1
|
Leroux M, Bouazizi-Ben Messaoud H, Luquain-Costaz C, Jordheim LP, Le Faouder P, Gustin MP, Aoun K, Lawton P, Azzouz-Maache S, Delton I. Enriched PUFA environment of Leishmania infantum promastigotes promotes the accumulation of lipid mediators and favors parasite infectivity towards J774 murine macrophages. Lipids 2023; 58:81-92. [PMID: 36544247 DOI: 10.1002/lipd.12365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/28/2022] [Accepted: 11/12/2022] [Indexed: 12/24/2022]
Abstract
Leishmania parasites are the causative agents of visceral or cutaneous leishmaniasis in humans and of canine leishmaniosis. The macrophage is the predilected host cell of Leishmania in which the promastigote stage is transformed into amastigote. We previously showed changes in the fatty acid composition (FA) of lipids in two strains of Leishmania donovani upon differentiation of promastigote to amastigote, including increased proportions of arachidonic acid (AA) and to a less extent of docosahexaenoic acid (DHA). Here, we carried out supplementation with AA or DHA on two Leishmania infantum strains, a visceral (MON-1) and a cutaneous (MON-24), to evaluate the role of these FA in parasite/macrophage interactions. The proportions of AA or DHA in total lipids were significantly increased in promastigotes cultured in AA- or DHA-supplemented media compared to controls. The content of FA-derived oxygenated metabolites was enhanced in supplemented strains, generating especially epoxyeicosatrienoic acids (11,12- and 14,15-EET) and hydroxyeicosatetraenoic acids (5- and 8- HETE) from AA, and hydroxydocosahexaenoic acids (14- and 17-HDoHE) from DHA. For both MON-1 and MON-24, AA-supplemented promastigotes showed higher infectivity towards J774 macrophages as evidenced by higher intracellular amastigote numbers. Higher infectivity was observed after DHA supplementation for MON-24 but not MON-1 strain. ROS production by macrophages increased upon parasite infection, but only minor change was observed between control and supplemented parasites. We propose that under high AA or DHA environment that is associated with AA or DHA enrichment of promastigote lipids, FA derivatives can accumulate in the parasite, thereby modulating parasite infectivity towards host macrophages.
Collapse
Affiliation(s)
- Marine Leroux
- CNRS 5007, LAGEPP, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | - Céline Luquain-Costaz
- CNRS 5007, LAGEPP, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,INSA-Lyon, Department of Biosciences, Villeurbanne, France
| | - Lars P Jordheim
- Inserm 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, University of Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Pauline Le Faouder
- MetaToul-Lipidomic Core Facility, MetaboHUB, I2MC Inserm U1048, Toulouse, France
| | - Marie-Paule Gustin
- Inserm 1111, CNRS UMR5308, Centre International de Recherche en Infectiologie, ENS de Lyon, University of Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Karim Aoun
- Pasteur Institute of Tunis, LR 11-IPT-06 Laboratory of Medical Parasitology, Biotechnology and Biomolecules, University Tunis El Manar, Tunis, Tunisia
| | - Philippe Lawton
- CNRS 5007, LAGEPP, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Samira Azzouz-Maache
- CNRS 5007, LAGEPP, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Isabelle Delton
- CNRS 5007, LAGEPP, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,INSA-Lyon, Department of Biosciences, Villeurbanne, France
| |
Collapse
|
2
|
Zhang K. Balancing de novo synthesis and salvage of lipids by Leishmania amastigotes. Curr Opin Microbiol 2021; 63:98-103. [PMID: 34311265 PMCID: PMC8463422 DOI: 10.1016/j.mib.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022]
Abstract
Leishmania parasites replicate as flagellated, extracellular promastigotes in the sand fly vector and then differentiate into non-flagellated, intracellular amastigotes in the vertebrate host. Promastigotes rely on de novo synthesis to produce the majority of their lipids including glycerophospholipids, sterols and sphingolipids. In contrast, amastigotes acquire most of their lipids from the host although they retain some capacity for de novo synthesis. The switch from de novo synthesis to salvage reflects the transition of Leishmania from fast-replicating promastigotes to slow-growing, metabolically quiescent amastigotes. Future studies will reveal the uptake and remodeling of host lipids by amastigotes at the cellular and molecular levels. Blocking the lipid transfer from host to parasites may present a novel strategy to control Leishmania growth.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
3
|
Parab AR, McCall LI. Tryp-ing Up Metabolism: Role of Metabolic Adaptations in Kinetoplastid Disease Pathogenesis. Infect Immun 2021; 89:e00644-20. [PMID: 33526564 PMCID: PMC8090971 DOI: 10.1128/iai.00644-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Today, more than a billion people-one-sixth of the world's population-are suffering from neglected tropical diseases. Human African trypanosomiasis, Chagas disease, and leishmaniasis are neglected tropical diseases caused by protozoan parasites belonging to the genera Trypanosoma and Leishmania About half a million people living in tropical and subtropical regions of the world are at risk of contracting one of these three infections. Kinetoplastids have complex life cycles with different morphologies and unique physiological requirements at each life cycle stage. This review covers the latest findings on metabolic pathways impacting disease pathogenesis of kinetoplastids within the mammalian host. Nutrient availability is a key factor shaping in vivo parasite metabolism; thus, kinetoplastids display significant metabolic flexibility. Proteomic and transcriptomic profiles show that intracellular trypanosomatids are able to switch to an energy-efficient metabolism within the mammalian host system. Host metabolic changes can also favor parasite persistence, and contribute to symptom development, in a location-specific fashion. Ultimately, targeted and untargeted metabolomics studies have been a valuable approach to elucidate the specific biochemical pathways affected by infection within the host, leading to translational drug development and diagnostic insights.
Collapse
Affiliation(s)
- Adwaita R Parab
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Laura-Isobel McCall
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|