1
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
2
|
Abstract
A concise total synthesis of the complex guanidinium toxin KB343 is reported traversing through an unusual sequence of chemoselective transformations and strategic skeletal reorganization. The absolute configuration is confirmed through an enantioselective route, and the structures of all key intermediates and the natural product itself are unassailably confirmed through X-ray crystallographic analysis.
Collapse
Affiliation(s)
- Cheng Bi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla 92037, California, United States
| | - Yu Wang
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla 92037, California, United States
| | - Chi He
- Bristol Myers Squibb, 10300 Campus Point Drive, San Diego 92121, California, United States
| | - Phil S. Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla 92037, California, United States
| |
Collapse
|
3
|
Dielectric Study of Tetraalkylammonium and Tetraalkylphosphonium Levulinate Ionic Liquids. Int J Mol Sci 2022; 23:ijms23105642. [PMID: 35628452 PMCID: PMC9145921 DOI: 10.3390/ijms23105642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022] Open
Abstract
Broadband dielectric spectroscopy in a broad temperature range was employed to study ionic conductivity and dynamics in tetraalkylammonium- and tetraalkylphosphonium-based ionic liquids (ILs) having levulinate as a common anion. Combining data for ionic conductivity with data obtained for viscosity in a Walden plot, we show that ionic conductivity is controlled by viscosity while a strong association of ions takes place. Higher values for ionic conductivities in a broad temperature range were found for the tetraalkylphosphonium-based IL compared to its ammonium homolog in accordance with its lower viscosity. Levulinate used in the present study as anion was found to interact and associate stronger with the cations forming ion-pairs or other complexes compared to the NTf2 anion studied in literature. In order to analyze dielectric data, different fitting approaches were employed. The original random barrier model cannot well describe the conductivity especially at the higher frequencies region. In electric modulus representation, two overlapping mechanisms contribute to the broad low frequencies peak. The slower process is related to the conduction mechanism and the faster to the main polarization process of the complex dielectric permittivity representation. The correlation of the characteristic time scales of the previous relaxation processes was discussed in terms of ionic interactions.
Collapse
|
4
|
Mero A, Guglielmero L, D'Andrea F, Pomelli CS, Guazzelli L, Koutsoumpos S, Tsonos G, Stavrakas I, Moutzouris K, Mezzetta A. Influence of the cation partner on levulinate ionic liquids properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Titov IY, Stroylov VS, Rusina P, Svitanko IV. Preliminary modelling as the first stage of targeted organic synthesis. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The review aims to present a classification and applicability analysis of methods for preliminary molecular modelling for targeted organic, catalytic and biocatalytic synthesis. The following three main approaches are considered as a primary classification of the methods: modelling of the target – ligand coordination without structural information on both the target and the resulting complex; calculations based on experimentally obtained structural information about the target; and dynamic simulation of the target – ligand complex and the reaction mechanism with calculation of the free energy of the reaction. The review is meant for synthetic chemists to be used as a guide for building an algorithm for preliminary modelling and synthesis of structures with specified properties.
The bibliography includes 353 references.
Collapse
|
6
|
Zeindlhofer V, Hudson P, Pálvölgyi ÁM, Welsch M, Almarashi M, Woodcock HL, Brooks B, Bica-Schröder K, Schröder C. Enantiomerization of Axially Chiral Biphenyls: Polarizable MD Simulations in Water and Butylmethylether. Int J Mol Sci 2020; 21:E6222. [PMID: 32872113 PMCID: PMC7503397 DOI: 10.3390/ijms21176222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 01/14/2023] Open
Abstract
In this study, we investigate the influence of chiral and achiral cations on the enantiomerization of biphenylic anions in n-butylmethylether and water. In addition to the impact of the cations and solvent molecules on the free energy profile of rotation, we also explore if chirality transfer between a chiral cation and the biphenylic anion is possible, i.e., if pairing with a chiral cation can energetically favour one conformer of the anion via diastereomeric complex formation. The quantum-mechanical calculations are accompanied by polarizable MD simulations using umbrella sampling to study the impact of solvents of different polarity in more detail. We also discuss how accurate polarizable force fields for biphenylic anions can be constructed from quantum-mechanical reference data.
Collapse
Affiliation(s)
- Veronika Zeindlhofer
- Department of Computational Biological Chemistry, University of Vienna, Währingerstraße 17, 1090 Vienna, Austria; (V.Z.); (M.W.); (M.A.)
| | - Phillip Hudson
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (P.H.); (B.B.)
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA;
| | - Ádám Márk Pálvölgyi
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria; (Á.M.P.); (K.B.-S.)
| | - Matthias Welsch
- Department of Computational Biological Chemistry, University of Vienna, Währingerstraße 17, 1090 Vienna, Austria; (V.Z.); (M.W.); (M.A.)
| | - Mazin Almarashi
- Department of Computational Biological Chemistry, University of Vienna, Währingerstraße 17, 1090 Vienna, Austria; (V.Z.); (M.W.); (M.A.)
| | - H. Lee Woodcock
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA;
| | - Bernard Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (P.H.); (B.B.)
| | - Katharina Bica-Schröder
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria; (Á.M.P.); (K.B.-S.)
| | - Christian Schröder
- Department of Computational Biological Chemistry, University of Vienna, Währingerstraße 17, 1090 Vienna, Austria; (V.Z.); (M.W.); (M.A.)
| |
Collapse
|
7
|
Becherini S, Mezzetta A, Chiappe C, Guazzelli L. Levulinate amidinium protic ionic liquids (PILs) as suitable media for the dissolution and levulination of cellulose. NEW J CHEM 2019. [DOI: 10.1039/c9nj00191c] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Levulinate protic ionic liquids allow for the dissolution and the levulination of their parent polysaccharide.
Collapse
|
8
|
Shende VS, Singh P, Bhanage BM. Recent trends in organocatalyzed asymmetric reduction of prochiral ketones. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02409f] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review depicts the recent practices followed in organocatalyzed asymmetric reduction of prochiral ketones, highlighting the main organocatalysts used for the past seven years.
Collapse
Affiliation(s)
- Vaishali S. Shende
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai
- 400019 India
| | - Priya Singh
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai
- 400019 India
| | | |
Collapse
|
9
|
Guo H, Li J, Liu D, Zhang W. The Synthesis of Chiral α-Aryl α-Hydroxy Carboxylic Acids via RuPHOX-Ru Catalyzed Asymmetric Hydrogenation. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700846] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huan Guo
- School of Pharmacy; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Jing Li
- School of Pharmacy; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Delong Liu
- School of Pharmacy; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Wanbin Zhang
- School of Pharmacy; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People's Republic of China
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People's Republic of China
| |
Collapse
|
10
|
Physical-chemical properties of chiral ionic liquids derived from the phenylethylamine enantiomers. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.04.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Vasiloiu M, Cervenka I, Gaertner P, Weil M, Schröder C, Bica K. Amino alcohol-derived chiral ionic liquids: structural investigations toward chiral recognition. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.tetasy.2015.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Zeifman AA, Stroylov VS, Titov IY, Novikov FN, Stroganov OV, Svitanko IV, Chilov GG. Modeling of the Diels–Alder reaction enantioselectivity by quantum mechanics and molecular mechanics. MENDELEEV COMMUNICATIONS 2015. [DOI: 10.1016/j.mencom.2015.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
|
14
|
Brown CJ, Hopkins TA. Chiral Discrimination by Ionic Liquids: Impact of Ionic Solutes. Chirality 2015; 27:320-5. [DOI: 10.1002/chir.22435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 01/05/2015] [Accepted: 01/27/2015] [Indexed: 01/23/2023]
Affiliation(s)
| | - Todd A. Hopkins
- Department of Chemistry; Butler University; Indianapolis Indiana
| |
Collapse
|
15
|
Vasiloiu M, Gaertner P, Zirbs R, Bica K. Coordinating Chiral Ionic Liquids: Design, Synthesis, and Application in Asymmetric Transfer Hydrogenation under Aqueous Conditions. European J Org Chem 2015; 2015:2374-2381. [PMID: 26279638 PMCID: PMC4529664 DOI: 10.1002/ejoc.201403555] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Indexed: 11/26/2022]
Abstract
Hydrophilic coordinating chiral ionic liquids with an amino alcohol substructure were developed and efficiently applied to the asymmetric reduction of ketones. Their careful design and adaptability to the desired reaction conditions allow for these chiral ionic liquids to be used as the sole source of chirality in a ruthenium-catalyzed transfer hydrogenation reaction of aromatic ketones. When used in this reaction system, these chiral ionic liquids afforded excellent yields and high enantioselectivities.
Collapse
Affiliation(s)
- Maria Vasiloiu
- Institute of Applied Synthetic Chemistry, Vienna University of Technology Getreidemarkt 9/163, 1060 Vienna, Austria E-mail: http://www.ias.tuwien.ac.at/home/
| | - Peter Gaertner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology Getreidemarkt 9/163, 1060 Vienna, Austria E-mail: http://www.ias.tuwien.ac.at/home/
| | - Ronald Zirbs
- Laboratory for Bioinspired Materials, Department of NanoBiotechnology, BOKU - University of Natural Resources and Life Sciences Vienna Muthgasse 11, 1190 Vienna, Austria
| | - Katharina Bica
- Institute of Applied Synthetic Chemistry, Vienna University of Technology Getreidemarkt 9/163, 1060 Vienna, Austria E-mail: http://www.ias.tuwien.ac.at/home/
| |
Collapse
|