1
|
Zhao M, Zhang M, Ni S. Role of ginsenoside Rg1 as a PPAR-γ activator in protecting against manganese-induced hepatotoxicity: Insights into the TLR4/MyD88/MAPK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117573. [PMID: 39708455 DOI: 10.1016/j.ecoenv.2024.117573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
This study investigates the protective effect of ginsenoside Rg1 against manganese (Mn)-induced hepatotoxicity, highlighting its role as a PPAR-γ activator and its impact on TLR4/MyD88/MAPK pathway. Manganese induces liver damage through mechanisms involving oxidative stress and inflammation. Rg1, a principal bioactive compound of ginseng, significantly alleviates Mn-induced liver injury. Rg1 markedly enhances the activities of SOD, GSH, and CAT, while reducing levels of MDA and ROS, indicating an improvement in antioxidant defense capacity. Furthermore, Rg1 decreases inflammatory markers iNOS, TNF-α, IL-6, IL-12 and NO levels, underscoring its strong anti-inflammatory effects. Importantly, as a PPAR-γ activator, Rg1 upregulates PPAR-γ expression, subsequently inhibiting TLR4/MyD88/MAPK pathway. Additionally, silencing of PPAR-γ diminishes the protective effects of Rg1, while overexpression of PPAR-γ enhances them. The findings conclude that Rg1 exerts significant hepatoprotective effects against manganese-induced damage by activating PPAR-γ and modulating TLR4/MyD88/MAPK pathway, positioning it as a promising candidate for the treatment of Mn-induced hepatotoxicity.
Collapse
Affiliation(s)
- Mengjing Zhao
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, China
| | - Min Zhang
- Department of Physical examination Center, Tongji Hospital Branch Affiliated to Tongji University, China
| | - Shoudong Ni
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, China.
| |
Collapse
|
2
|
Gong L, Xu J, Guo M, Zhao J, Xin X, Zhang C, Ni X, Hu Y, An F. Octahydroindolizine alkaloid Homocrepidine A from Dendrobium crepidatum attenuate P. acnes-induced inflammatory in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118455. [PMID: 38871011 DOI: 10.1016/j.jep.2024.118455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium crepidatum Lindl. ex Paxton is a perennial epiphyte of Dendrobium genus, distributed in southern China, and utilized as the traditional Chinese medicine "Shihu" in Yunnan Province. Due to its heat-clearing and detoxicating properties, it is formulated as the "XiaoCuoWan" as recorded in the China Pharmacopoeia, and specially used to treat chronic skin inflammatory diseases, such as acne. AIM OF THE STUDY This research aimed to estimate impact of the octahydroindoline alkaloid Homocrepidine A (HCA), isolated from D. crepidatum, on acne inflammation using both human THP-1 cells and mouse models. Furthermore, the potential anti-inflammatory mechanism of HCA has been analyzed through molecular biology methods and computer simulation. MATERIALS AND METHODS THP-1 cells and mouse models induced by live Propionibacterium acnes (P. acnes) were employed to evaluate the anti-inflammatory properties of crude extract of D. crepidatum (DCE) and HCA. ELISA was utilized to detect the release of inflammatory cytokines in both cellular and murine ear tissues. RNAseq was used to screen the pathways associated with HCA-mediated inflammatory inhibition, while Western blot, RT-qPCR, and immunofluorescence were utilized to detect the expression of relevant proteins. Additionally, molecular docking simulations and cellular thermal shift assays were employed to confirm the target of HCA. RESULTS Our research shows that DCE and HCA can effectively alleviate acne inflammation. HCA inhibits TLR2 expression by interacting with amino acid residues in the TIR domain of hTLR2, including Pro-681, Asn-688, Trp-684, and Ile-685. Moreover, HCA disrupts inflammatory signal transduction mediated by MAPK and NF-κB pathways through MyD88-dependent pathway. Additionally, HCA treatment facilitates Nrf2 nuclear translocation and upregulates HO-1 expression, thereby inhibiting NLRP3 inflammasomes activation. In vivo experiments further revealed that HCA markedly attenuated erythema and swelling caused by P. acnes in mice ears, while also decreasing the expression of pro-inflammatory cytokines IL-1β and IL-8. CONCLUSIONS Our research highlights the protective effects of D. crepidatum and its bioactive compound HCA against acne inflammation, marking the first exploration of its potential in this context. The discoveries indicate that HCA treatment may represent a promising functional approach for acne therapy.
Collapse
Affiliation(s)
- Lizhi Gong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jiayao Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Miaomiao Guo
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Beijing, 100048, China
| | - Jian Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiujuan Xin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | | | - Xiaoming Ni
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yang Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Faliang An
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, No.4, Lane 218, Haiji Sixth Road, Shanghai, 201306, China.
| |
Collapse
|
3
|
Gurubaran IS. Mitochondrial damage and clearance in retinal pigment epithelial cells. Acta Ophthalmol 2024; 102 Suppl 282:3-53. [PMID: 38467968 DOI: 10.1111/aos.16661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
Age-related macular degeneration (AMD) is a devastating eye disease that causes permanent vision loss in the central part of the retina, known as the macula. Patients with such severe visual loss face a reduced quality of life and are at a 1.5 times greater risk of death compared to the general population. Currently, there is no cure for or effective treatment for dry AMD. There are several mechanisms thought to underlie the disease, for example, ageing-associated chronic oxidative stress, mitochondrial damage, harmful protein aggregation and inflammation. As a way of gaining a better understanding of the molecular mechanisms behind AMD and thus developing new therapies, we have created a peroxisome proliferator-activated receptor gamma coactivator 1-alpha and nuclear factor erythroid 2-related factor 2 (PGC1α/NFE2L2) double-knockout (dKO) mouse model that mimics many of the clinical features of dry AMD, including elevated levels of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and extracellular drusen-like structures in retinal pigment epithelial cells (RPE). In addition, a human RPE cell-based model was established to examine the impact of non-functional intracellular clearance systems on inflammasome activation. In this study, we found that there was a disturbance in the autolysosomal machinery responsible for clearing mitochondria in the RPE cells of one-year-old PGC1α/NFE2L2-deficient mice. The confocal immunohistochemical analysis revealed an increase in autophagosome marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) as well as multiple mitophagy markers such as PTE-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase (PARKIN), along with signs of damaged mitochondria. However, no increase in autolysosome formation was detected, nor was there a colocalization of the lysosomal marker LAMP2 or the mitochondrial marker, ATP synthase β. There was an upregulation of late autolysosomal fusion Ras-related protein (Rab7) in the perinuclear space of RPE cells, together with autofluorescent aggregates. Additionally, we observed an increase in the numbers of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in PGC1α/NFE2L2 dKO retinal specimens compared to wild-type animals. There was a trend towards increased complement component C5a and increased involvement of the serine protease enzyme, thrombin, in enhancing the terminal pathway producing C5a, independent of C3. The levels of primary acute phase C-reactive protein and receptor for advanced glycation end products were also increased in the PGC1α/NFE2L2 dKO retina. Furthermore, selective proteasome inhibition with epoxomicin promoted both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial-mediated oxidative stress, leading to the release of mitochondrial DNA to the cytosol, resulting in potassium efflux-dependent activation of the absent in melanoma 2 (AIM2) inflammasome and the subsequent secretion of interleukin-1β in ARPE-19 cells. In conclusion, the data suggest that there is at least a relative decrease in mitophagy, increases in the amounts of C5 and thrombin and decreased C3 levels in this dry AMD-like model. Moreover, selective proteasome inhibition evoked mitochondrial damage and AIM2 inflammasome activation in ARPE-19 cells.
Collapse
Affiliation(s)
- Iswariyaraja Sridevi Gurubaran
- Department of Medicine, Clinical Medicine Unit, University of Eastern Finland Institute of Clinical Medicine, Kuopio, Northern Savonia, Finland
| |
Collapse
|
4
|
Wei J, Leng L, Sui Y, Song S, Owusu FB, Li X, Cao Y, Li P, Wang H, Li R, Yang W, Gao X, Wang Q. Phenolic acids from Prunella vulgaris alleviate cardiac remodeling following myocardial infarction partially by suppressing NLRP3 activation. Phytother Res 2024; 38:384-399. [PMID: 37992723 DOI: 10.1002/ptr.8024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 11/24/2023]
Abstract
Acute myocardial infarction (MI) is one of the leading causes of mortality around the world. Prunella vulgaris (Xia-Ku-Cao in Chinese) is used in traditional Chinese medicine practice for the treatment of cardiovascular diseases. However, its active ingredients and mechanisms of action on cardiac remodeling following MI remain unknown. In this study, we investigated the cardioprotective effect of P. vulgaris on MI rat models. MI rats were treated with aqueous extract of P. vulgaris or phenolic acids from P. vulgaris, including caffeic acid, ursolic acid or rosmarinic acid, 1 day after surgery and continued for the following 28 days. Then the cardioprotective effect, such as cardiac function, inflammatory status, and fibrosis areas were evaluated. RNA-sequencing (RNA-seq) analysis, real-time polymerase chain reaction (PCR), western blotting, and ELISA were used to explore the underlying mechanism. In addition, ultra-high performance liquid chromatography/mass spectrometer analysis was used to identify the chemicals from P. vulgaris. THP-1NLRP3-GFP cells were used to confirm the inhibitory effect of P. vulgaris and phenolic acids on the expression and activity of NLRP3. We found that P. vulgaris significantly improved cardiac function and reduced infarct size. Meanwhile, P. vulgaris protected cardiomyocyte against apoptosis, evidenced by increasing the expression of anti-apoptosis protein Bcl-2 in the heart and decreasing lactate dehydrogenase (LDH) levels in serum. Results from RNA-seq revealed that the therapeutic effect of P. vulgaris might relate to NLRP3-mediated inflammatory response. Results from real-time PCR and western blotting confirmed that P. vulgaris suppressed NLRP3 expression in MI heart. We also found that P. vulgaris suppressed NLRP3 expression and the secretion of HMGB1, IL-1β, and IL-18 in THP-1NLRP3-GFP cells. Further studies indicated that the active components of P. vulgaris were three phenolic acids, those were caffeic acid, ursolic acid, and rosmarinic acid. These phenolic acids inhibited LPS-induced NLRP3 expression and activity in THP-1 cells, and improved cardiac function, suppressed inflammatory aggregation and fibrosis in MI rat models. In conclusion, our study demonstrated that P. vulgaris and phenolic acids from P. vulgaris, including caffeic acid, ursolic acid, and rosmarinic acid, could improve cardiac function and protect cardiomyocytes from ischemia injury during MI. The mechanism was partially related to inhibiting NLRP3 activation.
Collapse
Affiliation(s)
- Jinna Wei
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Lab of Pharmacological Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin, China
| | - Ling Leng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Lab of Pharmacological Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Yunchan Sui
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shaofei Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Felix Boahen Owusu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xue Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Yu Cao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peijie Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongda Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiqiao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Wenzhi Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Lab of Pharmacological Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Xiumei Gao
- Key Lab of Pharmacological Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin, China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Lab of Pharmacological Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- Endocrinology Department, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Wenger M, Grosse-Kathoefer S, Kraiem A, Pelamatti E, Nunes N, Pointner L, Aglas L. When the allergy alarm bells toll: The role of Toll-like receptors in allergic diseases and treatment. Front Mol Biosci 2023; 10:1204025. [PMID: 37426425 PMCID: PMC10325731 DOI: 10.3389/fmolb.2023.1204025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Toll-like receptors of the human immune system are specialized pathogen detectors able to link innate and adaptive immune responses. TLR ligands include among others bacteria-, mycoplasma- or virus-derived compounds such as lipids, lipo- and glycoproteins and nucleic acids. Not only are genetic variations in TLR-related genes associated with the pathogenesis of allergic diseases, including asthma and allergic rhinitis, their expression also differs between allergic and non-allergic individuals. Due to a complex interplay of genes, environmental factors, and allergen sources the interpretation of TLRs involved in immunoglobulin E-mediated diseases remains challenging. Therefore, it is imperative to dissect the role of TLRs in allergies. In this review, we discuss i) the expression of TLRs in organs and cell types involved in the allergic immune response, ii) their involvement in modulating allergy-associated or -protective immune responses, and iii) how differential activation of TLRs by environmental factors, such as microbial, viral or air pollutant exposure, results in allergy development. However, we focus on iv) allergen sources interacting with TLRs, and v) how targeting TLRs could be employed in novel therapeutic strategies. Understanding the contributions of TLRs to allergy development allow the identification of knowledge gaps, provide guidance for ongoing research efforts, and built the foundation for future exploitation of TLRs in vaccine design.
Collapse
|
6
|
Li M, Yu J, Guo G, Shen H. Interactions between Macrophages and Biofilm during Staphylococcus aureus-Associated Implant Infection: Difficulties and Solutions. J Innate Immun 2023; 15:499-515. [PMID: 37011602 PMCID: PMC10315156 DOI: 10.1159/000530385] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
Staphylococcus aureus (S. aureus) biofilm is the major cause of failure of implant infection treatment that results in heavy social and economic burden on individuals, families, and communities. Planktonic S. aureus attaches to medical implant surfaces where it proliferates and is wrapped by extracellular polymeric substances, forming a solid and complex biofilm. This provides a stable environment for bacterial growth, infection maintenance, and diffusion and protects the bacteria from antimicrobial agents and the immune system of the host. Macrophages are an important component of the innate immune system and resist pathogen invasion and infection through phagocytosis, antigen presentation, and cytokine secretion. The persistence, spread, or clearance of infection is determined by interplay between macrophages and S. aureus in the implant infection microenvironment. In this review, we discuss the interactions between S. aureus biofilm and macrophages, including the effects of biofilm-related bacteria on the macrophage immune response, roles of myeloid-derived suppressor cells during biofilm infection, regulation of immune cell metabolic patterns by the biofilm environment, and immune evasion strategies adopted by the biofilm against macrophages. Finally, we summarize the current methods that support macrophage-mediated removal of biofilms and emphasize the importance of considering multi-dimensions and factors related to implant-associated infection such as immunity, metabolism, the host, and the pathogen when developing new treatments.
Collapse
Affiliation(s)
- Mingzhang Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinlong Yu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Geyong Guo
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Shen
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Zhao Y, Li R. HMGB1 is a promising therapeutic target for asthma. Cytokine 2023; 165:156171. [PMID: 36924610 DOI: 10.1016/j.cyto.2023.156171] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
High-mobility group box protein 1 (HMGB1) is a non-histone deoxyribonucleic acid-binding nuclear protein. In physiological state it is involved in gene transctioripn regulation and cell replication, differentiation and maturation. HMGB1 is actively secreted into the extracellular space in the form of intracellular vesicles, upon stimulation of inflammation and infection, by monocytes, macrophages, dendritic cells (DCs), and other immune cells, and can also be passively released by necrotic or injured cells. After binding with the corresponding receptors, HMGB1 can activate the downstream substrate and trigger a series of biological effects. HMGB1 was mainly dependent on toll-like re ceptors (TLR) 2 and 4, and receptors for advanced glycation end products (RAGE) to trigger intracellular signal transduction, and mediate innate and adoptive immune responses. Besides these, studies have reported the participation of TLR3, TLR9, T-cell immunoglobulin mucin (TIM) 3, CD24, anti-N-methyl-D-aspartate receptor (NMDAR) in Th2 inflammatory response, eosinophilic airway inflammation, and airway hyperresponsiveness, mediated by HMGB1 in asthma. Both clinical and experimental studies suggested that HMGB1 was involved in the pathogenesis of asthma probably by regulating the downstream signaling pathways via corresponding receptors. This article reviews the role of HMGB1 in pathogenesis of asthma, and provides a new theoretical basis for the diagnosis and treatment of asthma.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Critical Care Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Center for Infectious Diseases; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, PR China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, PR China
| | - Ruiting Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China.
| |
Collapse
|
8
|
Role of Myeloid Cell-Specific TLR9 in Mitochondrial DNA-Induced Lung Inflammation in Mice. Int J Mol Sci 2023; 24:ijms24020939. [PMID: 36674451 PMCID: PMC9864555 DOI: 10.3390/ijms24020939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial dysfunction is common in various pathological conditions including obesity. Release of mitochondrial DNA (mtDNA) during mitochondrial dysfunction has been shown to play a role in driving the pro-inflammatory response in leukocytes including macrophages. However, the mechanisms by which mtDNA induces leukocyte inflammatory responses in vivo are still unclear. Moreover, how mtDNA is released in an obese setting has not been well understood. By using a mouse model of TLR9 deficiency in myeloid cells (e.g., macrophages), we found that TLR9 signaling in myeloid cells was critical to mtDNA-mediated pro-inflammatory responses such as neutrophil influx and chemokine production. mtDNA release by lung macrophages was enhanced by exposure to palmitic acid (PA), a major saturated fatty acid related to obesity. Moreover, TLR9 contributed to PA-mediated mtDNA release and inflammatory responses. Pathway analysis of RNA-sequencing data in TLR9-sufficient lung macrophages revealed the up-regulation of axon guidance molecule genes and down-regulation of metabolic pathway genes by PA. However, in TLR9-deficient lung macrophages, PA down-regulated axon guidance molecule genes, but up-regulated metabolic pathway genes. Our results suggest that mtDNA utilizes TLR9 signaling in leukocytes to promote lung inflammatory responses in hosts with increased PA. Moreover, TLR9 signaling is involved in the regulation of axon guidance and metabolic pathways in lung macrophages exposed to PA.
Collapse
|
9
|
Liao YH, Chan YH, Chen H, Yu AE, Sun LH, Yao WJ, Yu L. Stress while lacking of control induces ventral hippocampal autophagic flux hyperactivity and a depression-like behavior. Biomed J 2022; 45:896-906. [PMID: 34971825 PMCID: PMC9795357 DOI: 10.1016/j.bj.2021.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Stressed animals may perform depression-like behavior insomuch as stress-provoking blood-brain barrier (BBB) disruption, central immune activation, and autophagic flux changes. This study was undertaken to assess whether adult mice having (executive) vs. lacking (yoke) of behavioral control in otherwise equivalent stress magnitude condition, may display differences in their BBB integrity, ventral hippocampal (VH) interleukin-6 (IL-6) and autophagic flux level and VH-related depression-like behavior. To further understand the causative relation of enhanced autophagic flux and stress-primed depression-like behavior, we assessed the effects of bilateral intra-VH 3-methyladenine (3-MA), an autophagic flux inhibitor, infusion in stressed mice. METHODS Adult mice used had comparable genetic background and housing condition. Executive/yoke pairs of mice received a 10-day (1 h/day) footshock stressor regimen. Throughout the regimen, the ongoing footshock was terminated immediately contingent on the executive mouse', while irrelevant to the respective yoke mouse' voluntary behavior, or lasting for 7 s. Each dyad's cage-mate receiving no such regimen served as no stressor controls. RESULTS Yoke mice displayed disrupted BBB integrity (escalated Evans blue extravasation and decreased VH ZO-1, claudin-5 expression), increases in VH autophagic flux (increased LC3II/LC3I and decreased p62) and immobility duration in forced swimming test. Most of these indices remained unaltered in executive mice. Administration of 3-MA did not affect immobility duration in control mice, while prevented the increases in immobility duration in yoke mice. CONCLUSIONS (1) stress susceptibility may be determined by their differences in stress-coping results; (2) VH autophagic flux increase plays a permissive role in priming the stressed animals susceptible to exhibit depression-like behavior.
Collapse
Affiliation(s)
- Yi-Han Liao
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Ya-Hsuan Chan
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Hao Chen
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Anna E. Yu
- Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Li-Han Sun
- Institute of Basic Medical Sciences, and National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Wei-Jen Yao
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan,Corresponding author. Ditmanson Medical Foundation Chia-Yi Christian Hospital, 539, Zhongxiao Rd., East Dist., Chiayi 600566, Taiwan.
| | - Lung Yu
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, Taiwan,Institute of Basic Medical Sciences, and National Cheng Kung University College of Medicine, Tainan, Taiwan,Institute of Behavioral Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan,Corresponding author. Department of Physiology, National Cheng Kung University College of Medicine, Tainan, 70101 Taiwan.
| |
Collapse
|
10
|
Downregulation of miR-146a-5p Promotes Acute Pancreatitis through Activating the TLR9/NLRP3 Signaling Pathway by Targeting TRAF6 In Vitro Rat Model. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1747470. [PMID: 36276993 PMCID: PMC9586766 DOI: 10.1155/2022/1747470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
Acute pancreatitis (AP) is mainly caused by acinar cells releasing various inflammatory factors, causing inflammatory storms and leading to severe pancreatitis. Detection methods and treatment targets for pancreatitis are lacking, raising the urgency of identifying diagnostic markers and therapeutic targets for AP. MicroRNAs (miRNAs) have recently been identified as molecular markers for various biological processes such as tumors, immunity, and metabolism, and the involvement of miRNAs in inflammatory responses has been increasingly studied. To explore the role of miRNAs in AP is the primary objective of this study. By using qPCR on our cerulein-induced pancreatitis cell model, it is worth noting that the change of miR-146a-5p expression in inflammation-related miRNAs in AP was predominant. Next, ELISA, CCK8, and flow cytometry were used to inspect the impact of miR-146a-5p on pancreatitis. BiBiServ bioinformatics anticipated binding ability of miR-146a-5p and 3′-untranslated region (3′UTR) of TNF receptor-associated factor 6 (TRAF6), and the dual-luciferase assay verified the combination of the two. TRAF6 knockdown verified the effect of TRAF6 on the progression of pancreatitis. Finally, rescue experiments verified the capability of miR-146a-5p and TRAF6 interaction on the Toll-like receptor 9 (TLR9)/NOD-like receptor protein 3 (NLRP3) signaling pathway and cell function. The expression of miR-146a-5p decreased in cerulein-induced AR42J pancreatic acinar cells. Functional experiments verified that miR-146a-5p facilitated the proliferation of AR42J pancreatic acinar cells and inhibited their apoptosis. Bioinformatic predictions and dual-luciferase experiments verified the actual binding efficiency between miR-146a-5p and 3′UTR of TRAF6. Our study confirmed that knockdown of TRAF6 restrained the progression of pancreatitis, and knockdown of TRAF6 rescued pancreatitis caused by miR-146a-5p downregulation by the TLR9/NLRP3 signaling pathway. Therefore, downregulation of miR-146a-5p in the induced pancreatitis cell model promotes the progression of pancreatitis via the TLR9/TRAF6/NLRP3 signaling pathway. There is potential for miR-146a-5p to serve as a diagnostic marker and therapeutic nucleic acid drug for AP.
Collapse
|
11
|
Activation of NLRP3 inflammasome contributes to the inflammatory response to allergic rhinitis via macrophage pyroptosis. Int Immunopharmacol 2022; 110:109012. [DOI: 10.1016/j.intimp.2022.109012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022]
|
12
|
Tuazon JA, Kilburg-Basnyat B, Oldfield LM, Wiscovitch-Russo R, Dunigan-Russell K, Fedulov AV, Oestreich KJ, Gowdy KM. Emerging Insights into the Impact of Air Pollution on Immune-Mediated Asthma Pathogenesis. Curr Allergy Asthma Rep 2022; 22:77-92. [PMID: 35394608 PMCID: PMC9246904 DOI: 10.1007/s11882-022-01034-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Increases in ambient levels of air pollutants have been linked to lung inflammation and remodeling, processes that lead to the development and exacerbation of allergic asthma. Conventional research has focused on the role of CD4+ T helper 2 (TH2) cells in the pathogenesis of air pollution-induced asthma. However, much work in the past decade has uncovered an array of air pollution-induced non-TH2 immune mechanisms that contribute to allergic airway inflammation and disease. RECENT FINDINGS In this article, we review current research demonstrating the connection between common air pollutants and their downstream effects on non-TH2 immune responses emerging as key players in asthma, including PRRs, ILCs, and non-TH2 T cell subsets. We also discuss the proposed mechanisms by which air pollution increases immune-mediated asthma risk, including pre-existing genetic risk, epigenetic alterations in immune cells, and perturbation of the composition and function of the lung and gut microbiomes. Together, these studies reveal the multifaceted impacts of various air pollutants on innate and adaptive immune functions via genetic, epigenetic, and microbiome-based mechanisms that facilitate the induction and worsening of asthma.
Collapse
Affiliation(s)
- J A Tuazon
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, 43210, USA
| | - B Kilburg-Basnyat
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC, 27858, USA
| | - L M Oldfield
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA
- Department of Synthetic Genomics, Replay Holdings LLC, San Diego, 92121, USA
| | - R Wiscovitch-Russo
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA
| | - K Dunigan-Russell
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, 43210, USA
| | - A V Fedulov
- Division of Surgical Research, Department of Surgery, Alpert Medical School, Brown University, Rhode Island Hospital, Providence, RI, 02903, USA
| | - K J Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, The James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - K M Gowdy
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, 43210, USA.
| |
Collapse
|
13
|
Yu JI, Kim JH, Nam KE, Lee W, Rhee DK. Pneumococcal Δ pep27 Immunization Attenuates TLRs and NLRP3 Expression and Relieves Murine Ovalbumin-Induced Allergic Rhinitis. J Microbiol Biotechnol 2022; 32:709-717. [PMID: 35484967 PMCID: PMC9628895 DOI: 10.4014/jmb.2203.03006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/15/2022]
Abstract
Allergic rhinitis (AR), one of the most common inflammatory diseases, is caused by immunoglobulin E (IgE)-mediated reactions against inhaled allergens. AR involves mucosal inflammation driven by type 2 helper T (Th2) cells. Previously, it was shown that the Streptococcus pneumoniae pep27 mutant (Δpep27) could prevent and treat allergic asthma by reducing Th2 responses. However, the underlying mechanism of Δpep27 immunization in AR remains undetermined. Here, we investigated the role of Δpep27 immunization in the development and progression of AR and elucidated potential mechanisms. In an ovalbumin (OVA)-induced AR mice model, Δpep27 alleviated allergic symptoms (frequency of sneezing and rubbing) and reduced TLR2 and TLR4 expression, Th2 cytokines, and eosinophil infiltration in the nasal mucosa. Mechanistically, Δpep27 reduced the activation of the NLRP3 inflammasome in the nasal mucosa by down-regulating the Toll-like receptor signaling pathway. In conclusion, Δpep27 seems to alleviate TLR signaling and NLRP3 inflammasome activation to subsequently prevent AR.
Collapse
Affiliation(s)
- Jae Ik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji-Hoon Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki-El Nam
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea,DNBio Pharm. Inc., Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea,Corresponding author Phone: +82-31-290-7707 E-mail:
| |
Collapse
|
14
|
Duan X, Li J, Cui J, Dong Y, Xin X, Aisa HA. Anti-inflammatory activity of Anchusa italica Retz. in LPS-stimulated RAW264.7 cells mediated by the Nrf2/HO-1, MAPK and NF-κB signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114899. [PMID: 34883218 DOI: 10.1016/j.jep.2021.114899] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anchusa italica Retz. (Boraginaceae) is an important medicinal plant for the treatment of meningitis and pneumonia in traditional Uygur medicines. AIM OF THE STUDY To clarify the anti-inflammatory activity of A. italica, to reveal its molecular mechanisms, and to discover the anti-inflammatory active ingredients. MATERIALS AND METHODS Dried and crushed aerial parts of A. italica were extracted with 75% ethanol to yield crude extract (AICE) and AICE was fractionated to obtain petroleum ether extract (AIPE), dichloromethane extract (AIDE), ethyl acetate extract (AIEE), n-butanol extract (AIBE) and residues (AIW). By measuring the effects of AIPE, AIDE, AIEE, AIBE and AIW on cell viability and nitric oxide (NO) in Lipopolysaccharide (LPS) stimulated RAW264.7 cell lines, AIDE with the lowest cytotoxicity and NO contents was finally selected for further chemical and anti-inflammatory investigations. LC-MS/MS experiment was applied to analyze the chemical composition of AIDE. MTT and Griess methods were used to detect the cell viability and to quantify the nitrite levels in culture supernatants, respectively. Prostaglandin E2 (PGE2), interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) production was examined by ELISA assays. Real-time quantitative PCR was used to detect the expression of hemeoxygenase-1 (HO-1), Nrf2-mediated quinone oxidoreductase 1 (NQO-1), glutathione S-transferase A 1 (GSTA1) and glutathione S-transferase M 1 (GSTM1) mRNA. Western blot analysis was employed to examine the protein expression and enzymatic activities. RESULTS In preliminary anti-inflammatory screening, AIDE showed the lowest cytotoxicity and the most significant inhibitory effect on the production of NO (the inhibitory is 89%) induced by LPS among the tested five extracts. Thirty-three compounds including twenty-five triterpenoids were identified by LC-MS/MS analysis. AIDE could inhibit LPS-induced the over-expression of NO, IL-6, PGE2, IL-1β and TNF-α and down-regulate the levels of extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), P38-MAPK (P38) and nuclear transcription factors κB-P65 (P65) phosphorylation. It promoted the mRNA expression level of HO-1, NQO-1, GSTA1 and GSTM1 and the protein expression level of nuclear factor erythroid 2-related factor 2 (Nrf2) and HO-1. After the treatment of AIDE, P65 nuclear translocation was inhibited and Nrf2 nuclear translocation was increased. In addition, the protein expression of pyrolytic relevant protein nod-like receptor family pyrin domain-containing 3 (NLRP3) and IL-1β were decreased after the AIDE treatment. CONCLUSIONS Anchusa italica Retz. exerted its anti-inflammatory activity by inhibiting the mitogen-activated protein kinase (MAPK), nuclear transcription factors κB (NF-κB) and pyrolytic relevant proteins, down-regulating inflammatory factor levels, and activating the Nrf2/HO-1 pathway. Triterpenoids might be its major active anti-inflammatory ingredients.
Collapse
Affiliation(s)
- Xiaomei Duan
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Li
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingxue Cui
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuwei Dong
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuelei Xin
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Haji Akber Aisa
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
A new cell death program regulated by toll-like receptor 9 through p38 mitogen-activated protein kinase signaling pathway in a neonatal rat model with sepsis associated encephalopathy. Chin Med J (Engl) 2022; 135:1474-1485. [PMID: 35261352 PMCID: PMC9481440 DOI: 10.1097/cm9.0000000000002010] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: Sepsis, a serious condition with high mortality, usually causes sepsis associated encephalopathy (SAE) that involves neuronal cell death. However, the cell death programs involved and their underlying mechanisms are not clear. This study aimed to explore the regulatory mechanisms of different cell death programs in SAE. Methods: A neonatal rat model of SAE was established by cecal ligation and perforation. Survival rate and vital signs (mean arterial pressure and heart rate) were monitored, nerve reflexes were evaluated, and cortical pathological changes were observed by hematoxylin and eosin staining. The expression of pyroptosis, apoptosis, and necroptosis (PANoptosis)-related proteins, mitogen- activated protein kinase (MAPK), and its upstream regulator toll-like receptor 9 (TLR9) were detected. The expression of TLR9 in neurons was observed by immunofluorescence staining. The ultrastructure of neurons was observed by transmission electron microscope. Results: First, PANoptosis was found in cortical nerve cells of the SAE rats. Meanwhile, the subunits of MAPKs, p38 MAPK, Jun N- terminal kinase, and extracellular signal-regulated kinase (ERK) were activated. After pharmacologically inhibiting each of the subunits, only p38 MAPK was found to be associated with PANoptosis. Furthermore, blocking the p38 MAPK signaling pathway activated necroptosis but inhibited apoptosis and pyroptosis. When necroptosis was pharmacologically inhibited, apoptosis and pyroptosis were reactivated. Finally, we found that the expression of TLR9, a regulator of MAPKs, was significantly increased in this model. After down-regulation of TLR9, p38 MAPK, and ERK signaling pathways were inhibited, which led to the inhibition of PANoptosis. Further analysis found that down-regulation of TLR9 improved the survival rate and reduced the pathological changes in SAE rats. Conclusions: Our study showed that the programs comprising PANoptosis are activated simultaneously in SAE rats. TLR9 activated PANoptosis through the p38 MAPK signaling pathway. TLR9 may work as a potential target for SAE treatment.
Collapse
|
16
|
Oxidative Stress and Mitochondrial Damage in Dry Age-Related Macular Degeneration Like NFE2L2/PGC-1α -/- Mouse Model Evoke Complement Component C5a Independent of C3. BIOLOGY 2021; 10:biology10070622. [PMID: 34356477 PMCID: PMC8301195 DOI: 10.3390/biology10070622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022]
Abstract
Aging-associated chronic oxidative stress and inflammation are known to be involved in various diseases, e.g., age-related macular degeneration (AMD). Previously, we reported the presence of dry AMD-like signs, such as elevated oxidative stress, dysfunctional mitophagy and the accumulation of detrimental oxidized materials in the retinal pigment epithelial (RPE) cells of nuclear factor erythroid 2-related factor 2, and a peroxisome proliferator-activated receptor gamma coactivator 1-alpha (NFE2L2/PGC1α) double knockout (dKO) mouse model. Here, we investigated the dynamics of inflammatory markers in one-year-old NFE2L2/PGC1α dKO mice. Immunohistochemical analysis revealed an increase in levels of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in NFE2L2/PGC1α dKO retinal specimens as compared to wild type animals. Further analysis showed a trend towards an increase in complement component C5a independent of component C3, observed to be tightly regulated by complement factor H. Interestingly, we found that thrombin, a serine protease enzyme, was involved in enhancing the terminal pathway producing C5a, independent of C3. We also detected an increase in primary acute phase C-reactive protein and receptor for advanced glycation end products in NFE2L2/PGC1α dKO retina. Our main data show C5 and thrombin upregulation together with decreased C3 levels in this dry AMD-like model. In general, the retina strives to mount an orchestrated inflammatory response while attempting to maintain tissue homeostasis and resolve inflammation.
Collapse
|
17
|
Mitochondrial DNA-Mediated Inflammation in Acute Kidney Injury and Chronic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9985603. [PMID: 34306320 PMCID: PMC8263241 DOI: 10.1155/2021/9985603] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/19/2021] [Indexed: 12/25/2022]
Abstract
The integrity and function of mitochondria are essential for normal kidney physiology. Mitochondrial DNA (mtDNA) has been widely a concern in recent years because its abnormalities may result in disruption of aerobic respiration, cellular dysfunction, and even cell death. Particularly, aberrant mtDNA copy number (mtDNA-CN) is associated with the development of acute kidney injury and chronic kidney disease, and urinary mtDNA-CN shows the potential to be a promising indicator for clinical diagnosis and evaluation of kidney function. Several lines of evidence suggest that mtDNA may also trigger innate immunity, leading to kidney inflammation and fibrosis. In mechanism, mtDNA can be released into the cytoplasm under cell stress and recognized by multiple DNA-sensing mechanisms, including Toll-like receptor 9 (TLR9), cytosolic cGAS-stimulator of interferon genes (STING) signaling, and inflammasome activation, which then mediate downstream inflammatory cascades. In this review, we summarize the characteristics of these mtDNA-sensing pathways mediating inflammatory responses and their role in the pathogenesis of acute kidney injury, nondiabetic chronic kidney disease, and diabetic kidney disease. In addition, we highlight targeting of mtDNA-mediated inflammatory pathways as a novel therapeutic target for these kidney diseases.
Collapse
|
18
|
Tsang MSM, Hou T, Chan BCL, Wong CK. Immunological Roles of NLR in Allergic Diseases and Its Underlying Mechanisms. Int J Mol Sci 2021; 22:1507. [PMID: 33546184 PMCID: PMC7913164 DOI: 10.3390/ijms22041507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Our understanding on the immunological roles of pathogen recognition in innate immunity has vastly increased over the past 20 years. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLR) are cytosolic pattern recognition receptors (PRR) that are responsible for sensing microbial motifs and endogenous damage signals in mammalian cytosol for immune surveillance and host defense. The accumulating discoveries on these NLR sensors in allergic diseases suggest that the pathogenesis of allergic diseases may not be confined to the adaptive immune response. Therapy targeting NLR in murine models also shields light on its potential in the treatment of allergies in man. In this review, we herein summarize the recent understanding of the role of NLR sensors and their molecular mechanisms involved in allergic inflammation, including atopic dermatitis and allergic asthma.
Collapse
Affiliation(s)
- Miranda Sin-Man Tsang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China; (M.S.-M.T.); (T.H.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China;
| | - Tianheng Hou
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China; (M.S.-M.T.); (T.H.)
| | - Ben Chung-Lap Chan
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China;
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China; (M.S.-M.T.); (T.H.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China;
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Zhou J, Deng GM. The role of bacterial DNA containing CpG motifs in diseases. J Leukoc Biol 2021; 109:991-998. [PMID: 33527516 DOI: 10.1002/jlb.3mr1220-748rrrrr] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/04/2023] Open
Abstract
Bacterial DNA containing unmethylated CpG motifs can activate immune cells to release proinflammatory cytokines. Here, the role of bacterial DNA containing CpG motifs in diseases with a focus on arthritis is discussed. Our studies demonstrate that the intraarticular injection of bacterial DNA and oligodeoxynucleotides containing CpG motifs (CpG ODN) induced arthritis. The induction of arthritis involves the role of macrophages over other cells such as neutrophils, NK cells, and lymphocytes. TNF-α and TNFRI play an important role in the development of arthritis. NF-κB also plays a critical regulatory role in arthritis. Systemic anti-inflammatory treatment, along with antibiotic therapy, has beneficial effects on the course and the outcome of bacterial arthritis. Thus, future treatment strategies for bacterial arthritis should include attempts to minimizing bacterial growth while blocking the proinflammatory effects of the bacterial DNA. Significant therapeutic efficiency has also been shown by CpG ODN-mediated Th1 immune activation in mouse models of cancer, infectious disease, and allergy/asthma.
Collapse
Affiliation(s)
- Jiayuan Zhou
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Min Deng
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|