1
|
Lin J, Li Y, Lin X, Che C. Decision-level data fusion based on laser-induced breakdown and Raman spectroscopy: A study of bimodal spectroscopy for diagnosis of lung cancer at different stages. Talanta 2024; 275:126194. [PMID: 38703481 DOI: 10.1016/j.talanta.2024.126194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Lung cancer staging is crucial for personalized treatment and improved prognosis. We propose a novel bimodal diagnostic approach that integrates LIBS and Raman technologies into a single platform, enabling comprehensive tissue elemental and molecular analysis. This strategy identifies critical staging elements and molecular marker signatures of lung tumors. LIBS detects concentration patterns of elemental lines including Mg (I), Mg (II), Ca (I), Ca (II), Fe (I), and Cu (II). Concurrently, Raman spectroscopy identifies changes in molecular content, such as phenylalanine (1033 cm-1), tyrosine (1174 cm-1), tryptophan (1207 cm-1), amide III (1267 cm-1), and proteins (1126 cm-1 and 1447 cm-1), among others. The bimodal information is fused using a decision-level Bayesian fusion model, significantly enhancing the performance of the convolutional neural network architecture in classification algorithms, with an accuracy of 99.17 %, sensitivity of 99.17 %, and specificity of 99.88 %. This study provides a powerful new tool for the accurate staging and diagnosis of lung tumors.
Collapse
Affiliation(s)
- Jingjun Lin
- Changchun University of Technology, Changchun, Jilin, 130012, China
| | - Yao Li
- Changchun University of Technology, Changchun, Jilin, 130012, China
| | - Xiaomei Lin
- Changchun University of Technology, Changchun, Jilin, 130012, China.
| | | |
Collapse
|
2
|
Zhang H, Pan Y, Li Y, Tang C, Xu Z, Li C, Xu F, Mai Y. Hybrid Polymer Vesicles: Controllable Preparation and Potential Applications. Biomacromolecules 2023; 24:3929-3953. [PMID: 37579246 DOI: 10.1021/acs.biomac.3c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Hybrid polymer vesicles contain functional nanoparticles (NPs) in their walls, interfaces, coronae, or cavities. NPs render the hybrid vesicles with specific physical properties, while polymers endow them with structural stability and may significantly reduce the high toxicity of NPs. Therefore, hybrid vesicles integrate fascinating multifunctions from both NPs and polymeric vesicles, which have gained tremendous attention because of their diverse promising applications. Various types of delicate hybrid polymeric vesicles with size control and tunable localization of NPs in different parts of vesicles have been constructed via in situ and ex situ strategies, respectively. Their potential applications have been widely explored, as well. This review presents the progress of block copolymer (BCP) vesicle systems containing different types of NPs including metal NPs, magnetic NPs, and semiconducting quantum dots (QDs), etc. The strategies for controlling the location of NPs within hybrid vesicles are discussed. Typical potential applications of the elegant hybrid vesicles are also highlighted.
Collapse
Affiliation(s)
- Han Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yi Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yinghua Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chen Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhi Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
3
|
Zhang L, Zhou Y, Wu B, Zhang S, Zhu K, Liu CH, Yu X, Alfano RR. A Handheld Visible Resonance Raman Analyzer Used in Intraoperative Detection of Human Glioma. Cancers (Basel) 2023; 15:cancers15061752. [PMID: 36980638 PMCID: PMC10046110 DOI: 10.3390/cancers15061752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
There is still a lack of reliable intraoperative tools for glioma diagnosis and to guide the maximal safe resection of glioma. We report continuing work on the optical biopsy method to detect glioma grades and assess glioma boundaries intraoperatively using the VRR-LRRTM Raman analyzer, which is based on the visible resonance Raman spectroscopy (VRR) technique. A total of 2220 VRR spectra were collected during surgeries from 63 unprocessed fresh glioma tissues using the VRR-LRRTM Raman analyzer. After the VRR spectral analysis, we found differences in the native molecules in the fingerprint region and in the high-wavenumber region, and differences between normal (control) and different grades of glioma tissues. A principal component analysis–support vector machine (PCA-SVM) machine learning method was used to distinguish glioma tissues from normal tissues and different glioma grades. The accuracy in identifying glioma from normal tissue was over 80%, compared with the gold standard of histopathology reports of glioma. The VRR-LRRTM Raman analyzer may be a new label-free, real-time optical molecular pathology tool aiding in the intraoperative detection of glioma and identification of tumor boundaries, thus helping to guide maximal safe glioma removal and adjacent healthy tissue preservation.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Neurosurgery, Medical School of Nankai University, Tianjin 300071, China
- Department of Neurosurgery, PLA General Hospital, Beijing 100853, China
| | - Yan Zhou
- Department of Neurosurgery, Air Force Medical Center, Beijing 100142, China
- Correspondence: (Y.Z.); (X.Y.)
| | - Binlin Wu
- Physics Department and CSCU Center for Nanotechnology, Southern Connecticut State University, New Haven, CT 06515, USA
| | | | - Ke Zhu
- Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Cheng-Hui Liu
- Institute for Ultrafast Spectroscopy and Lasers, Department of Physics, The City College of the City University of New York, New York, NY 10031, USA
| | - Xinguang Yu
- Department of Neurosurgery, Medical School of Nankai University, Tianjin 300071, China
- Department of Neurosurgery, PLA General Hospital, Beijing 100853, China
- Correspondence: (Y.Z.); (X.Y.)
| | - Robert R. Alfano
- Institute for Ultrafast Spectroscopy and Lasers, Department of Physics, The City College of the City University of New York, New York, NY 10031, USA
| |
Collapse
|
4
|
He W, Cai R, Xi S, Yin Z, Du Z, Luan Z, Sun C, Zhang X. Study of Microbial Sulfur Metabolism in a Near Real-Time Pathway through Confocal Raman Quantitative 3D Imaging. Microbiol Spectr 2023; 11:e0367822. [PMID: 36809047 PMCID: PMC10101092 DOI: 10.1128/spectrum.03678-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
As microbial sulfur metabolism significantly contributes to the formation and cycling of deep-sea sulfur, studying their sulfur metabolism is important for understanding the deep-sea sulfur cycle. However, conventional methods are limited in near real-time studies of bacterial metabolism. Recently, Raman spectroscopy has been widely used in studies on biological metabolism due to its low-cost, rapid, label-free, and nondestructive features, providing us with new approaches to solve the above limitation. Here, we used the confocal Raman quantitative 3D imaging method to nondestructively detect the growth and metabolism of Erythrobacter flavus 21-3 in the long term and near real time, which possessed a pathway mediating the formation of elemental sulfur in the deep sea, but the dynamic process was unknown. In this study, its dynamic sulfur metabolism was visualized and quantitatively assessed in near real time using 3D imaging and related calculations. Based on 3D imaging, the growth and metabolism of microbial colonies growing under both hyperoxic and hypoxic conditions were quantified by volume calculation and ratio analysis. Additionally, unprecedented details of growth and metabolism were uncovered by this method. Due to this successful application, this method is potentially significant for analyzing the in situ biological processes of microorganisms in the future. IMPORTANCE Microorganisms contribute significantly to the formation of deep-sea elemental sulfur, so studies on their growth and dynamic sulfur metabolism are important to understand the deep-sea sulfur cycle. However, near real-time in situ nondestructive metabolic studies of microorganisms remain a great challenge due to the limitations of existing methods. We thus used an imaging-related workflow by confocal Raman microscopy. More detailed descriptions of the sulfur metabolism of E. flavus 21-3 were disclosed, which perfectly complemented previous research results. Therefore, this method is potentially significant for analyzing the in-situ biological processes of microorganisms in the future. To our knowledge, this is the first label-free and nondestructive in situ technique that can provide temporally persistent 3D visualization and quantitative information about bacteria.
Collapse
Affiliation(s)
- Wanying He
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Geology, Pilot Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ruining Cai
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shichuan Xi
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Geology, Pilot Laboratory for Marine Science and Technology, Qingdao, China
| | - Ziyu Yin
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Geology, Pilot Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zengfeng Du
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Geology, Pilot Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhendong Luan
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Geology, Pilot Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chaomin Sun
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xin Zhang
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Geology, Pilot Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Raman spectroscopy: current applications in breast cancer diagnosis, challenges and future prospects. Br J Cancer 2022; 126:1125-1139. [PMID: 34893761 PMCID: PMC8661339 DOI: 10.1038/s41416-021-01659-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/11/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022] Open
Abstract
Despite significant improvements in the way breast cancer is managed and treated, it continues to persist as a leading cause of death worldwide. If detected and diagnosed early, when tumours are small and localised, there is a considerably higher chance of survival. However, current methods for detection and diagnosis lack the required sensitivity and specificity for identifying breast cancer at the asymptomatic or very early stages. Thus, there is a need to develop more rapid and reliable methods, capable of detecting disease earlier, for improved disease management and patient outcome. Raman spectroscopy is a non-destructive analytical technique that can rapidly provide highly specific information on the biochemical composition and molecular structure of samples. In cancer, it has the capacity to probe very early biochemical changes that accompany malignant transformation, even prior to the onset of morphological changes, to produce a fingerprint of disease. This review explores the application of Raman spectroscopy in breast cancer, including discussion on its capabilities in analysing both ex-vivo tissue and liquid biopsy samples, and its potential in vivo applications. The review also addresses current challenges and potential future uses of this technology in cancer research and translational clinical application.
Collapse
|
6
|
Sun J, Song Y, Zhao S, Yang M, Yuan H, Wang Y, Liu X, Che F. Application of surface-enhanced Raman spectroscopy as a diagnostic system for the highly sensitive monitoring of the evolution of subarachnoid hemorrhage-induced complications. NEW J CHEM 2022. [DOI: 10.1039/d1nj06187a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A novel SERS biosensor to detect the development of SAH and its induced complications from cerebrospinal fluid is reported.
Collapse
Affiliation(s)
- Jingyi Sun
- Linyi People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Linyi, Shandong, 276003, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, China
- Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yanan Song
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
- Qingdao Medical College of Qingdao University, Qingdao, Shandong, 266021, China
| | - Shijun Zhao
- Department of Neurology, Baotou Central Hospital, Baotou 014040, China
| | - Mingfeng Yang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Hui Yuan
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Ying Wang
- Linyi People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Linyi, Shandong, 276003, China
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Xinyu Liu
- Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Fengyuan Che
- Linyi People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Linyi, Shandong, 276003, China
| |
Collapse
|
7
|
Pielesz A, Ślusarczyk C, Sieradzka M, Kukulski T, Biniaś D, Fryczkowski R, Bobiński R, Waksmańska W. Graphene Oxide as a Collagen Modifier of Amniotic Membrane and Burnt Skin. Nanotechnol Sci Appl 2021; 14:221-235. [PMID: 34908830 PMCID: PMC8665888 DOI: 10.2147/nsa.s343540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction The aim of this interdisciplinary study was to answer the question of whether active antioxidants as graphene oxide (GO), sodium ascorbate, and L-ascorbic acid modify at a molecular and supramolecular level the tissue of pathological amnion and the necrotic eschar degraded in thermal burn. We propose new solutions of modifiers based on GO that will become innovative ingredients to be used in transplants (amnion) and enhance regeneration of epidermis degraded in thermal burn. Methods A Nicolet 6700 spectrophotometer with Omnic software and the EasiDiff diffusion accessory were used in FTIR spectroscopic analysis. A Nicolet Magna-IR 860 spectrometer with an FT Raman accessory was used to record the Raman spectra of the samples. The surface of the samples was examined using a Phenom ProX scanning electron microscope with an energy-dispersive X-ray spectroscopy detector to diagnose and illustrate morphological effects on skin and amnion samples. SAXS measurements were carried out with a compact Kratky camera equipped with the SWAXS optical system. Results Characterisation of amide I-III regions, important for molecular structure, on both FTIR and FTR spectra revealed distinct shifts, testifying to organization of protein structure after GO modification. A wide lipid band associated with ester-group vibrations in phospholipids of cell membranes and vibrations of the carbonyl group of GO in the 1,790-1,720 cm-1 band were observed in the spectra of thermally degraded and GO-modified epidermis and pathological amnion. SAXS studies revealed that GO caused a significant change in the structure of the burnt skin, but its influence on the structure of the amnion was weak. Conclusion Modification of burn-damaged epidermis and pathological amnion by means of GO results in stabilization and regeneration of tissue at the level of molecular (FTIR, FTR) and supramolecular (SAXS) interactions.
Collapse
Affiliation(s)
- Anna Pielesz
- University of Bielsko-Biała, Faculty of Materials, Civil and Environmental Engineering, Bielsko-Biała, 43-300, Poland
| | - Czesław Ślusarczyk
- University of Bielsko-Biała, Faculty of Materials, Civil and Environmental Engineering, Bielsko-Biała, 43-300, Poland
| | - Marta Sieradzka
- University of Bielsko-Biała, Faculty of Materials, Civil and Environmental Engineering, Bielsko-Biała, 43-300, Poland
| | - Tomasz Kukulski
- University of Bielsko-Biała, Faculty of Materials, Civil and Environmental Engineering, Bielsko-Biała, 43-300, Poland
| | - Dorota Biniaś
- University of Bielsko-Biała, Faculty of Materials, Civil and Environmental Engineering, Bielsko-Biała, 43-300, Poland
| | - Ryszard Fryczkowski
- University of Bielsko-Biała, Faculty of Materials, Civil and Environmental Engineering, Bielsko-Biała, 43-300, Poland
| | - Rafał Bobiński
- University of Bielsko-Biała, Faculty of Health Sciences, Bielsko-Biała, 43-300, Poland
| | - Wioletta Waksmańska
- University of Bielsko-Biała, Faculty of Health Sciences, Bielsko-Biała, 43-300, Poland
| |
Collapse
|
8
|
Sharma M, Jeng MJ, Young CK, Huang SF, Chang LB. Developing an Algorithm for Discriminating Oral Cancerous and Normal Tissues Using Raman Spectroscopy. J Pers Med 2021; 11:1165. [PMID: 34834517 PMCID: PMC8623962 DOI: 10.3390/jpm11111165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to investigate the clinical potential of Raman spectroscopy (RS) in detecting oral squamous cell carcinoma (OSCC) in tumor and healthy tissues in surgical resection specimens during surgery. Raman experiments were performed on cryopreserved specimens from patients with OSCC. Univariate and multivariate analysis was performed based on the fingerprint region (700-1800 cm-1) of the Raman spectra. One hundred thirty-one ex-vivo Raman experiments were performed on 131 surgical resection specimens obtained from 67 patients. The principal component analysis (PCA) and partial least square (PLS) methods with linear discriminant analysis (LDA) were applied on an independent validation dataset. Both models were able to differentiate between the tissue types, but PLS-LDA showed 100% accuracy, sensitivity, and specificity. In this study, Raman measurements of fresh resection tissue specimens demonstrated that OSCC had significantly higher nucleic acid, protein, and several amino acid contents than adjacent healthy tissues. The specific spectral information obtained in this study can be used to develop an in vivo Raman spectroscopic method for the tumor-free resection boundary during surgery.
Collapse
Affiliation(s)
- Mukta Sharma
- Department of Electronic Engineering, Chang Gung University, Taoyuan 333, Taiwan; (M.S.); (L.-B.C.)
| | - Ming-Jer Jeng
- Department of Electronic Engineering, Chang Gung University, Taoyuan 333, Taiwan; (M.S.); (L.-B.C.)
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou 244, Taiwan;
| | - Chi-Kuang Young
- Department of Otolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan;
| | - Shiang-Fu Huang
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou 244, Taiwan;
- Department of Public Health, Chang Gung University, Taoyuan 333, Taiwan
| | - Liann-Be Chang
- Department of Electronic Engineering, Chang Gung University, Taoyuan 333, Taiwan; (M.S.); (L.-B.C.)
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou 244, Taiwan;
- Green Technology Research Center, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
9
|
Grieve S, Puvvada N, Phinyomark A, Russell K, Murugesan A, Zed E, Hassan A, Legare JF, Kienesberger PC, Pulinilkunnil T, Reiman T, Scheme E, Brunt KR. Nanoparticle surface-enhanced Raman spectroscopy as a noninvasive, label-free tool to monitor hematological malignancy. Nanomedicine (Lond) 2021; 16:2175-2188. [PMID: 34547916 DOI: 10.2217/nnm-2021-0076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aim: Monitoring minimal residual disease remains a challenge to the effective medical management of hematological malignancies; yet surface-enhanced Raman spectroscopy (SERS) has emerged as a potential clinical tool to do so. Materials & methods: We developed a cell-free, label-free SERS approach using gold nanoparticles (nanoSERS) to classify hematological malignancies referenced against two control cohorts: healthy and noncancer cardiovascular disease. A predictive model was built using machine-learning algorithms to incorporate disease burden scores for patients under standard treatment upon. Results: Linear- and quadratic-discriminant analysis distinguished three cohorts with 69.8 and 71.4% accuracies, respectively. A predictive nanoSERS model correlated (MSE = 1.6) with established clinical parameters. Conclusion: This study offers a proof-of-concept for the noninvasive monitoring of disease progression, highlighting the potential to incorporate nanoSERS into translational medicine.
Collapse
Affiliation(s)
- Stacy Grieve
- Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada.,IMPART investigator team, Canada
| | - Nagaprasad Puvvada
- Department of Pharmacology, Dalhousie University, Saint John, New Brunswick, Canada.,Department of Chemistry, Indrashil University, Gujarat, India
| | - Angkoon Phinyomark
- IMPART investigator team, Canada.,Institute of Biomedical Engineering, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Kevin Russell
- Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| | - Alli Murugesan
- Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada.,Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| | - Elizabeth Zed
- Department of Oncology, Saint John Regional Hospital, Saint John, New Brunswick, Canada
| | - Ansar Hassan
- IMPART investigator team, Canada.,Department of Cardiac Surgery, Saint John Regional Hospital, Saint John, New Brunswick, Canada
| | - Jean-Francois Legare
- IMPART investigator team, Canada.,Department of Cardiac Surgery, Saint John Regional Hospital, Saint John, New Brunswick, Canada
| | - Petra C Kienesberger
- IMPART investigator team, Canada.,Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada.,Department of Biochemistry & Molecular Biology, Dalhousie University, Saint John, New Brunswick, Canada
| | - Thomas Pulinilkunnil
- IMPART investigator team, Canada.,Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada.,Department of Biochemistry & Molecular Biology, Dalhousie University, Saint John, New Brunswick, Canada
| | - Tony Reiman
- Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada.,IMPART investigator team, Canada.,Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada.,Department of Oncology, Saint John Regional Hospital, Saint John, New Brunswick, Canada
| | - Erik Scheme
- IMPART investigator team, Canada.,Institute of Biomedical Engineering, University of New Brunswick, Fredericton, New Brunswick, Canada.,Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| | - Keith R Brunt
- IMPART investigator team, Canada.,Department of Pharmacology, Dalhousie University, Saint John, New Brunswick, Canada.,Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| |
Collapse
|
10
|
Xu J, Yu T, Zois CE, Cheng JX, Tang Y, Harris AL, Huang WE. Unveiling Cancer Metabolism through Spontaneous and Coherent Raman Spectroscopy and Stable Isotope Probing. Cancers (Basel) 2021; 13:1718. [PMID: 33916413 PMCID: PMC8038603 DOI: 10.3390/cancers13071718] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 11/25/2022] Open
Abstract
Metabolic reprogramming is a common hallmark in cancer. The high complexity and heterogeneity in cancer render it challenging for scientists to study cancer metabolism. Despite the recent advances in single-cell metabolomics based on mass spectrometry, the analysis of metabolites is still a destructive process, thus limiting in vivo investigations. Being label-free and nonperturbative, Raman spectroscopy offers intrinsic information for elucidating active biochemical processes at subcellular level. This review summarizes recent applications of Raman-based techniques, including spontaneous Raman spectroscopy and imaging, coherent Raman imaging, and Raman-stable isotope probing, in contribution to the molecular understanding of the complex biological processes in the disease. In addition, this review discusses possible future directions of Raman-based technologies in cancer research.
Collapse
Affiliation(s)
- Jiabao Xu
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK;
| | - Tong Yu
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK;
| | - Christos E. Zois
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Oxford OX3 9DS, UK;
- Department of Radiotherapy and Oncology, School of Health, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Boston University, Boston, MS 02215, USA;
| | - Yuguo Tang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
| | - Adrian L. Harris
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Oxford OX3 9DS, UK;
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK;
| |
Collapse
|
11
|
Song D, Chen T, Wang S, Chen S, Li H, Yu F, Zhang J, Zhang Z. Study on the biochemical mechanisms of the micro-wave ablation treatment of lung cancer by ex vivo confocal Raman microspectral imaging. Analyst 2020; 145:626-635. [PMID: 31782420 DOI: 10.1039/c9an01524h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As a highly invasive and the most prevalent malignancy, lung cancer remains the leading cause of cancer-associated mortality worldwide, especially in China. Microwave ablation (MWA) is an effective, safe, and the least invasive ablative treatment modality, which has been increasingly used for the management of unrespectable lung tumors. However, the underlying biochemical mechanisms of MWA treatment remain to be incompletely elucidated. Therefore, to illustrate the complex biochemical responses of lung squamous cell carcinoma (LSCC) to MWA treatment, confocal Raman micro-spectral imaging (CRMI) was applied in combination with multivariate analysis. A total of twelve LSCC tissues were acquired from patients undergoing clinical treatment, and their spectral characteristics were analyzed to determine significant spectral variations following cancer progression and MWA treatment in comparison with healthy lung tissues. Point-scanned Raman datasets were acquired from sectioned tissue samples in both pre-therapy (Pre-MWA group) and post-therapy groups (Post-MWA group) and further analyzed using K-means cluster analysis (KCA) and principal component analysis (PCA) to highlight the detailed compositional variations of the biochemical constituents. The spectral variations of essential amino acids (such as phenylalanine and tryptophan), collagen, and nucleic acids in the cancerous tissues of the Post-MWA group were significantly enhanced compared to those in the Pre-MWA group. The acquired information further confirmed a remarkable increase in the content of nucleic acid, protein, and lipid in the cancerous tissue following MWA treatment and, a comparative spectral imaging investigation indicated that MWA had no noticeable adverse effects on the paracancerous tissues. Thus, the findings not only illustrated the underlying biochemical variability in lung cancer during MWA treatment but also further confirmed the feasibility of a combined analytical procedure for assessing the biochemical responses during thermal ablation, which could be applied to prominently enhance the effectiveness of MWA in lung cancer treatment in clinical settings.
Collapse
Affiliation(s)
- Dongliang Song
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710069, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Vairavan R, Abdullah O, Retnasamy PB, Sauli Z, Shahimin MM, Retnasamy V. A Brief Review on Breast Carcinoma and Deliberation on Current Non Invasive Imaging Techniques for Detection. Curr Med Imaging 2020; 15:85-121. [PMID: 31975658 DOI: 10.2174/1573405613666170912115617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Breast carcinoma is a life threatening disease that accounts for 25.1% of all carcinoma among women worldwide. Early detection of the disease enhances the chance for survival. DISCUSSION This paper presents comprehensive report on breast carcinoma disease and its modalities available for detection and diagnosis, as it delves into the screening and detection modalities with special focus placed on the non-invasive techniques and its recent advancement work done, as well as a proposal on a novel method for the application of early breast carcinoma detection. CONCLUSION This paper aims to serve as a foundation guidance for the reader to attain bird's eye understanding on breast carcinoma disease and its current non-invasive modalities.
Collapse
Affiliation(s)
- Rajendaran Vairavan
- School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia
| | - Othman Abdullah
- Hospital Sultan Abdul Halim, 08000 Sg. Petani, Kedah, Malaysia
| | | | - Zaliman Sauli
- School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia
| | - Mukhzeer Mohamad Shahimin
- Department of Electrical and Electronic Engineering, Faculty of Engineering, National Defence University of Malaysia (UPNM), Kem Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Vithyacharan Retnasamy
- School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia
| |
Collapse
|
13
|
Song D, Yu F, Chen S, Chen Y, He Q, Zhang Z, Zhang J, Wang S. Raman spectroscopy combined with multivariate analysis to study the biochemical mechanism of lung cancer microwave ablation. BIOMEDICAL OPTICS EXPRESS 2020; 11:1061-1072. [PMID: 32133237 PMCID: PMC7041477 DOI: 10.1364/boe.383869] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 05/24/2023]
Abstract
Lung cancer is the leading cause of death in cancer patients, and microwave ablation (MWA) has been extensively used in clinical treatment. In this study, we characterized the spectra of MWA-treated and untreated lung squamous cell carcinoma (LSCC) tissues, as well as healthy lung tissue, and conducted a preliminary analysis of spectral variations associated with MWA treatment. The results of characteristic spectral analysis of different types of tissues indicated that MWA treatment induces an increase in the content of nucleic acids, proteins, and lipid components in lung cancer tissues. The discriminant model based on the principal component analysis - linear discriminant analysis (PCA-LDA) algorithm together with leave-one-out cross validation (LOOCV) method yield the sensitivities of 90%, 80%, and 96%, and specificities of 86.2%, 93.8%, and 100% among untreated and MWA-treated cancerous tissue, and healthy lung tissue, respectively. These results indicate that Raman spectroscopy combined with multivariate analysis techniques can be used to explore the biochemical response mechanism of cancerous tissue to MWA therapy.
Collapse
Affiliation(s)
- Dongliang Song
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, 710069, China
- Department of physics, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Fan Yu
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Shilin Chen
- Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Nanjing, Jiangsu, 210009, China
| | - Yishen Chen
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Qingli He
- Department of physics, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zhe Zhang
- Department of Pathology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Nanjing, Jiangsu, 210009, China
| | - Jingyuan Zhang
- Department of Pathology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Nanjing, Jiangsu, 210009, China
| | - Shuang Wang
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
14
|
Abramczyk H, Brozek-Pluska B, Jarota A, Surmacki J, Imiela A, Kopec M. A look into the use of Raman spectroscopy for brain and breast cancer diagnostics: linear and non-linear optics in cancer research as a gateway to tumor cell identity. Expert Rev Mol Diagn 2020; 20:99-115. [PMID: 32013616 DOI: 10.1080/14737159.2020.1724092] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
Abstract
Introduction: Currently, intensely developing of linear and non-linear optical methods for cancer detection provides a valuable tool to improve sensitivity and specificity. One of the main reasons for insufficient progress in cancer diagnostics is related to the fact that most cancer types are not only heterogeneous in their genetic composition but also reside in varying microenvironments and interact with different cell types. Until now, no technology has been fully proven for effective detecting of invasive cancer, which infiltrating the extracellular matrix.Areas covered: This review investigates the current status of Raman spectroscopy and Raman imaging for brain and breast cancer diagnostics. Moreover, the review provides a comprehensive overview of the applicability of atomic force microscopy (AFM), linear and non-linear optics in cancer research as a gateway to tumor cell identity.Expert commentary: A combination of linear and non-linear optics, particularly Raman-driven methods, has many additional advantages to identify alterations in cancer cells that are crucial for their proliferation and that distinguish them from normal cells.
Collapse
Affiliation(s)
- Halina Abramczyk
- Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland
| | - Beata Brozek-Pluska
- Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland
| | - Arkadiusz Jarota
- Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland
| | - Jakub Surmacki
- Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland
| | - Anna Imiela
- Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland
| | - Monika Kopec
- Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
15
|
Liu M, Liu X, Huang Z, Tang X, Lin X, Xu Y, Chen G, Kwok HF, Lin Y, Feng S. Rapid discrimination of colon cancer cells with single base mutation in KRAS gene segment using laser tweezers Raman spectroscopy. JOURNAL OF BIOPHOTONICS 2019; 12:e201800332. [PMID: 30485680 DOI: 10.1002/jbio.201800332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/27/2018] [Accepted: 11/21/2018] [Indexed: 05/10/2023]
Abstract
Laser tweezers Raman spectroscopy (LTRS) as a label-free and noninvasive technology has been proven to be an ideal tool for analysis of single living cells, which provides important fingerprint information without interference from surrounding environments. For the first time, LTRS system was successfully used to examine the colon cancer cells with single base mutation in KRAS gene segment, including DKS-8 (KRAS wild-type [WT]) and DLD-1 (KRAS mutant-type [MT]), HKE-3 (KRAS WT) and HCT-116 (KRAS MT). Spectra changes of some vital biomolecules due to the gene mutation state were sensitively recorded by our home-made LTRS system. As a result of the comparison between DKS-8 and DLD-1 cells, an index of 97.5% of correct classification was obtained by combining LTRS with principle component analysis coupled with linear discriminant analysis (PCA-LDA) statistical analysis, while an index of 97.0% of correct classification was achieved between HKE-3 and HCT-116 cells. Moreover, between WT cells (DKS-8 and HKE-3) vs MT cells (DLD-1 and HCT-116), the index of correct classification was 81.2%, which was quite encouraging. Our preliminary results showed that the LTRS system coupled with PCA-LDA analysis will have a great potential for further applications in the rapid and label-free detection of circulating tumor cells in liquid biopsy.
Collapse
Affiliation(s)
- Mengmeng Liu
- Fujian Normal University, Ministry of Education, Key Laboratory of Optoelectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fuzhou, China
| | - Xiujie Liu
- Fujian Normal University, Ministry of Education, Key Laboratory of Optoelectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fuzhou, China
| | - Zufang Huang
- Fujian Normal University, Ministry of Education, Key Laboratory of Optoelectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fuzhou, China
| | - Xiaoqiong Tang
- Fujian Normal University, College of Life Sciences, Fuzhou, China
| | - Xueliang Lin
- Fujian Normal University, Ministry of Education, Key Laboratory of Optoelectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fuzhou, China
| | - Yunchao Xu
- Fujian Normal University, Ministry of Education, Key Laboratory of Optoelectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fuzhou, China
| | - Guannan Chen
- Fujian Normal University, Ministry of Education, Key Laboratory of Optoelectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fuzhou, China
| | - Hang Fai Kwok
- Faculty of Health Sciences, Cancer Centre, University of Macau, Avenida de Universidade, Taipa, China
| | - Yao Lin
- Fujian Normal University, College of Life Sciences, Fuzhou, China
| | - Shangyuan Feng
- Fujian Normal University, Ministry of Education, Key Laboratory of Optoelectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fuzhou, China
| |
Collapse
|
16
|
Abramczyk H, Imiela A, Śliwińska A. Novel strategies of Raman imaging for exploring cancer lipid reprogramming. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Lee SH, Kim OK, Lee S, Kim JK. Local-dependency of morphological and optical properties between breast cancer cell lines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 205:132-138. [PMID: 30015018 DOI: 10.1016/j.saa.2018.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/02/2018] [Accepted: 07/08/2018] [Indexed: 06/08/2023]
Abstract
Breast cancer is the most malignant type of cancer in women and is a global health problem, with mortality by metastasis being the main factor among others. Currently, detection and diagnosis of breast cancer is achieved through a variety of procedures, such as clinical examination, medical imaging, biopsy, and histopathological analysis. In contrast, spectroscopic analysis has a variety of advantages such as being noninvasive, not destroying biological materials, and not requiring additional histological analysis. In this study, various approaches using Raman spectroscopy, atomic force microscopy (AFM), and optical microscopy were used together to differentiate between and characterize normal breast cell lines (MCF-10A) and breast cancer cell lines (MDA-MB-231, MDA-MB-453). Raman spectra of normal breast cell and breast cancer cell lines confirmed visual differences in the concentrations of various compounds. These spectra were also analyzed using principle component analysis (PCA), and the PCA results showed reliable separation of the three cell lines and the cancer cell lines (MDA-MB-231, MDA-MB-453). With these results, optically synchronizing the AFM morphology, the Raman spectroscopy, and the visible RGB optical transmission intensity provided contrasts for not only conformational differences but also intracellular variation between the normal and cancer cell lines. We observed the inherent characteristic that there is no local difference in cancer cells regardless of morphology in a wide range of optical properties such as absorption, scattering and inelastic scattering.
Collapse
Affiliation(s)
- Seung Ho Lee
- Department of Biochemistry & Molecular Biology, College of Medicine, Kyung Hee University, 23, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ok-Kyun Kim
- Department of Biochemistry & Molecular Biology, College of Medicine, Kyung Hee University, 23, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sanghwa Lee
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 23, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Biomedical Engineering Research Center, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea.
| | - Jun Ki Kim
- Biomedical Engineering Research Center, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea; Department of Convergence Medicine, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea.
| |
Collapse
|
18
|
Abstract
PURPOSE The aim of the study is to use Raman spectroscopy to analyze the biochemical composition of medulloblastoma and normal tissues from the safety margin of the CNS and to find specific Raman biomarkers capable of differentiating between tumorous and normal tissues. METHODS The tissue samples consisted of medulloblastoma (grade IV) (n = 11). The tissues from the negative margins were used as normal controls. Raman images were generated by a confocal Raman microscope-WITec alpha 300 RSA. RESULTS Raman vibrational signatures can predict which tissue has tumorous biochemistry and can identify medulloblastoma. The Raman technique makes use of the fact that tumors contain large amounts of protein and far less lipids (fatty compounds), while healthy tissue is rich in both. CONCLUSION The ability of Raman spectroscopy and imaging to detect medulloblastoma tumors fills the niche in diagnostics. These powerful analytical techniques are capable of monitoring tissue morphology and biochemistry. Our results demonstrate that RS can be used to discriminate between normal and medulloblastoma tissues.
Collapse
Affiliation(s)
- Bartosz Polis
- Department of Neurosurgery and Neurotraumatology, Polish Mother's Memorial Hospital Research Institute, 281/289 Rzgowska St., 93-338, Lodz, Poland.
| | - Anna Imiela
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590, Lodz, Poland
| | - Lech Polis
- Department of Neurosurgery and Neurotraumatology, Polish Mother's Memorial Hospital Research Institute, 281/289 Rzgowska St., 93-338, Lodz, Poland
| | - Halina Abramczyk
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590, Lodz, Poland
| |
Collapse
|
19
|
Cordero E, Latka I, Matthäus C, Schie I, Popp J. In-vivo Raman spectroscopy: from basics to applications. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-23. [PMID: 29956506 DOI: 10.1117/1.jbo.23.7.071210] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/23/2018] [Indexed: 05/20/2023]
Abstract
For more than two decades, Raman spectroscopy has found widespread use in biological and medical applications. The instrumentation and the statistical evaluation procedures have matured, enabling the lengthy transition from ex-vivo demonstration to in-vivo examinations. This transition goes hand-in-hand with many technological developments and tightly bound requirements for a successful implementation in a clinical environment, which are often difficult to assess for novice scientists in the field. This review outlines the required instrumentation and instrumentation parameters, designs, and developments of fiber optic probes for the in-vivo applications in a clinical setting. It aims at providing an overview of contemporary technology and clinical trials and attempts to identify future developments necessary to bring the emerging technology to the clinical end users. A comprehensive overview of in-vivo applications of fiber optic Raman probes to characterize different tissue and disease types is also given.
Collapse
Affiliation(s)
- Eliana Cordero
- Leibniz-Institut für Photonische Technologien e.V., Germany
| | - Ines Latka
- Leibniz-Institut für Photonische Technologien e.V., Germany
| | - Christian Matthäus
- Leibniz-Institut für Photonische Technologien e.V., Germany
- Institut für Physikalische Chemie, Friedrich-Schiller-Univ. Jena, Germany
- Abbe Ctr. of Photonics, Germany
| | - Iwan Schie
- Leibniz-Institut für Photonische Technologien e.V., Germany
| | - Jürgen Popp
- Leibniz-Institut für Photonische Technologien e.V., Germany
- Institute für Physikalische Chemie, Friedrich-Schiller-Univ. Jena, Germany
| |
Collapse
|
20
|
Grudzinski W, Piet M, Luchowski R, Reszczynska E, Welc R, Paduch R, Gruszecki WI. Different molecular organization of two carotenoids, lutein and zeaxanthin, in human colon epithelial cells and colon adenocarcinoma cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:57-63. [PMID: 28689079 DOI: 10.1016/j.saa.2017.06.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/12/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
Two cell lines, human normal colon epithelial cells (CCD 841 CoTr) and human colon adenocarcinoma cells (HT-29) were cultured in the presence of exogenous carotenoids, either zeaxanthin or lutein. Both carotenoids demonstrated cytotoxicity with respect to cancer cells but not to normal cells. Cells from both the cell lines were analyzed with application of fluorescence lifetime imaging microscopy and Raman scattering microscopy. Both imaging techniques show effective incorporation of carotenoid molecules into growing cells. Comparison of the Raman scattering and fluorescence lifetime characteristics reveals different molecular organization of carotenoids in the carcinoma and normal cells. The main difference consists in a carotenoid aggregation level which is substantially lower in the carcinoma cells as compared to the normal cells. Different molecular organization of carotenoids was interpreted in terms of a different metabolism of normal and carcinoma cells and has been concluded to provide a possibility of cancer diagnosis based on spectroscopic analyses.
Collapse
Affiliation(s)
- Wojciech Grudzinski
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland.
| | - Mateusz Piet
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland
| | - Rafal Luchowski
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Emilia Reszczynska
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Renata Welc
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland; Department of General Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland
| | - Wieslaw I Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland.
| |
Collapse
|
21
|
SEKINE R, SATO S, TANAKA JI, KAGOSHIMA H, AOKI T, MURAKAMI M. Potential Application of Raman Spectroscopy for Real-time Diagnosis and Classification of Colorectal Cancer. ACTA ACUST UNITED AC 2018. [DOI: 10.15369/sujms.30.381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ryuichi SEKINE
- Department of Surgery, Division of General and Gastroenterological Surgery, Showa University Fujigaoka Hospital
| | - Sumito SATO
- Department of Surgery, Division of General and Gastroenterological Surgery, Showa University Fujigaoka Hospital
| | - Jun-ichi TANAKA
- Department of Surgery, Division of General and Gastroenterological Surgery, Showa University Fujigaoka Hospital
| | | | - Takeshi AOKI
- Department of Surgery, Division of General and Gastroenterological Surgery, Showa University School of Medicine
| | - Masahiko MURAKAMI
- Department of Surgery, Division of General and Gastroenterological Surgery, Showa University School of Medicine
| |
Collapse
|
22
|
Wiercigroch E, Szafraniec E, Czamara K, Pacia MZ, Majzner K, Kochan K, Kaczor A, Baranska M, Malek K. Raman and infrared spectroscopy of carbohydrates: A review. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017. [PMID: 28599236 DOI: 10.1002/jrs.4607] [Citation(s) in RCA: 585] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Carbohydrates are widespread and naturally occurring compounds, and essential constituents for living organisms. They are quite often reported when biological systems are studied and their role is discussed. However surprisingly, up till now there is no database collecting vibrational spectra of carbohydrates and their assignment, as has been done already for other biomolecules. So, this paper serves as a comprehensive review, where for selected 14 carbohydrates in the solid state both FT-Raman and ATR FT-IR spectra were collected and assigned. Carbohydrates can be divided into four chemical groups and in the same way is organized this review. First, the smallest molecules are discussed, i.e. monosaccharides (d-(-)-ribose, 2-deoxy-d-ribose, l-(-)-arabinose, d-(+)-xylose, d-(+)-glucose, d-(+)-galactose and d-(-)-fructose) and disaccharides (d-(+)-sucrose, d-(+)-maltose and d-(+)-lactose), and then more complex ones, i.e. trisaccharides (d-(+)-raffinose) and polysaccharides (amylopectin, amylose, glycogen). Both Raman and IR spectra were collected in the whole spectral range and discussed looking at the specific regions, i.e. region V (3600-3050cm-1), IV (3050-2800cm-1) and II (1200-800cm-1) assigned to the stretching vibrations of the OH, CH/CH2 and C-O/C-C groups, respectively, and region III (1500-1200cm-1) and I (800-100cm-1) dominated by deformational modes of the CH/CH2 and CCO groups, respectively. In spite of the fact that vibrational spectra of saccharides are significantly less specific than spectra of other biomolecules (e.g. lipids or proteins), marker bands of the studied molecules can be identified and correlated with their structure.
Collapse
Affiliation(s)
- Ewelina Wiercigroch
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Ewelina Szafraniec
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Krzysztof Czamara
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Marta Z Pacia
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Katarzyna Majzner
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Kamila Kochan
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Agnieszka Kaczor
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.
| |
Collapse
|
23
|
SERS Investigation of Cancer Cells Treated with PDT: Quantification of Cell Survival and Follow-up. Sci Rep 2017; 7:7175. [PMID: 28775257 PMCID: PMC5543153 DOI: 10.1038/s41598-017-07469-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/26/2017] [Indexed: 12/04/2022] Open
Abstract
In this study Surface Enhanced Raman Spectroscopy (SERS) data recorded from mouse mammary glands cancer cells (4T1 cell line) was used to assess information regarding differences between control, death and viable cells after Photodynamic Therapy (PDT) treatment. The treatment used nanoemulsions (NE/PS) loaded with different chloroaluminumphthalocyanine (ClAlP) photosensitizer (PS) contents (5 and 10 µmol × L−1) and illumination (660 nm wavelength) at 10 J × cm−2 (10 minutes). The SERS data revealed significant molecular alterations in proteins and lipids due to the PDT treatment. Principal Component Analysis (PCA) was applied to analyze the data recorded. Three-dimensional and well reproductive PCA scatter plots were obtained, revealing that two clusters of dead cells were well separated from one another and from control cluster. Overlap between two clusters of viable cells was observed, though well separated from control cluster. Moreover, the data analysis also pointed out necrosis as the main cell death mechanism induced by the PDT, in agreement with the literature. Finally, Raman modes peaking at 608 cm−1 (proteins) and 1231 cm−1 (lipids) can be selected for follow up of survival rate of neoplastic cells after PDT. We envisage that this finding is key to contribute to a quick development of quantitative infrared thermography imaging.
Collapse
|
24
|
Abramczyk H, Brozek-Pluska B, Surmacki J, Tondusson M, Freysz E. Photostability of biological systems—Femtosecond dynamics of zinc tetrasulfonated phthalocyanine at cancerous and noncancerous human Breast tissues. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2016.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Brozek-Pluska B, Kopec M. Raman microspectroscopy of Hematoporphyrins. Imaging of the noncancerous and the cancerous human breast tissues with photosensitizers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 169:182-191. [PMID: 27376758 DOI: 10.1016/j.saa.2016.06.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/24/2016] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
Raman microspectroscopy combined with fluorescence were used to study the distribution of Hematoporphyrin (Hp) in noncancerous and cancerous breast tissues. The results demonstrate the ability of Raman spectroscopy to distinguish between noncancerous and cancerous human breast tissue and to identify differences in the distribution and photodegradation of Hematoporphyrin, which is a photosensitizer in photodynamic therapy (PDT), photodynamic diagnosis (PDD) and photoimmunotherapy (PIT) of cancer. Presented results show that Hematoporphyrin level in the noncancerous breast tissue is lower compared to the cancerous one. We have proved also that the Raman intensity of lipids and proteins doesn't change dramatically after laser light irradiation, which indicates that the PDT treatment destroys preferably cancer cells, in which the photosensitizer is accumulated. The specific subcellular localization of photosensitizer for breast tissues samples soaked with Hematoporphyrin was not observed.
Collapse
Affiliation(s)
- B Brozek-Pluska
- Lodz University of Technology, Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - M Kopec
- Lodz University of Technology, Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
26
|
Abramczyk H, Surmacki J, Kopeć M, Olejnik AK, Kaufman-Szymczyk A, Fabianowska-Majewska K. Epigenetic changes in cancer by Raman imaging, fluorescence imaging, AFM and scanning near-field optical microscopy (SNOM). Acetylation in normal and human cancer breast cells MCF10A, MCF7 and MDA-MB-231. Analyst 2016; 141:5646-58. [PMID: 27460599 DOI: 10.1039/c6an00859c] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper examines epigenetic changes in breast cancer by Raman imaging, fluorescence imaging, AFM and SNOM and discusses how they contribute to different aspects of tumourigenesis in malignant human breast epithelial cell lines MCF7 and MDA-MB-231 compared with non-malignant MCF10A cell lines. The paper focuses on information that can be extracted from Raman microscopy and Raman imaging for the biological material of nucleoli contained within the cell nucleus and lipid droplets within the cell cytoplasm. The biochemical composition of the nuclei and lipid droplets in the non-malignant and malignant human breast epithelial cell lines has been monitored. The potential of Raman microspectroscopy to monitor acetylation processes and a prognostic value of Raman biomarkers in breast cancer have been discussed.
Collapse
Affiliation(s)
- Halina Abramczyk
- Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland.
| | | | | | | | | | | |
Collapse
|
27
|
Addis J, Mohammed N, Rotimi O, Magee D, Jha A, Subramanian V. Raman spectroscopy of endoscopic colonic biopsies from patients with ulcerative colitis to identify mucosal inflammation and healing. BIOMEDICAL OPTICS EXPRESS 2016; 7:2022-35. [PMID: 27231640 PMCID: PMC4871100 DOI: 10.1364/boe.7.002022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 05/05/2023]
Abstract
Raman spectroscopy was used to differentiate between mucosally healed (or quiescent) and inflamed colon tissue, as assessed endoscopically, in patients with ulcerative colitis. From the analysis of the Raman spectra of 60 biopsy tissue samples, clear differences were identified between the spectra of the quiescent and inflamed tissue. Three carotenoid peaks were found to be approximately twice as intense in the inflamed tissue. Two phospholipid peaks were found to be significantly lower in the inflamed tissue. Using multivariate statistical analysis, we show that these five peaks can be used to discriminate between endoscopically quiescent and inflamed tissue. We also correlated the Raman data with a histological assessment of the tissue. Four of the five peaks were found to be significantly different between the spectra of histologically healed (or quiescent) and histologically inflamed tissue. These findings indicate the ability of Raman spectroscopy to accurately classify colon tissue as either quiescent or inflamed, irrespective of whether an endoscopic or histological grading scheme is followed. We thus demonstrate that Raman spectroscopy could potentially be used as an early diagnosis tool for assessing the presence of mucosal healing or inflammation in patients with ulcerative colitis.
Collapse
Affiliation(s)
- James Addis
- Institute of Materials Research, University of Leeds, Leeds LS2 9JT, UK
| | - Noor Mohammed
- Molecular Gastroenterology, St. James University Hospital, University of Leeds, UK
| | - Olorunda Rotimi
- Department of Histopathology, St. James University Hospital, University of Leeds, UK
| | - Derek Magee
- School of Computing, Faculty of Engineering, University of Leeds, UK
| | - Animesh Jha
- Institute of Materials Research, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
28
|
Depciuch J, Kaznowska E, Zawlik I, Wojnarowska R, Cholewa M, Heraud P, Cebulski J. Application of Raman Spectroscopy and Infrared Spectroscopy in the Identification of Breast Cancer. APPLIED SPECTROSCOPY 2016; 70:251-263. [PMID: 26903561 DOI: 10.1177/0003702815620127] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Raman spectroscopy and infrared (IR) spectroscopy are both techniques that allow for the investigation of vibrating chemical particles. These techniques provide information not only about chemical particles through the identification of functional groups and spectral analysis of so-called "fingerprints", these methods allow for the qualitative and quantitative analyses of chemical substances in the sample. Both of these spectral techniques are frequently being used in biology and medicine in diagnosing illnesses and monitoring methods of therapy. The type of breast cancer found in woman is often a malignant tumor, causing 1.38 million new cases of breast cancer and 458 000 deaths in the world in 2013. The most important risk factors for breast cancer development are: sex, age, family history, specific benign breast conditions in the breast, ionizing radiation, and lifestyle. The main purpose of breast cancer screening tests is to establish early diagnostics and to apply proper treatment. Diagnoses of breast cancer are based on: (1) physical techniques (e.g., ultrasonography, mammography, elastography, magnetic resonance, positron emission tomography [PET]); (2) histopathological techniques; (3) biological techniques; and (4) optical techniques (e.g., photo acoustic imaging, fluorescence tomography). However, none of these techniques provides unique or especially revealing answers. The aim of our study is comparative spectroscopic measurements on patients with the following: normal non-cancerous breast tissue; breast cancer tissues before chemotherapy; breast cancer tissues after chemotherapy; and normal breast tissues received around the cancerous breast region. Spectra collected from breast cancer patients shows changes in amounts of carotenoids and fats. We also observed changes in carbohydrate and protein levels (e.g., lack of amino acids, changes in the concentration of amino acids, structural changes) in comparison with normal breast tissues. This fact verifies that Raman spectroscopy and IR spectroscopy are very useful diagnostic tools that will shed new light in understanding the etiology of breast cancer.
Collapse
Affiliation(s)
- Joanna Depciuch
- Center for Innovation and Transfer of Natural Sciences and Engineering Knowledge, University of Rzeszow, Rzeszow, Poland Department of Biology - Agriculture, University of Rzeszow, Rzeszow, Poland
| | - Ewa Kaznowska
- Center for Innovative Research in Medical and Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Izabela Zawlik
- Center for Innovative Research in Medical and Natural Sciences, University of Rzeszow, Rzeszow, Poland Department of Medical Genetics, Institute of Nursing and Health Sciences, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
| | - Renata Wojnarowska
- Center of Microelectronic and Nanotechnology, University of Rzeszow, Rzeszow, Poland
| | - Marian Cholewa
- Center for Innovation and Transfer of Natural Sciences and Engineering Knowledge, University of Rzeszow, Rzeszow, Poland
| | - Philip Heraud
- Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Józef Cebulski
- Center for Innovation and Transfer of Natural Sciences and Engineering Knowledge, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
29
|
Song J, Huang P, Duan H, Chen X. Plasmonic Vesicles of Amphiphilic Nanocrystals: Optically Active Multifunctional Platform for Cancer Diagnosis and Therapy. Acc Chem Res 2015; 48:2506-15. [PMID: 26134093 DOI: 10.1021/acs.accounts.5b00059] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vesicular structures with compartmentalized, water-filled cavities, such as liposomes of natural and synthetic amphiphiles, have tremendous potential applications in nanomedicine. When block copolymers self-assemble, the result is polymersomes with tailored structural properties and built-in releasing mechanisms, controlled by stimuli-responsive polymer building blocks. More recently, chemists are becoming interested in multifunctional hybrid vesicles containing inorganic nanocrystals with unique optical, electronic, and magnetic properties. In this Account, we review our recent progress in assembling amphiphilic plasmonic nanostructures to create a new class of multifunctional hybrid vesicles and applying them towards cancer diagnosis and therapy. Localized surface plasmon resonance (LSPR) gives plasmonic nanomaterials a unique set of optical properties that are potentially useful for both biosensing and nanomedicine. For instance, the strong light scattering at their LSPR wavelength opens up the applications of plasmonic nanostructures in single particle plasmonic imaging. Their superior photothermal conversion properties, on the other hand, make them excellent transducers for photothermal ablation and contrast agents for photoacoustic imaging. Of particular note for ultrasensitive detection is that the confined electromagnetic field resulting from excitation of LSPR can give rise to highly efficient surface enhanced Raman scattering (SERS) for molecules in close proximity. We have explored several ways to combine well-defined plasmonic nanocrystals with amphiphilic polymer brushes of diverse chemical functionalities. In multiple systems, we have shown that the polymer grafts impart amphiphilicity-driven self-assembly to the hybrid nanoparticles. This has allowed us to synthesize well-defined vesicles in which we have embedded plasmonic nanocrystals in the shell of collapsed hydrophobic polymers. The hydrophilic brushes extend into external and interior aqueous environment to stabilize the vesicular structure. More importantly, we have demonstrated that strong interparticle coupling greatly enhances the optical properties (scattering, photothermal conversion, and SERS) in plasmonic vesicles. In combination with the loading capacity of the vesicles, this technology can provide unique opportunities for integrated diagnosis and therapy, multimodality combination therapy, and imaging-guided therapy. One key property differentiating the plasmonic vesicles from other vesicular structures containing nanocrystals is that we can tailor the interparticle coupling and disintegration of the plasmonic vesicles by altering structural parameters and conformational changes of the covalently bound polymer brushes. This gives us tremendous flexibility to engineer plasmonic vesicles for ultrasensitive detection and targeted therapy. Through bringing together advances in nanochemistry, polymer chemistry, self-assembly, and nanophotonics, we expect to further expand our capability of tailoring optical and structural characteristics of plasmonic vesicles to address challenges in medical settings.
Collapse
Affiliation(s)
- Jibin Song
- Laboratory
of Molecular Imaging and Nanomedicine (LOMIN), National Institute
of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore
| | - Peng Huang
- Laboratory
of Molecular Imaging and Nanomedicine (LOMIN), National Institute
of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Hongwei Duan
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore
| | - Xiaoyuan Chen
- Laboratory
of Molecular Imaging and Nanomedicine (LOMIN), National Institute
of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| |
Collapse
|
30
|
Clemens G, Hands JR, Dorling KM, Baker MJ. Vibrational spectroscopic methods for cytology and cellular research. Analyst 2015; 139:4411-44. [PMID: 25028699 DOI: 10.1039/c4an00636d] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of vibrational spectroscopy, FTIR and Raman, for cytology and cellular research has the potential to revolutionise the approach to cellular analysis. Vibrational spectroscopy is non-destructive, simple to operate and provides direct information. Importantly it does not require expensive exogenous labels that may affect the chemistry of the cell under analysis. In addition, the advent of spectroscopic microscopes provides the ability to image cells and acquire spectra with a subcellular resolution. This introductory review focuses on recent developments within this fast paced field and highlights potential for the future use of FTIR and Raman spectroscopy. We particularly focus on the development of live cell research and the new technologies and methodologies that have enabled this.
Collapse
Affiliation(s)
- Graeme Clemens
- Centre for Materials Science, Division of Chemistry, University of Central Lancashire, Preston, Lancashire PR1 2HE, UK.
| | | | | | | |
Collapse
|
31
|
Abramczyk H, Brozek-Pluska B, Surmacki J, Musial J, Kordek R. Oncologic photodynamic diagnosis and therapy: confocal Raman/fluorescence imaging of metal phthalocyanines in human breast cancer tissue in vitro. Analyst 2015; 139:5547-59. [PMID: 25203552 DOI: 10.1039/c4an00966e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Raman microspectroscopy and confocal Raman imaging combined with confocal fluorescence were used to study the distribution and aggregation of aluminum tetrasulfonated phthalocyanine (AlPcS4) in noncancerous and cancerous breast tissues. The results demonstrate the ability of Raman spectroscopy to distinguish between noncancerous and cancerous human breast tissue and to identify differences in the distribution and aggregation of aluminum phthalocyanine, which is a potential photosensitizer in photodynamic therapy (PDT), photodynamic diagnosis (PDD) and photoimmunotherapy (PIT) of cancer. We have observed that the distribution of aluminum tetrasulfonated phthalocyanine confined in cancerous tissue is markedly different from that in noncancerous tissue. We have concluded that Raman imaging can be treated as a new and powerful technique useful in cancer photodynamic therapy, increasing our understanding of the mechanisms and efficiency of photosensitizers by better monitoring localization in cancer cells as well as the clinical assessment of the therapeutic effects of PDT and PIT.
Collapse
Affiliation(s)
- Halina Abramczyk
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| | | | | | | | | |
Collapse
|
32
|
Kast RE, Tucker SC, Killian K, Trexler M, Honn KV, Auner GW. Emerging technology: applications of Raman spectroscopy for prostate cancer. Cancer Metastasis Rev 2015; 33:673-93. [PMID: 24510129 DOI: 10.1007/s10555-013-9489-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is a need in prostate cancer diagnostics and research for a label-free imaging methodology that is nondestructive, rapid, objective, and uninfluenced by water. Raman spectroscopy provides a molecular signature, which can be scaled from micron-level regions of interest in cells to macroscopic areas of tissue. It can be used for applications ranging from in vivo or in vitro diagnostics to basic science laboratory testing. This work describes the fundamentals of Raman spectroscopy and complementary techniques including surface enhanced Raman scattering, resonance Raman spectroscopy, coherent anti-Stokes Raman spectroscopy, confocal Raman spectroscopy, stimulated Raman scattering, and spatially offset Raman spectroscopy. Clinical applications of Raman spectroscopy to prostate cancer will be discussed, including screening, biopsy, margin assessment, and monitoring of treatment efficacy. Laboratory applications including cell identification, culture monitoring, therapeutics development, and live imaging of cellular processes are discussed. Potential future avenues of research are described, with emphasis on multiplexing Raman spectroscopy with other modalities.
Collapse
Affiliation(s)
- Rachel E Kast
- Smart Sensors and Integrated Microsystems Laboratories, Department of Electrical and Computer Engineering, Wayne State University, 5050 Anthony Wayne Drive, Room 3100, Detroit, MI, 48202, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abramczyk H, Surmacki J, Kopeć M, Olejnik AK, Lubecka-Pietruszewska K, Fabianowska-Majewska K. The role of lipid droplets and adipocytes in cancer. Raman imaging of cell cultures: MCF10A, MCF7, and MDA-MB-231 compared to adipocytes in cancerous human breast tissue. Analyst 2015; 140:2224-35. [DOI: 10.1039/c4an01875c] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We discussed the potential of lipid droplets in nonmalignant and malignant human breast epithelial cell lines as a prognostic marker in breast cancer.
Collapse
Affiliation(s)
- Halina Abramczyk
- Lodz University of Technology
- Institute of Applied Radiation Chemistry
- Laboratory of Laser Molecular Spectroscopy
- 93-590 Lodz
- Poland
| | - Jakub Surmacki
- Lodz University of Technology
- Institute of Applied Radiation Chemistry
- Laboratory of Laser Molecular Spectroscopy
- 93-590 Lodz
- Poland
| | - Monika Kopeć
- Lodz University of Technology
- Institute of Applied Radiation Chemistry
- Laboratory of Laser Molecular Spectroscopy
- 93-590 Lodz
- Poland
| | - Alicja Klaudia Olejnik
- Lodz University of Technology
- Institute of Applied Radiation Chemistry
- Laboratory of Laser Molecular Spectroscopy
- 93-590 Lodz
- Poland
| | | | | |
Collapse
|
34
|
Brozek-Pluska B, Kopec M, Niedzwiecka I, Morawiec-Sztandera A. Label-free determination of lipid composition and secondary protein structure of human salivary noncancerous and cancerous tissues by Raman microspectroscopy. Analyst 2015; 140:2107-13. [DOI: 10.1039/c4an01394h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The applications of optical spectroscopic methods in cancer detection open new possibilities in oncological diagnostics.
Collapse
Affiliation(s)
- Beata Brozek-Pluska
- Lodz University of Technology
- Institute of Applied Radiation Chemistry
- Laboratory of Laser Molecular Spectroscopy
- 93-590 Lodz
- Poland
| | - Monika Kopec
- Lodz University of Technology
- Institute of Applied Radiation Chemistry
- Laboratory of Laser Molecular Spectroscopy
- 93-590 Lodz
- Poland
| | - Izabela Niedzwiecka
- Medical University of Lodz
- Department of Head and Neck Cancer
- 90-419 Lodz
- Poland
| | | |
Collapse
|
35
|
Abramczyk H, Brozek-Pluska B, Krzesniak M, Kopec M, Morawiec-Sztandera A. The cellular environment of cancerous human tissue. Interfacial and dangling water as a "hydration fingerprint". SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 129:609-623. [PMID: 24836126 DOI: 10.1016/j.saa.2014.03.103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/17/2014] [Accepted: 03/22/2014] [Indexed: 06/03/2023]
Abstract
Despite a large number of publications, the role of water in the cellular environment of biological tissue has not been clarified. Characterizing the biological interface is a key challenge in understanding the interactions of water in the tissue. Although we often assume that the properties of the bulk water can be translated to the crowded biological environment, this approach must be considerably revised when considering the biological interface. To our knowledge, few studies have directly monitored the interactions and accumulation of water in the restricted environments of the biological tissue upon realistic crowding conditions. The present study focuses on a molecular picture of water molecules at the biological interface, or specifically, water molecules adjacent to the hydrophobic and hydrophilic surfaces of normal and cancerous tissues. We recorded and analyzed the IR and Raman spectra of the νs(OH) stretching modes of water at the biological interfaces of the human breast and neck tissues. The results revealed dramatic changes in the water content in the tissue and are potentially relevant to both the fundamental problems of interfacial water modeling and the molecular diagnostics of cancer as a 'hydration fingerprint'. Herein, we will discuss the origin of the vibrational substructures observed for the νs(OH) stretching modes of water, showing that the interfacial water interacting via H-bond with other water molecules and biomolecules at the biological surface and free OH vibration of the dangling water are sensitive indicators of the pathology between the normal (noncancerous) and cancerous tissue and cancer types.
Collapse
Affiliation(s)
- Halina Abramczyk
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - Beata Brozek-Pluska
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Marta Krzesniak
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Monika Kopec
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Alina Morawiec-Sztandera
- Department of Head and Neck Cancer, Medical University of Lodz, Kosciuszki 4, 90-419 Lodz, Poland
| |
Collapse
|
36
|
General Overview on Vibrational Spectroscopy Applied in Biology and Medicine. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2014. [DOI: 10.1007/978-94-007-7832-0_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
37
|
Wei X, Wang X, Fang Y, Huang Q. Comparison of hair from rectum cancer patients and from healthy persons by Raman microspectroscopy and imaging. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Liu CH, Zhou Y, Sun Y, Li JY, Zhou LX, Boydston-White S, Masilamani V, Zhu K, Pu Y, Alfano RR. Resonance Raman and Raman Spectroscopy for Breast Cancer Detection. Technol Cancer Res Treat 2013; 12:371-82. [DOI: 10.7785/tcrt.2012.500325] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Raman spectroscopy is a sensitive method to detect early changes of molecular composition and structure that occur in lesions during carcinogenesis. The Raman spectra of normal, benign and cancerous breast tissues were investigated in vitro using a near-infrared (NIR) Raman system of 785 nm excitation and confocal micro resonance Raman system of 532 nm excitation. A total number of 491 Raman spectra were acquired from normal, benign and cancerous breast tissues taken from 15 patients. When the 785 nm excitation was used, the dominant peaks in the spectra were characteristic of the vibrations of proteins and lipids. The differences between the normal and cancerous breast tissues were observed in both the peak positions and the intensity ratios of the characteristic Raman peaks in the spectral region of 700–1800 cm−1. With 532 nm excitation, the resonance Raman (RR) spectra exhibited a robust pattern of peaks within the region of 500–4000 cm−1. The intensities of four distinct peaks at 1156, 1521, 2854 and 3013 cm−1 detected in the spectra collected from normal breast tissue were found to be stronger in comparison with those collected from cancerous breast tissue. The twelve dramatically enhanced characteristic peaks, including the enhanced amide II peak at 1548 cm−1 in the spectra collected from cancerous breast tissue, distinguished the cancerous tissue from the normal tissue. Principal component analysis (PCA) combined with support vector machine (SVM) analysis of the Raman and RR spectral data yielded a high performance in the classification of cancerous and benign lesions from normal breast tissue.
Collapse
Affiliation(s)
- C.-H. Liu
- Physics Department, Institute for Ultrafast Spectroscopy and Lasers, The City College of New York, New York, NY 10031, USA
| | - Y. Zhou
- The General Hospital of the Air Force, No.30 Fuchenglu, Haidian District, Beijing 100142, China
| | - Y. Sun
- Electrical Engineering Department, The City College of New York, New York, NY 10031, USA
| | - J. Y. Li
- Beijing Cancer Hospital, No.52 Fuchenglu, Haidian District, Beijing 100142, China
| | - L. X. Zhou
- Beijing Cancer Hospital, No.52 Fuchenglu, Haidian District, Beijing 100142, China
| | - S. Boydston-White
- Science Department, City University of New York, Borough of Manhattan Community College, New York, NY 10007-1097, USA
| | - V. Masilamani
- Physics Department, Institute for Ultrafast Spectroscopy and Lasers, The City College of New York, New York, NY 10031, USA
- KSU Research Chair in Laser Diagnosis of Cancers, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - K. Zhu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Pu
- Physics Department, Institute for Ultrafast Spectroscopy and Lasers, The City College of New York, New York, NY 10031, USA
| | - R. R. Alfano
- Physics Department, Institute for Ultrafast Spectroscopy and Lasers, The City College of New York, New York, NY 10031, USA
| |
Collapse
|
39
|
Ellis DI, Cowcher DP, Ashton L, O'Hagan S, Goodacre R. Illuminating disease and enlightening biomedicine: Raman spectroscopy as a diagnostic tool. Analyst 2013; 138:3871-84. [PMID: 23722248 DOI: 10.1039/c3an00698k] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The discovery of the Raman effect in 1928 not only aided fundamental understanding about the quantum nature of light and matter but also opened up a completely novel area of optics and spectroscopic research that is accelerating at a greater rate during the last decade than at any time since its inception. This introductory overview focuses on some of the most recent developments within this exciting field and how this has enabled and enhanced disease diagnosis and biomedical applications. We highlight a small number of stimulating high-impact studies in imaging, endoscopy, stem cell research, and other recent developments such as spatially offset Raman scattering amongst others. We hope this stimulates further interest in this already exciting field, by 'illuminating' some of the current research being undertaken by the latest in a very long line of dedicated experimentalists interested in the properties and potential beneficial applications of light.
Collapse
Affiliation(s)
- David I Ellis
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7ND, UK.
| | | | | | | | | |
Collapse
|
40
|
Surmacki J, Musial J, Kordek R, Abramczyk H. Raman imaging at biological interfaces: applications in breast cancer diagnosis. Mol Cancer 2013; 12:48. [PMID: 23705882 PMCID: PMC3681552 DOI: 10.1186/1476-4598-12-48] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 05/22/2013] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND One of the most important areas of Raman medical diagnostics is identification and characterization of cancerous and noncancerous tissues. The methods based on Raman scattering has shown significant potential for probing human breast tissue to provide valuable information for early diagnosis of breast cancer. A vibrational fingerprint from the biological tissue provides information which can be used to identify, characterize and discriminate structures in breast tissue, both in the normal and cancerous environment. RESULTS The paper reviews recent progress in understanding structure and interactions at biological interfaces of the human tissue by using confocal Raman imaging and IR spectroscopy. The important differences between the noncancerous and cancerous human breast tissues were found in regions characteristic for vibrations of carotenoids, fatty acids, proteins, and interfacial water. Particular attention was paid to the role played by unsaturated fatty acids and their derivatives as well as carotenoids and interfacial water. CONCLUSIONS We demonstrate that Raman imaging has reached a clinically relevant level in regard to breast cancer diagnosis applications. The results presented in the paper may have serious implications on understanding mechanisms of interactions in living cells under realistically crowded conditions of biological tissue.
Collapse
Affiliation(s)
- Jakub Surmacki
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, Lodz 93-590, Poland
| | - Jacek Musial
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Paderewskiego 4, Lodz 93-509, Poland
| | - Radzislaw Kordek
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Paderewskiego 4, Lodz 93-509, Poland
| | - Halina Abramczyk
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, Lodz 93-590, Poland
| |
Collapse
|
41
|
Abramczyk H, Brozek-Pluska B. Raman imaging in biochemical and biomedical applications. Diagnosis and treatment of breast cancer. Chem Rev 2013; 113:5766-81. [PMID: 23697873 DOI: 10.1021/cr300147r] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Halina Abramczyk
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology , Wroblewskiego 15, 93-590 Lodz, Poland
| | | |
Collapse
|
42
|
Brozek-Pluska B, Jarota A, Jablonska-Gajewicz J, Kordek R, Czajkowski W, Abramczyk H. Distribution of phthalocyanines and Raman reporters in human cancerous and noncancerous breast tissue as studied by Raman imaging. Technol Cancer Res Treat 2012; 11:317-31. [PMID: 22712604 DOI: 10.7785/tcrt.2012.500280] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
There is a considerable interest in the developing new diagnostic techniques allowing noninvasive tracking of the progress of therapies used to treat a cancer. Raman imaging of distribution of phthalocyanine photosensitizers may open new possibilities of Photodynamic Therapy (PDT) to treat a wide range of neoplastic lesions with improved effectiveness of treatment through precise identification of malignant areas. We have employed Raman imaging and Raman spectroscopy to analyze human breast cancer tissue that interacts with photosensitizers used in the photodynamic therapy of cancer. PCA (Principal Component Analysis) has been employed to analyze various areas of the noncancerous and cancerous breast tissues. The results show that the emission spectra combined with the Raman images are very sensitive indicators to specify the aggregation state and the distribution of phthalocyanines in the cancerous and noncancerous breast tissues. Our results provide experimental evidence on the role of aggregation of phthalocyanines as a factor of particular significance in differentiation of the normal and tumourous (cancerous or benign pathology) breast tissues. We conclude that the Raman imaging reported here has a potential to be a novel and effective photodynamic therapeutic method with improved selectivity for the treatment of breast cancer.
Collapse
Affiliation(s)
- Beata Brozek-Pluska
- Technical University of Lodz, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland
| | | | | | | | | | | |
Collapse
|