1
|
Öztemiz Topcu E, Gadermaier G. To stay or not to stay intact as an allergen: the endolysosomal degradation assay used as tool to analyze protein immunogenicity and T cell epitopes. FRONTIERS IN ALLERGY 2024; 5:1440360. [PMID: 39071040 PMCID: PMC11272489 DOI: 10.3389/falgy.2024.1440360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Antigen uptake and processing of exogenous proteins is critical for adaptive immunity, particularly for T helper cell activation. Proteins undergo distinct proteolytic processing in endolysosomal compartments of antigen-presenting cells. The resulting peptides are presented on MHC class II molecules and specifically recognized by T cells. The in vitro endolysosomal degradation assay mimics antigen processing by incubating a protein of interest with a protease cocktail derived from the endolysosomal compartments of antigen presenting cells. The kinetics of protein degradation is monitored by gel electrophoresis and allows calculation of a protein's half-life and thus endolysosomal stability. Processed peptides are analyzed by mass spectrometry and abundant peptide clusters are shown to harbor T cell epitopes. The endolysosomal degradation assay has been widely used to study allergens, which are IgE-binding proteins involved in type I hypersensitivity. In this review article, we provide the first comprehensive overview of the endolysosomal degradation of 29 isoallergens and variants originating from the PR-10, Ole e 1-like, pectate lyase, defensin polyproline-linked, non-specific lipid transfer, mite group 1, 2, and 5, and tropomyosin protein families. The assay method is described in detail and suggestions for improved standardization and reproducibility are provided. The current hypothesis implies that proteins with high endolysosomal stability can induce an efficient immune response, whereas highly unstable proteins are degraded early during antigen processing and therefore not efficient for MHC II peptide presentation. To validate this concept, systematic analyses of high and low allergenic representatives of protein families should be investigated. In addition to purified molecules, allergen extracts should be degraded to analyze potential matrix effects and gastrointestinal proteolysis of food allergens. In conclusion, individual protein susceptibility and peptides obtained from the endolysosomal degradation assay are powerful tools for understanding protein immunogenicity and T cell reactivity. Systematic studies and linkage with in vivo sensitization data will allow the establishment of (machine-learning) tools to aid prediction of immunogenicity and allergenicity. The orthogonal method could in the future be used for risk assessment of novel foods and in the generation of protein-based immunotherapeutics.
Collapse
|
2
|
Li J, Yi X, Guan K, Yin J. Pru p 3-specific IgE affinity is crucial in severe peach-allergy patients. World Allergy Organ J 2024; 17:100922. [PMID: 38966604 PMCID: PMC11223113 DOI: 10.1016/j.waojou.2024.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 07/06/2024] Open
Abstract
Background Peach allergy is common food allergen. Allergen components-specific antibodies of different isotypes in peach-allergy patients are poorly studied. Factors other than Pru p 3-sIgE levels may be related to severe symptoms. Objective To evaluated peach component-specific-IgE, IgG1, and IgG4 characteristics in individuals with and without peach allergy, and Pru p 3-sIgE affinity in patients with different clinical symptoms. Methods Fifteen healthy controls and 32 peach-allergy patients were enrolled. sIgE, sIgG1, and sIgG4 to 5 Escherichia coli-expressed peach-allergen components were determined by enzyme-linked immunosorbent assays. Pru p 3-sIgE affinity was measured in Pru p 3-sIgE-positive patients, using immunoadsorbance. Results Patients were divided into oral allergy syndrome (OAS) and peach-induced anaphylaxis (PIA) groups. Serum Pru p 1-, Pru p 2-, Pru p 3-, Pru p 4-, and Pru p 7-sIgG1s were detected. Pru p 1- and Pru p 2-sIgG1 levels were higher in healthy controls, but Pru p 3-sIgG1 levels were significantly higher in peach-allergy patients. Pru p 1-, Pru p 3-, and Pru p 4-sIgG4-positivity was significantly greater among patients than among controls. Pru p 3 was the predominant allergen in peach-allergy patients. Allergen-sIgG1 and sIgG4 were similar between OAS and PIA patients. Pru p 3-sIgE levels were significantly higher in PIA patients, but Pru p 3-sIgE-positivity was similar in both groups. In Pru p 3-sIgE-positive patients, Pru p 3-sIgE affinity was significantly higher in PIA than OAS patients. Conclusions Allergen-sIgG1 was associated with allergen exposure. Both Pru p 3-sIgE levels and affinity are key factors in severe peach-allergy patients.
Collapse
Affiliation(s)
- JunDa Li
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Allergy, Peking Union Medical College Hospital, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing, China
- Department of Allergy, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Disease, Beijing, China
| | - XiLian Yi
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Allergy, Peking Union Medical College Hospital, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing, China
- Department of Allergy, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Disease, Beijing, China
| | - Kai Guan
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Allergy, Peking Union Medical College Hospital, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing, China
- Department of Allergy, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Disease, Beijing, China
| | - Jia Yin
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Allergy, Peking Union Medical College Hospital, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing, China
- Department of Allergy, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Disease, Beijing, China
| |
Collapse
|
3
|
Wang K, Gali-Moya J, Ruano-Zaragoza M, Cain K, D'Auria G, Daly M, Barran P, Crevel R, Mills ENC. Bile salts enhance the susceptibility of the peach allergenic lipid transfer protein, Pru p 3, to in vitro gastrointestinal proteolysis. Sci Rep 2023; 13:15155. [PMID: 37704681 PMCID: PMC10499906 DOI: 10.1038/s41598-023-39599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
Sensitisation to the lipid transfer protein Pru p 3 is associated with severe allergic reactions to peach, the proteins stability being thought to play a role in its allergenicity. Lipid binding increases susceptibility of Pru p 3 to digestion and so the impact of bile salts on the in vitro gastrointestinal digestibility of Pru p 3 was investigated and digestion products mapped by SDS-PAGE and mass spectrometry. Bile salts enhanced the digestibility of Pru p 3 resulting in an ensemble of around 100 peptides spanning the protein's sequence which were linked by disulphide bonds into structures of ~ 5-6 kDa. IgE binding studies with a serum panel from peach allergic subjects showed digestion reduced, but did not abolish, the IgE reactivity of Pru p 3. These data show the importance of including bile salts in vitro digestion systems and emphasise the need to profile of digestion in a manner that allows identification of immunologically relevant disulphide-linked peptide aggregates.
Collapse
Affiliation(s)
- Kai Wang
- School of Biological Sciences, Manchester Academic Health Sciences Centre, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
| | - Judit Gali-Moya
- School of Biological Sciences, Manchester Academic Health Sciences Centre, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
| | | | - Kathleen Cain
- Department of Chemistry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
| | - Giovanni D'Auria
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Matthew Daly
- School of Biological Sciences, Manchester Academic Health Sciences Centre, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
| | - Perdita Barran
- Department of Chemistry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
| | - René Crevel
- School of Biological Sciences, Manchester Academic Health Sciences Centre, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
- René Crevel Consulting Ltd, Suite A 82 James Carter Road, Mildenhall, IP28 7HP, UK
| | - E N Clare Mills
- School of Biological Sciences, Manchester Academic Health Sciences Centre, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK.
- School of Biosciences and Medicine, The University of Surrey, Guildford, GU2 7XH, Surrey, UK.
| |
Collapse
|
4
|
Zhang Y, Che H, Li C, Jin T. Food Allergens of Plant Origin. Foods 2023; 12:foods12112232. [PMID: 37297475 DOI: 10.3390/foods12112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
This review presents an update on the physical, chemical, and biological properties of food allergens in plant sources, focusing on the few protein families that contribute to multiple food allergens from different species and protein families recently found to contain food allergens. The structures and structural components of the food allergens in the allergen families may provide further directions for discovering new food allergens. Answers as to what makes some food proteins allergens are still elusive. Factors to be considered in mitigating food allergens include the abundance of the protein in a food, the property of short stretches of the sequence of the protein that may constitute linear IgE binding epitopes, the structural properties of the protein, its stability to heat and digestion, the food matrix the protein is in, and the antimicrobial activity to the microbial flora of the human gastrointestinal tract. Additionally, recent data suggest that widely used techniques for mapping linear IgE binding epitopes need to be improved by incorporating positive controls, and methodologies for mapping conformational IgE binding epitopes need to be developed.
Collapse
Affiliation(s)
- Yuzhu Zhang
- US Department of Agriculture, Agricultural Research Service, Pacific West Area, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | - Huilian Che
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Caiming Li
- US Department of Agriculture, Agricultural Research Service, Pacific West Area, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
5
|
Kang W, Zhang J, Yu N, He L, Chen Y. Effect of ultrahigh-pressure treatment on the structure and allergenicity of peach allergenic proteins. Food Chem 2023; 423:136227. [PMID: 37201255 DOI: 10.1016/j.foodchem.2023.136227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/24/2023] [Accepted: 04/20/2023] [Indexed: 05/20/2023]
Abstract
Peach is a common plant-derived allergenic food and ultrahigh-pressure treatment is often used in peach products. In our study, an in-depth analysis of the structural and allergenicity changes of peach allergenic proteins after UHP treatment was performed by spectroscopy, mass spectrometry combined with serology and cytology. The results indicated that UHP treatment could reduce the content of peach soluble proteins and cause changes in secondary and tertiary structures. In addition, more hydrophobic residues were exposed and proteins tended to polymerize after UHP-treatment. The results of immunological assays showed that UHP treatment could reduce the IgE binding capacity of peach proteins and affect the ability of basophil degranulation, the upregulation of some cytokines may contribute to the reduction of peach protein allergenicity. Notably, UHP treatment may lead to the masking of some digestion sites in Pru p 3 epitopes, thus impeding human digestion and increasing the potential risk of allergenicity.
Collapse
Affiliation(s)
- Wenhan Kang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China
| | - Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China
| | - Lei He
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China.
| |
Collapse
|
6
|
Stutz H. Advances and applications of electromigration methods in the analysis of therapeutic and diagnostic recombinant proteins – A Review. J Pharm Biomed Anal 2022; 222:115089. [DOI: 10.1016/j.jpba.2022.115089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
|
7
|
Kang W, Zhang J, Li H, Yu N, Tang R, Sun X, He L, Sun J, Chen Y. Identification of Major B-Cell Linear Epitopes of Peach Allergen Pru p 3 Using Immune Slot-Blot Microarray Assay. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8134-8144. [PMID: 35749217 DOI: 10.1021/acs.jafc.2c01448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pru p 3, one of the most representative proteins of the lipid transfer proteins (LTPs), is responsible for clinical allergic reactions to food of peach origin. The identification of Pru p 3 epitopes is not comprehensive due to different methods and principles of epitope screening. In addition, evaluation of the stability of the epitopes and the validation of the immunological key amino acids still need further research. Therefore, in the present study, an immune slot-blot microarray assay was performed to screen the epitopes from Pru p 3 overlapping peptide library, and a new epitope (P-1, AA1-16, ITCGQVSSALAPCIPY) was identified and two identified epitopes were deeply investigated (P-2, AA12-27, PCIPYVRGGGAVPPAC; P-3, AA23-38, VPPACCNGIRNVNNLA). The stability of these epitopes was then verified by thermal processing treatment and digestion experiments. Moreover, the key amino acids of the three identified epitopes were obtained by epitope amino acid mutation combined with slot-blot experiments. These findings may contribute to the further understanding of Pru p 3 and the prevention of peach allergy.
Collapse
Affiliation(s)
- Wenhan Kang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, People's Republic of China
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Hong Li
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing 100730, People's Republic of China
| | - Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Rui Tang
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing 100730, People's Republic of China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Lei He
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Jinlyu Sun
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing 100730, People's Republic of China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, People's Republic of China
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| |
Collapse
|
8
|
Missaoui K, Gonzalez-Klein Z, Pazos-Castro D, Hernandez-Ramirez G, Garrido-Arandia M, Brini F, Diaz-Perales A, Tome-Amat J. Plant non-specific lipid transfer proteins: An overview. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:115-127. [PMID: 34992048 DOI: 10.1016/j.plaphy.2021.12.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 05/26/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are usually defined as small, basic proteins, with a wide distribution in all orders of higher plants. Structurally, nsLTPs contain a conserved motif of eight cysteines, linked by four disulphide bonds, and a hydrophobic cavity in which the ligand is housed. This structure confers stability and enhances the ability to bind and transport a variety of hydrophobic molecules. Their highly conserved structural resemblance but low sequence identity reflects the wide variety of ligands they can carry, as well as the broad biological functions to which they are linked to, such as membrane stabilization, cell wall organization and signal transduction. In addition, they have also been described as essential in resistance to biotic and abiotic stresses, plant growth and development, seed development, and germination. Hence, there is growing interest in this family of proteins for their critical roles in plant development and for the many unresolved questions that need to be clarified, regarding their subcellular localization, transfer capacity, expression profile, biological function, and evolution.
Collapse
Affiliation(s)
- Khawla Missaoui
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax (CBS), University of Sfax, Tunisia
| | - Zulema Gonzalez-Klein
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Diego Pazos-Castro
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Guadalupe Hernandez-Ramirez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Maria Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Faical Brini
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax (CBS), University of Sfax, Tunisia
| | - Araceli Diaz-Perales
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain.
| |
Collapse
|
9
|
Skypala IJ, Bartra J, Ebo DG, Antje Faber M, Fernández‐Rivas M, Gomez F, Luengo O, Till SJ, Asero R, Barber D, Cecchi L, Diaz Perales A, Hoffmann‐Sommergruber K, Anna Pastorello E, Swoboda I, Konstantinopoulos AP, Ree R, Scala E. The diagnosis and management of allergic reactions in patients sensitized to non-specific lipid transfer proteins. Allergy 2021; 76:2433-2446. [PMID: 33655502 DOI: 10.1111/all.14797] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Sensitization to one or more non-specific lipid transfer proteins (nsLTPs), initially thought to exist mainly in southern Europe, is becoming accepted as a cause of allergic reactions to plant foods across Europe and beyond. The peach nsLTP allergen Pru p 3 is a dominant sensitizing allergen and peaches a common food trigger, although multiple foods can be involved. A frequent feature of reactions is the requirement for a cofactor (exercise, alcohol, non-steroidal anti-inflammatory drugs, Cannabis sativa) to be present for a food to elicit a reaction. The variability in the food and cofactor triggers makes it essential to include an allergy-focused diet and clinical history in the diagnostic workup. Testing on suspected food triggers should also establish whether sensitization to nsLTP is present, using purified or recombinant nsLTP allergens such as Pru p 3. The avoidance of known trigger foods and advice on cofactors is currently the main management for this condition. Studies on immunotherapy are promising, but it is unknown whether such treatments will be useful in populations where Pru p 3 is not the primary sensitizing allergen. Future research should focus on the mechanisms of cofactors, improving diagnostic accuracy and establishing the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Isabel J. Skypala
- Royal Brompton & Harefield NHS Foundation Trust London UK
- Department of Allergy and Clinical Immunology Imperial College London UK
| | - Joan Bartra
- Hospital Clinic Barcelona Spain
- IDIBAPS Universitat de Barcelona ARADyAL, Barcelona Spain
| | - Didier G. Ebo
- Department of Immunology, Allergology, Rheumatology Faculty of Medicine and Health Sciences Infla‐Med Centre of Excellence Antwerp University Hospital University of Antwerp Antwerp Belgium
- Jan Palfijn Ziekenhuis Ghent Ghent Belgium
| | - Margaretha Antje Faber
- Faculty of Medicine and Health Sciences Department of Immunology, Allergology, Rheumatology Infla‐Med Centre of Excellence Antwerp University Hospital University of Antwerp Antwerp Belgium
| | - Montserrat Fernández‐Rivas
- Department of Allergy Hospital Clínico San Carlos Universidad Complutense de Madrid IdISSC ARADyAL Madrid Spain
| | - Francisca Gomez
- Allergy Unit IBIMA—Hospital Regional Universitario de Malaga Malaga Spain
- Spanish Network for Allergy ‐ RETICS de Asma Reaccionesadversas y Alérgicas (ARADyAL Madrid Spain
| | - Olga Luengo
- Allergy Unit Internal Medicine Department Vall d'Hebron University Hospital Universitat Autònoma de Barcelona ARADyAL Barcelona Spain
| | - Stephen J. Till
- Peter Gorer Department of Immunobiology King’s College London London UK
- Department of Allergy Guy’s & St Thomas’ NHS Foundation Trust London UK
| | - Riccardo Asero
- Ambulatorio di Allergologia Clinica San Carlo Paderno Dugnano Italy
| | - Domingo Barber
- IMMA School of Medicine Universidad San Pablo CEU, Universities Madrid Spain
- RETIC ARADYAL RD16/0006/0015 Instituto de Salud Carlos III Madrid Spain
| | - Lorenzo Cecchi
- SOS Allergy and Clinical Immunology USL Toscana Centro Prato Italy
| | - Araceli Diaz Perales
- Centro de Biotecnología y Genómica de Plantas Universidad Politecnica Madrid Spain
| | | | - Elide Anna Pastorello
- Unit of Allergology and Immunology ASST Grande Ospedale Metropolitano Niguarda University of Milan Milan Italy
| | - Ines Swoboda
- Biotechnology Section Campus Vienna Biocenter FH Campus Wien, University of Applied Sciences Vienna Austria
| | | | - Ronald Ree
- Department of Experimental Immunology Amsterdam University Medical Centers, location AMC Amsterdam The Netherlands
- Department of Otorhinolaryngology Amsterdam University Medical Centers, location AMC Amsterdam The Netherlands
| | - Enrico Scala
- Experimental Allergy Unit Istituto Dermopatico dell’Immacolata – IRCCS FLMM Rome Italy
| | | |
Collapse
|
10
|
Maruyama N. Components of plant-derived food allergens: Structure, diagnostics, and immunotherapy. Allergol Int 2021; 70:291-302. [PMID: 34092500 DOI: 10.1016/j.alit.2021.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
A large number of plant-derived food allergen components have been identified to date. Although these allergens are diverse, they often share common structural features such as numerous disulfide bonds or oligomeric structures. Furthermore, some plant-derived food allergen components cross-react with pollen allergens. Since the relationship between allergen components and clinical symptoms has been well characterized, measurements of specific IgE to these components have become useful for the accurate clinical diagnosis and selection of optimal treatment methods for various allergy-related conditions including allergy caused by plant-derived foods. Herein, I have described the types and structures of different plant allergen components and outlined the diagnosis as well as treatment strategies, including those reported recently, for such substances. Furthermore, I have also highlighted the contribution of allergen components to this field.
Collapse
Affiliation(s)
- Nobuyuki Maruyama
- Food Quality Design and Development Laboratory, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
11
|
Di Muzio M, Wildner S, Huber S, Hauser M, Vejvar E, Auzinger W, Regl C, Laimer J, Zennaro D, Wopfer N, Huber CG, van Ree R, Mari A, Lackner P, Ferreira F, Schubert M, Gadermaier G. Hydrogen/deuterium exchange memory NMR reveals structural epitopes involved in IgE cross-reactivity of allergenic lipid transfer proteins. J Biol Chem 2021; 295:17398-17410. [PMID: 33453986 DOI: 10.1074/jbc.ra120.014243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/25/2020] [Indexed: 01/30/2023] Open
Abstract
Identification of antibody-binding epitopes is crucial to understand immunological mechanisms. It is of particular interest for allergenic proteins with high cross-reactivity as observed in the lipid transfer protein (LTP) syndrome, which is characterized by severe allergic reactions. Art v 3, a pollen LTP from mugwort, is frequently involved in this cross-reactivity, but no antibody-binding epitopes have been determined so far. To reveal human IgE-binding regions of Art v 3, we produced three murine high-affinity mAbs, which showed 70-90% coverage of the allergenic epitopes from mugwort pollen-allergic patients. As reliable methods to determine structural epitopes with tightly interacting intact antibodies under native conditions are lacking, we developed a straightforward NMR approach termed hydrogen/deuterium exchange memory (HDXMEM). It relies on the slow exchange between the invisible antigen-mAb complex and the free 15N-labeled antigen whose 1H-15N correlations are detected. Due to a memory effect, changes of NH protection during antibody binding are measured. Differences in H/D exchange rates and analyses of mAb reactivity to homologous LTPs revealed three structural epitopes: two partially cross-reactive regions around α-helices 2 and 4 as well as a novel Art v 3-specific epitope at the C terminus. Protein variants with exchanged epitope residues confirmed the antibody-binding sites and revealed strongly reduced IgE reactivity. Using the novel HDXMEM for NMR epitope mapping allowed identification of the first structural epitopes of an allergenic pollen LTP. This knowledge enables improved cross-reactivity prediction for patients suffering from LTP allergy and facilitates design of therapeutics.
Collapse
Affiliation(s)
- Martina Di Muzio
- Department of Biosciences, University of Salzburg, Salzburg, Austria; Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Salzburg, Austria
| | - Sabrina Wildner
- Department of Biosciences, University of Salzburg, Salzburg, Austria; Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Salzburg, Austria
| | - Sara Huber
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Michael Hauser
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Eva Vejvar
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Werner Auzinger
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Christof Regl
- Department of Biosciences, University of Salzburg, Salzburg, Austria; Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Salzburg, Austria
| | - Josef Laimer
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Danila Zennaro
- Centri Associati di Allergologica Molecolare (CAAM), Latina, Italy
| | - Nicole Wopfer
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Christian G Huber
- Department of Biosciences, University of Salzburg, Salzburg, Austria; Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Salzburg, Austria
| | - Ronald van Ree
- Department of Experimental Immunology and of Otorhinolaryngology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Adriano Mari
- Centri Associati di Allergologica Molecolare (CAAM), Latina, Italy
| | - Peter Lackner
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Fatima Ferreira
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Mario Schubert
- Department of Biosciences, University of Salzburg, Salzburg, Austria; Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Salzburg, Austria.
| | - Gabriele Gadermaier
- Department of Biosciences, University of Salzburg, Salzburg, Austria; Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
12
|
Biochemical and functional characterization of a new recombinant phospholipase A 2 inhibitor from Crotalus durissus collilineatus snake serum. Int J Biol Macromol 2020; 164:1545-1553. [PMID: 32735921 DOI: 10.1016/j.ijbiomac.2020.07.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 11/20/2022]
Abstract
Phospholipase A2 plays an important role in many diseases. Thus, the production of bioactive molecules, which can modulate PLA2 activity, became an important target for the pharmaceutical industry. Previously, we demonstrated the inhibitory and anti-angiogenic effect of γCdcPLI, the natural PLA2inhibitor from Crotalus durissus collilineatus. The aim of the present study was to recombinantly express the γCdcPLI inhibitor and analyze its biochemical and functional characteristics. Based on the amino acid sequence from the natural protein, we designed a synthetic gene for production of a non-tagged recombinant recγCdcPLI using the pHis-Parallel2 vector. To enable disulfide bond formation, protein expression was performed using E. coli Rosetta-gamiB. The protein was purified by anion and affinity chromatography with a yield of 5 mg/L. RecγCdcPLI showed similar secondary structure in CD and FTIR, revealing predominately β-strands. Analogous to the natural protein, recγCdcPLI was able to form oligomers of ~5.5 nm. The inhibitor was efficiently binding to PLA2 from honeybee (Kd = 1.48 μM) and was able to inhibit the PLA2 activity. Furthermore, it decreased the vessel formation in HUVEC cells, suggesting an anti-angiogenic potential. Heterologous production of recγCdcPLI is highly efficient and thus enables enhanced drug design for treatment of diseases triggered by PLA2 activity.
Collapse
|
13
|
Alessandri C, Ferrara R, Bernardi ML, Zennaro D, Tuppo L, Giangrieco I, Ricciardi T, Tamburrini M, Ciardiello MA, Mari A. Molecular approach to a patient's tailored diagnosis of the oral allergy syndrome. Clin Transl Allergy 2020; 10:22. [PMID: 32551040 PMCID: PMC7298840 DOI: 10.1186/s13601-020-00329-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Oral allergy syndrome (OAS) is one of the most common IgE-mediated allergic reactions. It is characterized by a number of symptoms induced by the exposure of the oral and pharyngeal mucosa to allergenic proteins belonging to class 1 or to class 2 food allergens. OAS occurring when patients sensitized to pollens are exposed to some fresh plant foods has been called pollen food allergy syndrome (PFAS). In the wake of PFAS, several different associations of allergenic sources have been progressively proposed and called syndromes. Molecular allergology has shown that these associations are based on IgE co-recognition taking place between homologous allergens present in different allergenic sources. In addition, the molecular approach reveals that some allergens involved in OAS are also responsible for systemic reactions, as in the case of some food Bet v 1-related proteins, lipid transfer proteins and gibberellin regulated proteins. Therefore, in the presence of a convincing history of OAS, it becomes crucial to perform a patient's tailored molecule-based diagnosis in order to identify the individual IgE sensitization profile. This information allows the prediction of possible cross-reactions with homologous molecules contained in other sources. In addition, it allows the assessment of the risk of developing more severe symptoms on the basis of the features of the allergenic proteins to which the patient is sensitized. In this context, we aimed to provide an overview of the features of relevant plant allergenic molecules and their involvement in the clinical onset of OAS. The value of a personalized molecule-based approach to OAS diagnosis is also analyzed and discussed.
Collapse
Affiliation(s)
- Claudia Alessandri
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| | - Rosetta Ferrara
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| | - Maria Livia Bernardi
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| | - Danila Zennaro
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| | - Lisa Tuppo
- Allergy Data Laboratories (ADL), Latina, Italy
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy
| | - Ivana Giangrieco
- Allergy Data Laboratories (ADL), Latina, Italy
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy
| | - Teresa Ricciardi
- Allergy Data Laboratories (ADL), Latina, Italy
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy
| | | | | | - Adriano Mari
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| |
Collapse
|