, the α-helix accounted for 12.43% and 23.94%, the β-sheet was 18.64% and 23.47%, the β-turn was 6.78% and 4.23%, and the random coil was 62.15% and 48.36%. Finally, 5 B cell epitopes, 3 Th-cell epitopes and 5 CTL cell epitopes of Omp19 protein, and 4 B cell epitopes, 3 Th-cell epitopes, and 5 CTL cell epitopes of Omp25 protein were selected as vaccine candidates. In conclusion, we obtained potential B cell and T cell epitopes of the Brucella outer membrane Omp19 and Omp25 proteins. This lays the foundation for the further design of multi-epitope vaccine of Brucella.
Collapse
Affiliation(s)
- Donghao Shi
- Clinical Laboratory Center, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, P.R. China
| | - Yuan Chen
- Clinical Laboratory Center, People`s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, P.R. China
| | - Muzhi Chen
- Department of Rheumatology, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, P.R. China
| | - Tingting Zhou
- Department of Public Health, People`s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, P.R. China
| | - Feili Xu
- Clinical Laboratory Center, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, P.R. China
| | - Chao Zhang
- Urumqi OE Biotech Co., Ltd., Urumqi, Xinjiang, P.R. China
| | - Changmin Wang
- Clinical Laboratory Center, People`s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, P.R. China
| | - Zhiwei Li
- Clinical Laboratory Center, People`s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, P.R. China
| |
Collapse
|
6
|
Shafaghi M, Bahadori Z, Madanchi H, Ranjbar MM, Shabani AA, Mousavi SF. Immunoinformatics-aided design of a new multi-epitope vaccine adjuvanted with domain 4 of pneumolysin against Streptococcus pneumoniae strains. BMC Bioinformatics 2023; 24:67. [PMID: 36829109 PMCID: PMC9951839 DOI: 10.1186/s12859-023-05175-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Streptococcus pneumoniae (Pneumococcus) has remained a leading cause of fatal infections such as pneumonia, meningitis, and sepsis. Moreover, this pathogen plays a major role in bacterial co-infection in patients with life-threatening respiratory virus diseases such as influenza and COVID-19. High morbidity and mortality in over one million cases, especially in very young children and the elderly, are the main motivations for pneumococcal vaccine development. Due to the limitations of the currently marketed polysaccharide-based vaccines, non-serotype-specific protein-based vaccines have received wide research interest in recent years. One step further is to identify high antigenic regions within multiple highly-conserved proteins in order to develop peptide vaccines that can affect various stages of pneumococcal infection, providing broader serotype coverage and more effective protection. In this study, immunoinformatics tools were used to design an effective multi-epitope vaccine in order to elicit neutralizing antibodies against multiple strains of pneumococcus. RESULTS The B- and T-cell epitopes from highly protective antigens PspA (clades 1-5) and PhtD were predicted and immunodominant peptides were linked to each other with proper linkers. The domain 4 of Ply, as a potential TLR4 agonist adjuvant candidate, was attached to the end of the construct to enhance the immunogenicity of the epitope vaccine. The evaluation of the physicochemical and immunological properties showed that the final construct was stable, soluble, antigenic, and non-allergenic. Furthermore, the protein was found to be acidic and hydrophilic in nature. The protein 3D-structure was built and refined, and the Ramachandran plot, ProSA-web, ERRAT, and Verify3D validated the quality of the final model. Molecular docking analysis showed that the designed construct via Ply domain 4 had a strong interaction with TLR4. The structural stability of the docked complex was confirmed by molecular dynamics. Finally, codon optimization was performed for gene expression in E. coli, followed by in silico cloning in the pET28a(+) vector. CONCLUSION The computational analysis of the construct showed acceptable results, however, the suggested vaccine needs to be experimentally verified in laboratory to ensure its safety and immunogenicity.
Collapse
Affiliation(s)
- Mona Shafaghi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Research Center of Biotechnology, Semnan University of Medical Sciences, Semnan, Iran
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Zohreh Bahadori
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Research Center of Biotechnology, Semnan University of Medical Sciences, Semnan, Iran
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Madanchi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Research Center of Biotechnology, Semnan University of Medical Sciences, Semnan, Iran
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Mehdi Ranjbar
- Agricultural Research, Education, and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Ali Akbar Shabani
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Research Center of Biotechnology, Semnan University of Medical Sciences, Semnan, Iran.
| | | |
Collapse
|
7
|
Wu Q, Yuan L, Guo X, Sun M, Yao M, Yin D. Study on antigenic protein Omp2b in combination with Omp31 and BP26 for serological detection of human brucellosis. J Microbiol Methods 2023; 205:106663. [PMID: 36592896 DOI: 10.1016/j.mimet.2022.106663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/24/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Brucellosis is a very common zoonosis in certain localized areas worldwide, with a high prevalence in most developing countries. The detection of brucellosis still faces many challenges such as the need for more sensitive and specific diagnostic antigens. METHODS To evaluate the efficacy of Brucella outer membrane proteins (Omps) Omp2b in combination with omp31 and BP26 as diagnostic antigens for the serological detection of human brucellosis, these proteins were prepared by a prokaryotic expression system. Human brucellosis-positive and-negative sera were collected, and the detection effects of the diagnostic antigens were evaluated using an established indirect ELISA (iELISA) method. Receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC), true positives, true negatives, false positives, false negatives, accuracy, positive predictive value, negative predictive value, analytical specificity, and sensitivity were obtained to evaluate the effectiveness of Omp2b and antigen combinations. RESULTS The iELISA results showed that the AUC of the antigenic proteins was 0.9100, 0.9387, 0.9343, and 0.9448, respectively, and that the combination of Omp31 and BP26 improved the accuracy and was superior to that of Omp2b alone. Analysis at the determined cut-off values showed that the analytical sensitivity of the assay was 0.8739 (95% CI:0.7974-0.9293) and the analytical specificity was 0.8539 (95% CI:0.7632-0.9199) when using Omp2b alone and 0.8649 when using the combination of Omp2b + BP26 (95% CI:0.7869-0.9223) with an analytical specificity of 0.9213 (95% CI:0.8446-0.9678) and 0.8468 (95% CI:0.7662-0.9082) and an analytical sensitivity of 0.9101 (95% CI:0.8305-0.9604). When Omp2b + Omp31 + BP26 was combined, the analytical sensitivity and specificity were 0.8559 (95% CI:0.7765-0.9153) and 0.9326 (95% CI:0.8590-0.9749), respectively. Protein antigens, including antigen combinations, did not cross-react with Yersinia enterocolitica O9 and E. coli O157: H7, indicating that their specificity was better than that of lipopolysaccharide (LPS). CONCLUSIONS Compared with individual Omp2b, antigen combinations improved the effectiveness in detecting brucellosis, but were still not as effective as LPS antigen. Omp2b, combined with Omp31 and BP26 as diagnostic antigens, can be used to detect human brucellosis.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Yuan
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaohan Guo
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Mingjun Sun
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Meixue Yao
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Dehui Yin
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
8
|
Tarrahimofrad H, Zamani J, Hamblin MR, Darvish M, Mirzaei H. A designed peptide-based vaccine to combat Brucella melitensis, B. suis and B. abortus: Harnessing an epitope mapping and immunoinformatics approach. Biomed Pharmacother 2022; 155:113557. [PMID: 36115112 DOI: 10.1016/j.biopha.2022.113557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 11/19/2022] Open
Abstract
Vaccines against Brucella abortus, B. melitensis and B. suis have been based on weakened or killed bacteria, however there is no recombinant vaccine for disease prevention or therapy. This study attempted to predict IFN-γ epitopes, T cell cytotoxicity, and T lymphocytes in order to produce a multiepitope vaccine based on BtpA, Omp16, Omp28, virB10, Omp25, and Omp31 antigens against B. melitensis, B. abortus, and B. suis. AAY, GPGPG, and EAAAK peptides were used as epitope linkers, while the PADRE sequence was used as a Toll-like receptor 2 (TLR2) and TLR4 agonist. The final construct included 389 amino acids, and was a soluble protein with a molecular weight of 41.3 kDa, and nonallergenic and antigenic properties. Based on molecular docking studies, molecular dynamics simulations such as Gyration, RMSF, and RMSD, as well as tertiary structure validation methods, the modeled protein had a stable structure capable of interacting with TLR2/4. As a result, this novel vaccine may stimulate immune responses in B and T cells, and could prevent infection by B. suis, B. abortus, and B. melitensis.
Collapse
Affiliation(s)
- Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Javad Zamani
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Maryam Darvish
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
9
|
Yu M, Zhu Y, Li Y, Chen Z, Li Z, Wang J, Li Z, Zhang F, Ding J. Design of a Recombinant Multivalent Epitope Vaccine Based on SARS-CoV-2 and Its Variants in Immunoinformatics Approaches. Front Immunol 2022; 13:884433. [PMID: 35603198 PMCID: PMC9120605 DOI: 10.3389/fimmu.2022.884433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/12/2022] [Indexed: 01/08/2023] Open
Abstract
The development of an effective multivalent vaccine against SARS-CoV-2 variants is an important means to improve the global public health situation caused by COVID-19. In this study, we identified the antigen epitopes of the main global epidemic SARS-CoV-2 and mutated virus strains using immunoinformatics approach, and screened out 8 cytotoxic T lymphocyte epitopes (CTLEs), 17 helper T lymphocyte epitopes (HTLEs), 9 linear B-cell epitopes (LBEs) and 4 conformational B-cell epitopes (CBEs). The global population coverage of CTLEs and HTLEs was 93.16% and 99.9% respectively. These epitopes were spliced together by corresponding linkers and recombined into multivalent vaccine. In silico tests, the vaccine protein was a non-allergen and the docking with TLR-3 molecule showed a strong interaction. The results of immune simulation showed that the vaccine may be helpful to initiate both cellular and humoral immunity against all VOC. The optimistic immunogenicity of the vaccine was confirmed in vivo and in vitro finally. Therefore, our vaccine may have potential protection against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Mingkai Yu
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - Yuejie Zhu
- Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yujiao Li
- Department of Blood Transfusion, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhiqiang Chen
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - Zhiwei Li
- Clinical Laboratory Center, Xinjiang Uygur Autonomous Region People’s Hospital, Urumqi, China
| | - Jing Wang
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Zheng Li
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Fengbo Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Jianbing Ding, ; Fengbo Zhang,
| | - Jianbing Ding
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
- *Correspondence: Jianbing Ding, ; Fengbo Zhang,
| |
Collapse
|
10
|
Vishwakarma P, Vattekatte AM, Shinada N, Diharce J, Martins C, Cadet F, Gardebien F, Etchebest C, Nadaradjane AA, de Brevern AG. V HH Structural Modelling Approaches: A Critical Review. Int J Mol Sci 2022; 23:3721. [PMID: 35409081 PMCID: PMC8998791 DOI: 10.3390/ijms23073721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022] Open
Abstract
VHH, i.e., VH domains of camelid single-chain antibodies, are very promising therapeutic agents due to their significant physicochemical advantages compared to classical mammalian antibodies. The number of experimentally solved VHH structures has significantly improved recently, which is of great help, because it offers the ability to directly work on 3D structures to humanise or improve them. Unfortunately, most VHHs do not have 3D structures. Thus, it is essential to find alternative ways to get structural information. The methods of structure prediction from the primary amino acid sequence appear essential to bypass this limitation. This review presents the most extensive overview of structure prediction methods applied for the 3D modelling of a given VHH sequence (a total of 21). Besides the historical overview, it aims at showing how model software programs have been shaping the structural predictions of VHHs. A brief explanation of each methodology is supplied, and pertinent examples of their usage are provided. Finally, we present a structure prediction case study of a recently solved VHH structure. According to some recent studies and the present analysis, AlphaFold 2 and NanoNet appear to be the best tools to predict a structural model of VHH from its sequence.
Collapse
Affiliation(s)
- Poonam Vishwakarma
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
| | - Akhila Melarkode Vattekatte
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
| | | | - Julien Diharce
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
| | - Carla Martins
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
| | - Frédéric Cadet
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
- PEACCEL, Artificial Intelligence Department, Square Albin Cachot, F-75013 Paris, France
| | - Fabrice Gardebien
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
| | - Catherine Etchebest
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
| | - Aravindan Arun Nadaradjane
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
| | - Alexandre G. de Brevern
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
| |
Collapse
|
11
|
Hu G, Chen X, Chu W, Ma Z, Miao Y, Luo X, Fu Y. Immunogenic characteristics of the outer membrane phosphoporin as a vaccine candidate against Klebsiella pneumoniae. Vet Res 2022; 53:5. [PMID: 35063026 PMCID: PMC8781355 DOI: 10.1186/s13567-022-01023-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
In recent years, Klebsiella pneumoniae (KP) has caused disease outbreaks in different animals, resulting in serious economic losses and biosafety concerns. Considering the broad antibiotic resistance of KP, vaccines are the most effective tools against infection. However, there is still no KP vaccine available in the veterinary field. Our results indicate that the highly conserved outer membrane phosphoporin (PhoE) of KP is immunogenic in mice and elicits high titers of antibodies that were shown to be specific for PhoE by immunoblotting. Immunization with PhoE also induced robust cell-mediated immunity and elicited the secretion of high levels of IFN-γ and IL-4, suggesting the induction of mixed Th1 and Th2 responses. Sera from PhoE-immunized mice induced significantly higher complement-mediated lysis of KP cells than did sera from the PBS control mice. Finally, mice immunized with PhoE were significantly protected against KP challenge, with better survival and a reduced visceral bacterial load. Our data underscore the great potential of PhoE as a novel candidate antigen for a vaccine against KP infection.
Collapse
Affiliation(s)
- Gaowei Hu
- College of Life Sciences, Institute of Biomass Resources, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Xue Chen
- College of Life Sciences, Institute of Biomass Resources, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Wenhui Chu
- College of Life Sciences, Institute of Biomass Resources, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Zhe Ma
- College of Life Sciences, Institute of Biomass Resources, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Yingjie Miao
- College of Life Sciences, Institute of Biomass Resources, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Xi Luo
- College of Life Sciences, Institute of Biomass Resources, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Yongqian Fu
- College of Life Sciences, Institute of Biomass Resources, Taizhou University, Taizhou, 318000, Zhejiang, China.
| |
Collapse
|
12
|
Yu M, Zhu Y, Li Y, Chen Z, Sha T, Li Z, Zhang F, Ding J. Design of a Novel Multi-Epitope Vaccine Against Echinococcus granulosus in Immunoinformatics. Front Immunol 2021; 12:668492. [PMID: 34456902 PMCID: PMC8388843 DOI: 10.3389/fimmu.2021.668492] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022] Open
Abstract
All the time, echinococcosis is a global zoonotic disease which seriously endangers public health all over the world. In order to speed up the development process of anti-Echinococcus granulosus vaccine, at the same time, it can also save economic cost. In this study, immunoinformatics tools and molecular docking methods were used to predict and screen the antigen epitopes of Echinococcus granulosus, to design a multi-epitope vaccine containing B- and T-cell epitopes. The multi-epitope vaccine could activate B lymphocytes to produce specific antibodies theoretically, which could protect the human body against Echinococcus granulosus infection. It also could activate T lymphocytes and clear the infected parasites in the body. In this study, four CD8+ T-cell epitopes, three CD4+ T-cell epitopes and four B-cell epitopes of Protein EgTeg were identified by immunoinformatics methods. Meanwhile, three CD8+ T-cell epitopes, two CD4+ T-cell epitopes and four B-cell epitopes of Protein EgFABP1 were identified. We constructed the multi-epitope vaccine using linker proteins. The study based on the traditional methods of antigen epitope prediction, further optimized the prediction results combined with molecular docking technology and improved the precision and accuracy of the results. Finally, in vivo and in vitro experiments had verified that the vaccine designed in this study had good antigenicity and immunogenicity.
Collapse
MESH Headings
- Adolescent
- Adult
- Animals
- Antibodies, Helminth/blood
- Antigens, Helminth/immunology
- Antigens, Helminth/pharmacology
- B-Lymphocytes/immunology
- B-Lymphocytes/parasitology
- Cells, Cultured
- Computer-Aided Design
- Disease Models, Animal
- Drug Design
- Echinococcosis/blood
- Echinococcosis/immunology
- Echinococcosis/parasitology
- Echinococcosis/prevention & control
- Echinococcus granulosus/immunology
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/immunology
- Fatty Acid-Binding Proteins/immunology
- Fatty Acid-Binding Proteins/pharmacology
- Humans
- Immunity, Humoral
- Immunogenicity, Vaccine
- Lymphocyte Activation
- Mice, Inbred BALB C
- Middle Aged
- Molecular Docking Simulation
- T-Lymphocytes/immunology
- T-Lymphocytes/parasitology
- Vaccines, DNA/immunology
- Vaccines, DNA/pharmacology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/pharmacology
- Young Adult
- Mice
Collapse
Affiliation(s)
- Mingkai Yu
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Yuejie Zhu
- Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yujiao Li
- Department of Blood Transfusion, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhiqiang Chen
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Tong Sha
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Zhiwei Li
- Clinical Laboratory Center, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, China
| | - Fengbo Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianbing Ding
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
13
|
Design of a new multi-epitope vaccine against Brucella based on T and B cell epitopes using bioinformatics methods. Epidemiol Infect 2021; 149:e136. [PMID: 34032200 PMCID: PMC8220514 DOI: 10.1017/s0950268821001229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Brucellosis is one of the most serious and widespread zoonotic diseases, which seriously threatens human health and the national economy. This study was based on the T/B dominant epitopes of Brucella outer membrane protein 22 (Omp22), outer membrane protein 19 (Omp19) and outer membrane protein 28 (Omp28), with bioinformatics methods to design a safe and effective multi-epitope vaccine. The amino acid sequences of the proteins were found in the National Center for Biotechnology Information (NCBI) database, and the signal peptides were predicted by the SignaIP-5.0 server. The surface accessibility and hydrophilic regions of proteins were analysed with the ProtScale software and the tertiary structure model of the proteins predicted by I-TASSER software and labelled with the UCSF Chimera software. The software COBEpro, SVMTriP and BepiPred were used to predict B cell epitopes of the proteins. SYFPEITHI, RANKpep and IEDB were employed to predict T cell epitopes of the proteins. The T/B dominant epitopes of three proteins were combined with HEYGAALEREAG and GGGS linkers, and carriers sequences linked to the N- and C-terminus of the vaccine construct with the help of EAAAK linkers. Finally, the tertiary structure and physical and chemical properties of the multi-epitope vaccine construct were analysed. The allergenicity, antigenicity and solubility of the multi-epitope vaccine construct were 7.37–11.30, 0.788 and 0.866, respectively. The Ramachandran diagram of the mock vaccine construct showed 96.0% residues within the favoured and allowed range. Collectively, our results showed that this multi-epitope vaccine construct has a high-quality structure and suitable characteristics, which may provide a theoretical basis for future laboratory experiments.
Collapse
|
14
|
Chen Y, Wu Y, Qin L, Yu L, Luo H, Li Y, Wang K, Chen L, Zhu C, He J, Zeng Y, Huang L, You X. T-B cell epitope peptides induce protective immunity against Mycoplasma pneumoniae respiratory tract infection in BALB/c mice. Immunobiology 2021; 226:152077. [PMID: 33831654 DOI: 10.1016/j.imbio.2021.152077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/07/2021] [Accepted: 02/27/2021] [Indexed: 11/26/2022]
Abstract
Mycoplasma pneumoniae is the most common pathogen of community-acquired pneumonia in humans. Due to its high rates of antibiotic resistance, vaccination has become the best method to control the dissemination of M. pneumoniae. The recombinant carboxyl terminus of the P1 (P1C) protein is an immunodominant antigen, but it has negative effects such as poor stability and lower purity. In the current study, T-B epitopes of the P1C protein were predicted according to bioinformatics analysis and assessed for efficacy in peptide vaccination. BALB/c mice were subcutaneously inoculated with the T-B epitope peptides four times and then infected with M. pneumoniae through the respiratory tract. The results showed that the T-B epitope peptides of the P1C protein (P1C103-117, P1C155-169, P1C224-238 and P1C244-258) induced strong antigen-specific serum antibody responses and cellular immune responses with high levels of serum IgG, IgA antibodies and Th1-biased (IFN-γ and IL-2) cytokines. Immunization with T-B epitope peptides significantly reduced the M. pneumoniae burden and the degree of inflammation in the challenged mice. Furthermore, the levels of IFN-γ and TNF-α in the supernatants of lung homogenates were observably reduced compared to those in the PBS group. Overall, our findings demonstrate that T-B epitopes (P1C103-117, P1C155-169, P1C224-238 and P1C244-258) play significant roles in the P1C protein and can be used to induce powerful humoral and cellular immune responses to provide significant protection against M. pneumoniae pulmonary infection, which provides new insight into the design of potential multiepitope vaccines to prevent host infection by M. pneumoniae.
Collapse
Affiliation(s)
- Yiwen Chen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Yueyue Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Lianmei Qin
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Lan Yu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China; Department of Blood Transfusion, the First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Haodang Luo
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China; Department of Clinical Laboratory, The Affiliated Nanhua Hospital of University of South China, Hengyang 421001, China
| | - Yumeng Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Kegeng Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Liesong Chen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Jun He
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital of University of South China, Hengyang 421001, China
| | - Yanhua Zeng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Lijun Huang
- Nanyue Biopharmaceutical Co. Ltd., Hunan Province Innovative Training Base for Postgraduates, University of South China and Nanyue Biopharmaceutical Co. Ltd., Hengyang 421001, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China.
| |
Collapse
|
15
|
Liu J, Chen X, Wang J, Wu F, Zhang J, Dong J, Zhang H, Liu X, Hu N, Wu J, Zhang L, Cheng W, Zhang C, Zhang WJ. Prediction and identification of CD4+ T cell epitope for the protective antigens of Mycobacterium tuberculosis. Medicine (Baltimore) 2021; 100:e24619. [PMID: 33578573 PMCID: PMC7886468 DOI: 10.1097/md.0000000000024619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/08/2021] [Indexed: 02/05/2023] Open
Abstract
CD4+T cell epitopes plays a key role in anti-tuberculosis (TB) immunity, CD4+T cell epitopes suitable for the domestic population are lacking. Therefore, we predicted and identified novel CD4+T cell epitopes.The bioinformatics software, namely, DNAStar (DNASTAR of the United States), SYFPEITHI (INTERFACTORS INSTITUT Für ZELL Biologie of Germany), RANKPEP, and NetMHC IIpan (National Cancer Institute, United States of America), were used to comprehensively predict the CD4+T cell immune epitope of Mycobacterium TB, and the predicted epitope polypeptide was synthesized by the standard Fmoc scheme. The proliferation of PBMC and CD4+T cells stimulated by peptides was preliminarily detected by the CCK8 method. Then, the candidate polypeptides screened out by the CCK8 method were verified again by the BrdU assay, and flow cytometry was performed to analyze further the extent of their stimulation on the proliferation of CD4+T cells. The changes in the secreted cytokines IFN-γ, TNF-α, IL-2, and IL-10 before and after the candidate polypeptide stimulation of CD4+T lymphocytes were detected by ELISA. The preliminary humoral immunity test was conducted by indirect ELISA to evaluate the serological diagnostic value of the CD4+T cell epitope polypeptide.In this study, 5 novel candidate CD4+T cell epitope polypeptides with the amino acid sequences of LQGQWRGAAGTAAQA, PVTLAETGSTLLYPL, AAAWGGSGSEAYQGV, QFVYAGAMSGLLDPS, and KAALTRTASNMNAAA and others that have not been reported in the research were predicted. For convenience, the 5 candidates were successively named as P39, P50, P40, P185, and P62. P39, P62, and the mixed peptide P39+P62 could effectively induce the proliferation of CD4+T cells and increase the secretion of IFN-γ, TNF-α, and IL-2 from the CD4+T cells, while reducing the content of IL-10. The serological test showed that the sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) of P39 were 75%, 67.71%, and 0.844, respectively. The sensitivity, specificity, and AUC of P62 were 91.66%, 46.87%, and 0.649, respectively. The sensitivity of the mixed peptide P39+P62 was 95.83%, the specificity was 97.91%, and the AUC was 0.793.The P39 and P62 polypeptides were predicted and identified as potential CD4+T cell immune epitope polypeptides of M. TB. The polypeptide had better diagnosis effect, which provided potential candidate epitope polypeptides for the development of TB-specific diagnosis reagents and novel TB epitope vaccines.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathophysiology, Shihezi University School of Medicine/the Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang
| | - Xuefeng Chen
- West China Hospital of Sichuan University, Wuhou District, Chengdu, Sichuan
| | - Ju Wang
- Department of Pathophysiology, Shihezi University School of Medicine/the Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang
| | - Fang Wu
- Department of Pathophysiology, Shihezi University School of Medicine/the Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang
| | - Jie Zhang
- The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, P. R. China
| | - Jiangtao Dong
- The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, P. R. China
| | - Hui Zhang
- Department of Pathophysiology, Shihezi University School of Medicine/the Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang
| | - Xiaoling Liu
- Department of Pathophysiology, Shihezi University School of Medicine/the Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang
| | - Na Hu
- Department of Pathophysiology, Shihezi University School of Medicine/the Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang
| | - Jiangdong Wu
- Department of Pathophysiology, Shihezi University School of Medicine/the Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang
| | - Le Zhang
- Department of Pathophysiology, Shihezi University School of Medicine/the Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang
| | - Wei Cheng
- West China Hospital of Sichuan University, Wuhou District, Chengdu, Sichuan
| | - Chunjun Zhang
- Department of Pathophysiology, Shihezi University School of Medicine/the Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang
| | - Wan Jiang Zhang
- Department of Pathophysiology, Shihezi University School of Medicine/the Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang
| |
Collapse
|
16
|
Lü X, Ma Y, Tao Y, Yan F, Song C, Wang C, Zhang M. Conformers, Properties of the Anticancer Drug Plocabulin, and its Binding Mechanism with p-Glycoprotein: DFT and MD Studies. Aust J Chem 2021. [DOI: 10.1071/ch20320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Plocabulin (PM060184) is a promising new anticancer drug as a microtubule inhibitor. The conformational structure and properties of plocabulin have been studied theoretically. The initial structure was screened by the B3LYP/3-21G* method, and then 32 unique conformations were further optimised with the B3LYP/6-311G* method. The single-point energies were determined at the M06-L/6-311G(2df,p) level. The UV excitation of the most stable plocabulin conformation in methanol was studied by the TD-CAM-B3LYP/6-311G(2df,p) method. High-quality human p-glycoprotein model was obtained through homology modelling. The binding interaction between p-glycoprotein and plocabulin was studied by docking and MD simulation. LEU65, TYR310, ILE340, THR945, PHE983, MET986, and GLN990 were found to be important amino acid residues in the interaction. From a certain perspective, the ‘reverse exclusion’ mechanism of plocabulin with p-glycoprotein was illustrated, and this mechanism provides theoretical guidance for the structural modification of plocabulin and for design of drug’s to avoid p-glycoprotein-mediated drug resistance.
Collapse
|
17
|
Zhou Z, Gu G, Luo Y, Li W, Li B, Zhao Y, Liu J, Shuai X, Wu L, Chen J, Fan C, Huang Q, Han B, Wen J, Jiao H. Immunological pathways of macrophage response to Brucella ovis infection. Innate Immun 2020; 26:635-648. [PMID: 32970502 PMCID: PMC7556187 DOI: 10.1177/1753425920958179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
As the molecular mechanisms of Brucella ovis pathogenicity are not completely clear, we have applied a transcriptome approach to identify the differentially expressed genes (DEGs) in RAW264.7 macrophage infected with B. ovis. The DEGs related to immune pathway were identified by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) functional enrichment analysis. Quantitative real-time PCR (qRT-PCR) was performed to validate the transcriptome sequencing data. In total, we identified 337 up-regulated and 264 down-regulated DEGs in B. ovis-infected group versus mock group. Top 20 pathways were enriched by KEGG analysis and 20 GO by functional enrichment analysis in DEGs involved in the molecular function, cellular component, and biological process and so on, which revealed multiple immunological pathways in RAW264.7 macrophage cells in response to B. ovis infection, including inflammatory response, immune system process, immune response, cytokine activity, chemotaxis, chemokine-mediated signaling pathway, chemokine activity, and CCR chemokine receptor binding. qRT-PCR results showed Ccl2 (ENSMUST00000000193), Ccl2 (ENSMUST00000124479), Ccl3 (ENSMUST00000001008), Hmox1 (ENSMUST00000005548), Hmox1 (ENSMUST00000159631), Cxcl2 (ENSMUST00000075433), Cxcl2 (ENSMUST00000200681), Cxcl2 (ENSMUST00000200919), and Cxcl2 (ENSMUST00000202317). Our findings firstly elucidate the pathways involved in B. ovis-induced host immune response, which may lay the foundation for revealing the bacteria–host interaction and demonstrating the pathogenic mechanism of B. ovis.
Collapse
Affiliation(s)
- Zhixiong Zhou
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Guojing Gu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yichen Luo
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,College of Veterinary Medicine, Southwest University, Chongqing, China.,Veterinary Scientific Engineering Research Center, Chongqing, China
| | - Wenjie Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Bowen Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yu Zhao
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Juan Liu
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,College of Veterinary Medicine, Southwest University, Chongqing, China.,Veterinary Scientific Engineering Research Center, Chongqing, China
| | - Xuehong Shuai
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,College of Veterinary Medicine, Southwest University, Chongqing, China.,Veterinary Scientific Engineering Research Center, Chongqing, China
| | - Li Wu
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Veterinary Scientific Engineering Research Center, Chongqing, China
| | - Jixuan Chen
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Veterinary Scientific Engineering Research Center, Chongqing, China
| | - Cailiang Fan
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Animal Disease Prevention and Control Center of Rongchang, Chongqing, China
| | - Qingzhou Huang
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Veterinary Scientific Engineering Research Center, Chongqing, China
| | - Baoru Han
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Jianjun Wen
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, USA
| | - Hanwei Jiao
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,College of Veterinary Medicine, Southwest University, Chongqing, China.,Veterinary Scientific Engineering Research Center, Chongqing, China
| |
Collapse
|