1
|
Cheng H, Wang S, Huang A, Ma J, Gao D, Li M, Chen H, Guo K. HSF1 is involved in immunotherapeutic response through regulating APOJ/STAT3-mediated PD-L1 expression in hepatocellular carcinoma. Cancer Biol Ther 2023; 24:1-9. [PMID: 36482717 PMCID: PMC9746510 DOI: 10.1080/15384047.2022.2156242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular cancer (HCC) is a serious illness with high prevalence and mortality throughout the whole world. For advanced HCC, immunotherapy is somewhat impactful and encouraging. Nevertheless, a substantial proportion of patients with advanced HCC are still unable to achieve a durable response, owing to heterogeneity from clonal variability and differential expression of the PD-1/PD-L1 axis. Recently, heat shock factor 1 (HSF1) is recognized as an important component of tumor immunotherapeutic response as well as related to PD-L1 expression in cancer. However, the mechanism of HSF1 regulating PD-L1 in cancer, especially in HCC, is still not fully clear. In this study, we observed the significantly positive correlation between HSF1 expression and PD-L1 expression in HCC samples; meanwhile combination expressions of HSF1 and PD-L1 served as the signature for predicting prognosis of patients with HCC. Mechanistically, HSF1 upregulated PD-L1 expression by inducing APOJ expression and activating STAT3 signaling pathway in HCC. In addition, we explored further the potential values of targeting the HSF1-APOJ-STAT3 axis against CD8+ T cells-mediated cancer cells cytotoxicity. These findings unveiled the important involvement of HSF1 in regulating PD-L1 expression in HCC as well as provided a novel invention component for improving the clinical response rate and efficacy of PD-1/PD-L1 blockade.
Collapse
Affiliation(s)
- Hongxia Cheng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, People’s Republic of China
| | - Sikai Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, People’s Republic of China
| | - Aidan Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, People’s Republic of China
- Guangxi Zhuang Autonomous Region Women and Children Care Hospital, Guangxi, China
| | - Jing Ma
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, People’s Republic of China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, People’s Republic of China
| | - Miaomiao Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, People’s Republic of China
| | - Huaping Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Cao LL, Kagan JC. Targeting innate immune pathways for cancer immunotherapy. Immunity 2023; 56:2206-2217. [PMID: 37703879 PMCID: PMC10591974 DOI: 10.1016/j.immuni.2023.07.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/28/2023] [Accepted: 07/26/2023] [Indexed: 09/15/2023]
Abstract
The innate immune system is critical for inducing durable and protective T cell responses to infection and has been increasingly recognized as a target for cancer immunotherapy. In this review, we present a framework wherein distinct innate immune signaling pathways activate five key dendritic cell activities that are important for T cell-mediated immunity. We discuss molecular pathways that can agonize these activities and highlight that no single pathway can agonize all activities needed for durable immunity. The immunological distinctions between innate immunotherapy administration to the tumor microenvironment versus administration via vaccination are examined, with particular focus on the strategies that enhance dendritic cell migration, interferon expression, and interleukin-1 family cytokine production. In this context, we argue for the importance of appreciating necessity vs. sufficiency when considering the impact of innate immune signaling in inflammation and protective immunity and offer a conceptual guideline for the development of efficacious cancer immunotherapies.
Collapse
Affiliation(s)
- Longyue L Cao
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Bonney EA. A Framework for Understanding Maternal Immunity. Immunol Allergy Clin North Am 2023; 43:e1-e20. [PMID: 37179052 PMCID: PMC10484232 DOI: 10.1016/j.iac.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This is an alternative and controversial framing of the data relevant to maternal immunity. It argues for a departure from classical theory to view, interrogate and interpret existing data.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont Robert Larner College of Medicine, Given Building, Room C246, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
4
|
Gerber AN, Abdi K, Singh NJ. The subunits of IL-12, originating from two distinct cells, can functionally synergize to protect against pathogen dissemination in vivo. Cell Rep 2021; 37:109816. [PMID: 34644571 PMCID: PMC8569637 DOI: 10.1016/j.celrep.2021.109816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/04/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Cytokines are typically single gene products, except for the heterodimeric interleukin (IL)-12 family. The two subunits (IL-12p40 and IL-12p35) of the prototype IL-12 are known to be simultaneously co-expressed in activated myeloid cells, which secrete the fully active heterodimer to promote interferon (IFN)γ production in innate and adaptive cells. We find that chimeric mice containing mixtures of cells that can only express either IL-12p40 or IL-12p35, but not both together, generate functional IL-12. This alternate two-cell pathway requires IL-12p40 from hematopoietic cells to extracellularly associate with IL-12p35 from radiation-resistant cells. The two-cell mechanism is sufficient to propel local T cell differentiation in sites distal to the initial infection and helps control systemic dissemination of a pathogen, although not parasite burden, at the site of infection. Broadly, this suggests that early secretion of IL-12p40 monomers by sentinel cells at the infection site may help prepare distal host tissues for potential pathogen arrival.
Collapse
Affiliation(s)
- Allison N Gerber
- Department of Microbiology & Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF1, Room 380, Baltimore, MD 21201, USA.
| | - Kaveh Abdi
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20850, USA.
| | - Nevil J Singh
- Department of Microbiology & Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF1, Room 380, Baltimore, MD 21201, USA.
| |
Collapse
|
5
|
Catalfamo M, Reali E. The latest advances on CD8 T cell biology in health and disease. Mol Immunol 2020; 124:198-199. [PMID: 32593783 DOI: 10.1016/j.molimm.2020.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/09/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington D.C., USA.
| | - Eva Reali
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
| |
Collapse
|