1
|
Nishimura Y, Nakai H. Species-selective nanoreactor molecular dynamics simulations based on linear-scaling tight-binding quantum chemical calculations. J Chem Phys 2023; 158:054106. [PMID: 36754823 DOI: 10.1063/5.0132573] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Here, extensions to quantum chemical nanoreactor molecular dynamics simulations for discovering complex reactive events are presented. The species-selective algorithm, where the nanoreactor effectively works for the selected desired reactants, was introduced to the original scheme. Moreover, for efficient simulations of large model systems with the modified approach, the divide-and-conquer linear-scaling density functional tight-binding method was exploited. Two illustrative applications of the polymerization of propylene and cyclopropane mixtures and the aggregation of sodium chloride from aqueous solutions indicate that species-selective quantum chemical nanoreactor molecular dynamics is a promising method to accelerate the sampling of multicomponent chemical processes proceeding under relatively mild conditions.
Collapse
Affiliation(s)
- Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
2
|
Hussain S, Haji-Akbari A. Studying rare events using forward-flux sampling: Recent breakthroughs and future outlook. J Chem Phys 2020; 152:060901. [DOI: 10.1063/1.5127780] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Sarwar Hussain
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
3
|
Benavides AL, Portillo MA, Chamorro VC, Espinosa JR, Abascal JLF, Vega C. A potential model for sodium chloride solutions based on the TIP4P/2005 water model. J Chem Phys 2017; 147:104501. [DOI: 10.1063/1.5001190] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- A. L. Benavides
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato, Loma del Bosque 103, Col. Lomas del Campestre, CP 37150 León, Mexico
| | - M. A. Portillo
- Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - V. C. Chamorro
- Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J. R. Espinosa
- Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J. L. F. Abascal
- Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - C. Vega
- Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
Kolafa J. Solubility of NaCl in water and its melting point by molecular dynamics in the slab geometry and a new BK3-compatible force field. J Chem Phys 2016; 145:204509. [DOI: 10.1063/1.4968045] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
5
|
Benavides AL, Aragones JL, Vega C. Consensus on the solubility of NaCl in water from computer simulations using the chemical potential route. J Chem Phys 2016; 144:124504. [PMID: 27036458 DOI: 10.1063/1.4943780] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The solubility of NaCl in water is evaluated by using three force field models: Joung-Cheatham for NaCl dissolved in two different water models (SPC/E and TIP4P/2005) and Smith Dang NaCl model in SPC/E water. The methodology based on free-energy calculations [E. Sanz and C. Vega, J. Chem. Phys. 126, 014507 (2007)] and [J. L. Aragones et al., J. Chem. Phys. 136, 244508 (2012)] has been used, except, that all calculations for the NaCl in solution were obtained by using molecular dynamics simulations with the GROMACS package instead of homemade MC programs. We have explored new lower molalities and made longer runs to improve the accuracy of the calculations. Exploring the low molality region allowed us to obtain an analytical expression for the chemical potential of the ions in solution as a function of molality valid for a wider range of molalities, including the infinite dilute case. These new results are in better agreement with recent estimations of the solubility obtained with other methodologies. Besides, two empirical simple rules have been obtained to have a rough estimate of the solubility of a certain model, by analyzing the ionic pairs formation as a function of molality and/or by calculating the difference between the NaCl solid chemical potential and the standard chemical potential of the salt in solution.
Collapse
Affiliation(s)
- A L Benavides
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J L Aragones
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - C Vega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
6
|
Nezbeda I, Moučka F, Smith WR. Recent progress in molecular simulation of aqueous electrolytes: force fields, chemical potentials and solubility. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1165296] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ivo Nezbeda
- Faculty of Science, J.E. Purkinje University, Ústí nad Labem, Czech Republic
- Institute of Chemical Process Fundamentals, Academy of Sciences, Prague 6, Czech Republic
| | - Filip Moučka
- Faculty of Science, J.E. Purkinje University, Ústí nad Labem, Czech Republic
| | - William R. Smith
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, Canada
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| |
Collapse
|
7
|
Guevara-García A, Ireta J, Galván M. Sensing polarization effects through the analysis of the effective C6 dispersion coefficients in NaCl solutions. J Chem Phys 2015; 142:014504. [DOI: 10.1063/1.4905125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Whitmer JK, Joshi AA, Carlton RJ, Abbott NL, de Pablo JJ. Surface Adsorption in Nonpolarizable Atomic Models. J Chem Theory Comput 2014; 10:5616-24. [DOI: 10.1021/ct5005406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jonathan K. Whitmer
- Department
of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691, United States
- Institute for
Molecular Engineering, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Institute
for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Abhijeet A. Joshi
- Department
of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691, United States
| | - Rebecca J. Carlton
- Department
of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691, United States
| | - Nicholas L. Abbott
- Department
of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691, United States
| | - Juan J. de Pablo
- Institute
for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Institute for Molecular
Engineering, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
9
|
Abstract
Large-scale molecular dynamics simulations (64 000 particles) are used to examine the microscopic mechanism of crystal nucleation and growth in a slightly supersaturated solution of NaCl in water at 300 K and 1 atm. Early-stage nucleation is observed, and the growth of a single crystal is followed for ∼140 ns. It is shown that the nucleation and growth process is better described by Ostwald's rule of stages than by classical nucleation theory. Crystal nucleation originates in a region where the local salt concentration exceeds that of the bulk solution. The early-stage nucleus is a loosely ordered arrangement of ions that retains a significant amount of water. The residual water is slowly removed as the crystal grows and evolves toward its stable anhydrous state.
Collapse
Affiliation(s)
- Debashree Chakraborty
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - G N Patey
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|