1
|
Said KB, Alsolami A, Alshammari KF, Moussa S, Alshammeri F, Alghozwi MH, Alshammari SF, Alharbi NF, Khalifa AM, Mahmoud MR, Alshammari K, Ghoniem ME. The Rapidly Changing Patterns in Bacterial Co-Infections Reveal Peaks in Limited Gram Negatives during COVID-19 and Their Sharp Drop Post-Vaccination, Implying Potential Evolution of Co-Protection during Vaccine-Virus-Bacterial Interplay. Viruses 2024; 16:227. [PMID: 38400003 PMCID: PMC10893479 DOI: 10.3390/v16020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/01/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
SARS-CoV-2 has caused the most devastating pandemic of all time in recent human history. However, there is a serious paucity of high-quality data on aggravating factors and mechanisms of co-infection. This study aimed to identify the trending patterns of bacterial co-infections and types and associated outcomes in three phases of the pandemic. Using quality hospital data, we have investigated the SARS-CoV-2 fatality rates, profiles, and types of bacterial co-infections before, during, and after COVID-19 vaccination. Out of 389 isolates used in different aspects, 298 were examined before and during the pandemic (n = 149 before, n = 149 during). In this group, death rates were 32% during compared to only 7.4% before the pandemic with significant association (p-value = 0.000000075). However, the death rate was 34% in co-infected (n = 170) compared to non-co-infected patients (n = 128), indicating a highly significant value (p-value = 0.00000000000088). However, analysis of patients without other serious respiratory problems (n = 28) indicated that among the remaining 270 patients, death occurred in 30% of co-infected patients (n = 150) and only 0.8% of non-co-infected (n = 120) with a high significant p-value = 0.00000000076. The trending patterns of co-infections before, during, and after vaccination showed a significant decline in Staphylococcus aureus with concomitant peaks in Gram negatives n = 149 before/n = 149 during, including Klebsiella pneumonian = 11/49 before/during, E. coli n = 10/24, A. baumannii n = 8/25, Ps. aeruginosa n = 5/16, and S. aureus 13/1. Nevertheless, in the post-vaccination phase (n = 91), gender-specific co-infections were examined for potential differences in susceptibility. Methicillin-resistant S. aureus dominated both genders followed by E. coli in males and females, with the latter gender showing higher rates of isolations in both species. Klebsiella pneumoniae declined to third place in male patients. The drastic decline in K. pneumoniae and Gram negatives post-vaccination strongly implied a potential co-protection in vaccines. Future analysis would gain more insights into molecular mimicry.
Collapse
Affiliation(s)
- Kamaleldin B. Said
- Department of Pathology and Microbiology, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia
- Genomics, Bioinformatics and Systems Biology, Carleton University, 1125 Colonel-By Drive, Ottawa, ON K1S 5B6, Canada
| | - Ahmed Alsolami
- Department of Internal Medicine, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Khalid F. Alshammari
- Department of Internal Medicine, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Safia Moussa
- Department of Microbiology, King Salman Specialist Hospital, Ha’il 55476, Saudi Arabia (K.A.)
| | - Fawaz Alshammeri
- Department of Dermatology, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Mohammed H. Alghozwi
- Department of Pathology and Microbiology, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Sulaiman F. Alshammari
- Department of Pathology and Microbiology, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Nawaf F. Alharbi
- Department of Pathology and Microbiology, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Amany M. Khalifa
- Department of Pathology and Microbiology, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Madiha R. Mahmoud
- Department of Pharmacology, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Kawthar Alshammari
- Department of Microbiology, King Salman Specialist Hospital, Ha’il 55476, Saudi Arabia (K.A.)
| | - Mohamed E. Ghoniem
- Department of Internal Medicine, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia
- Department of Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
2
|
Ghosh R, Dey R, Sawoo R, Haque W, Bishayi B. Endogenous neutralization of TGF-β and IL-6 ameliorates septic arthritis by altering RANKL/OPG interaction in lymphocytes. Mol Immunol 2022; 152:183-206. [DOI: 10.1016/j.molimm.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2022]
|
3
|
Ha R, Keynan Y, Rueda ZV. Increased susceptibility to pneumonia due to tumour necrosis factor inhibition and prospective immune system rescue via immunotherapy. Front Cell Infect Microbiol 2022; 12:980868. [PMID: 36159650 PMCID: PMC9489861 DOI: 10.3389/fcimb.2022.980868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Immunomodulators such as tumour necrosis factor (TNF) inhibitors are used to treat autoimmune conditions by reducing the magnitude of the innate immune response. Dampened innate responses pose an increased risk of new infections by opportunistic pathogens and reactivation of pre-existing latent infections. The alteration in immune response predisposes to increased severity of infections. TNF inhibitors are used to treat autoimmune conditions such as rheumatoid arthritis, juvenile arthritis, psoriatic arthritis, transplant recipients, and inflammatory bowel disease. The efficacies of immunomodulators are shown to be varied, even among those that target the same pathways. Monoclonal antibody-based TNF inhibitors have been shown to induce stronger immunosuppression when compared to their receptor-based counterparts. The variability in activity also translates to differences in risk for infection, moreover, parallel, or sequential use of immunosuppressive drugs and corticosteroids makes it difficult to accurately attribute the risk of infection to a single immunomodulatory drug. Among recipients of TNF inhibitors, Mycobacterium tuberculosis has been shown to be responsible for 12.5-59% of all infections; Pneumocystis jirovecii has been responsible for 20% of all non-viral infections; and Legionella pneumophila infections occur at 13-21 times the rate of the general population. This review will outline the mechanism of immune modulation caused by TNF inhibitors and how they predispose to infection with a focus on Mycobacterium tuberculosis, Legionella pneumophila, and Pneumocystis jirovecii. This review will then explore and evaluate how other immunomodulators and host-directed treatments influence these infections and the severity of the resulting infection to mitigate or treat TNF inhibitor-associated infections alongside antibiotics.
Collapse
Affiliation(s)
- Ryan Ha
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Yoav Keynan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Department of Community-Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin, Colombia
| | - Zulma Vanessa Rueda
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin, Colombia
| |
Collapse
|
4
|
Zhang Y, Yue T, Gu W, Liu A, Cheng M, Zheng H, Bao D, Li F, Piao JG. pH-responsive hierarchical H2S-releasing nano-disinfectant with deep-penetrating and anti-inflammatory properties for synergistically enhanced eradication of bacterial biofilms and wound infection. J Nanobiotechnology 2022; 20:55. [PMID: 35093073 PMCID: PMC8800305 DOI: 10.1186/s12951-022-01262-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/13/2022] [Indexed: 02/08/2023] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) biofilm-associated bacterial infection is the primary cause of nosocomial infection and has long been an ongoing threat to public health. MRSA biofilms are often resistant to multiple antimicrobial strategies, mainly due to the existence of a compact protective barrier; thus, protecting themselves from the innate immune system and antibiotic treatment via limited drug penetration. Results A hierarchically structured hydrogen sulfide (H2S)-releasing nano-disinfectant was presented, which was composed of a zinc sulfide (ZnS) core as a H2S generator and indocyanine green (ICG) as a photosensitizer. This nano-disinfectant (ICG-ZnS NPs) sensitively responded to the biofilm microenvironment and demonstrated efficient eradication of MRSA biofilms via a synergistic effect of Zn2+, gas molecule-mediated therapy, and hyperthermia. Physically boosted by released H2S and a near-infrared spectroscopy-induced hyperthermia effect, ICG-ZnS NPs destroyed the compactness of MRSA biofilms showing remarkable deep-penetration capability. Moreover, on-site generation of H2S gas adequately ameliorated excessive inflammation, suppressed secretion of inflammatory cytokines, and expedited angiogenesis, therefore markedly accelerating the in vivo healing process of cutaneous wounds infected with MRSA biofilms. Conclusion ICG-ZnS NPs combined with NIR laser irradiation exhibited significant anti-biofilm activity in MRSA biofilms, can accelerate the healing process through deep-penetration and anti-inflammatory effectuation. The proposed strategy has great potential as an alternative to antibiotic treatment when combating multidrug-resistant bacterial biofilms. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01262-7.
Collapse
|