1
|
Wang M, Ren HY, Pu XY, Zhang XL, Zhu HY, Wu AX, Zhao BT. Rongalite/iodine-mediated C(sp 3)-H bond oximation and thiomethylation reaction of methyl ketones using copper nitrate as the [NO] reagent: synthesis of thiohydroximic acids. Org Biomol Chem 2024; 22:7623-7627. [PMID: 39222034 DOI: 10.1039/d4ob01217h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In this work, a highly efficient rongalite/iodine-mediated oxime formation reaction for the preparation of thiohydroximic acids from methyl ketones by employing copper nitrate as the [NO] reagent has been developed. Notably, copper nitrate participated as both a catalyst and the mild oximation reagent in the transformation. This reaction is highly efficient and facile, with a broad substrate scope, especially for fused ring skeleton substrates, heterocyclic skeleton substrates, and acetyl-substituted natural products. Mechanistic studies revealed that copper nitrate might be converted into a NO2 radical or the NO2 radical dimeric forms as an ion-pair equivalent to participate in the transformation.
Collapse
Affiliation(s)
- Miao Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.
| | - Hui-Ying Ren
- College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiao-Yu Pu
- College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.
| | - Xiao-Lu Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.
| | - He-Ying Zhu
- College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Bang-Tun Zhao
- College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.
| |
Collapse
|
2
|
Kapitanov IV, Špulák M, Pour M, Soukup O, Marek J, Jun D, Novak M, Diz de Almeida JSF, França TCC, Gathergood N, Kuča K, Karpichev Y. Sustainable ionic liquids-based molecular platforms for designing acetylcholinesterase reactivators. Chem Biol Interact 2023; 385:110735. [PMID: 37802409 DOI: 10.1016/j.cbi.2023.110735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
We report a green chemistry approach for preparation of oxime-functionalized ILs as AChE reactivators: amide/ester linked IL, l-alanine, and l-phenylalanine derived salts bearing pyridinium aldoxime moiety. The reactivation capacities of the novel oximes were evaluated towards AChE inhibited by typical toxic organophosphates, sarin (GB), VX, and paraoxon (PON). The studied compounds are mostly non-toxic up to the highest concentrations screened (2 mM) towards Gram-negative and Gram-positive bacteria cell lines and both filamentous fungi and yeasts in the in vitro screening experiments as well as towards the eukaryotic cell (CHO-K1 cell line). Introduction of the oxime moiety in initially biodegradable structure decreases its ability to biodegradation. The compound 3d was shown to reveal remarkable activity against the AChE inhibited by VX, exceeding conventional reactivators 2-PAM and obidoxime. The regularities on antidotal activity, cell viability, plasma stability, biodegradability as well as molecular docking study of the newly synthesized oximes will be used for further improvement of their structures.
Collapse
Affiliation(s)
- Illia V Kapitanov
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia
| | - Marcel Špulák
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic
| | - Milan Pour
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic
| | - Ondřej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jan Marek
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Epidemiology, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Daniel Jun
- Department of Epidemiology, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Martin Novak
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Joyce S F Diz de Almeida
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro, RJ, Brazil
| | - Tanos C C França
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro, RJ, Brazil; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Nicholas Gathergood
- School of Chemistry, College of Science, University of Lincoln, Lincoln LN6 7TS, UK
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic.
| | - Yevgen Karpichev
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia.
| |
Collapse
|
3
|
Kuca K, Valle da Silva JA, Nepovimova E, Pham NL, Wu W, Valis M, Wu Q, França TCC. Pralidoxime-like reactivator with increased lipophilicity - Molecular modeling and in vitro study. Chem Biol Interact 2023; 385:110734. [PMID: 37788753 DOI: 10.1016/j.cbi.2023.110734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/23/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Acetylcholinesterase (AChE, EC 3.1.1.7) reactivators (2-PAM, trimedoxime, obidoxime, asoxime) have become an integral part of antidotal treatment in cases of nerve agent and organophosphorus (OP) pesticide poisonings. They are often referred to as specific antidotes due to their ability to restore AChE function when it has been covalently inhibited by an OP compound. Currently available commercial reactivators exhibit limited ability to penetrate the blood-brain barrier, where reactivation of inhibited AChE is crucial. Consequently, there have been numerous efforts to discover more brain-penetrating AChE reactivators. In this study, we examined a derivative of 2-PAM designed to possess increased lipophilicity. This enhanced lipophilicity was achieved through the incorporation of a benzyl group into its molecular structure. Initially, a molecular modeling study was conducted, followed by a comparison of its reactivation efficacy with that of 2-PAM against 10 different AChE inhibitors in vitro. Unfortunately, this relatively significant structural modification of 2-PAM resulted in a decrease in its reactivation potency. Consequently, this derivative cannot be considered as a broad-spectrum AChE reactivator.
Collapse
Affiliation(s)
- Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Jorge Alberto Valle da Silva
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro/RJ, Brazil
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ngoc Lam Pham
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Wenda Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Martin Valis
- Department of Neurology, University Hospital Hradec Kralove, Hradec Kralove, 500 05, Czech Republic
| | - Qinghua Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Tanos Celmar Costa França
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
4
|
Rentero C, Damián J, Medel A, Fernández-Millán M, Rusconi Y, Talarico G, Cuenca T, Sessini V, Mosquera MEG. Ring-Opening Polymerization of L-Lactide Catalyzed by Potassium-Based Complexes: Mechanistic Studies. Polymers (Basel) 2022; 14:polym14152982. [PMID: 35893946 PMCID: PMC9329769 DOI: 10.3390/polym14152982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023] Open
Abstract
Two non-toxic potassium compounds, 1 and 2, with a commercial oximate ligand have been prepared and fully spectroscopically characterized. Their activity as catalysts for the ring-opening polymerization (ROP) process of LLA has been studied, showing that they are extremely active and able to polymerize the monomer in a few minutes. For derivative 2, the presence of a crown ether in the potassium coordination sphere affects the nuclearity of the compound and consequently its solubility, with both aspects having an influence in the polymerization process. Detailed studies of the polymerization mechanism have been performed, and an unusual anionic mechanism was observed in absence of a co-initiator. Indeed, the monomer deprotonation generates a lactide enolate, which initiates the polymerization propagation. On the contrary, when a 1:1 ratio of cat:BnOH is used, a mixture of mechanisms is observed, the anionic mechanism and the activated monomer one, while from a cat:BnOH ratio of 1:2 and over, only the activated monomer mechanism is observed.
Collapse
Affiliation(s)
- Christian Rentero
- Department of Organic and Inorganic Chemistry, Institute of Chemical Research “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28871 Madrid, Spain; (C.R.); (J.D.); (A.M.); (M.F.-M.); (T.C.)
| | - Jesús Damián
- Department of Organic and Inorganic Chemistry, Institute of Chemical Research “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28871 Madrid, Spain; (C.R.); (J.D.); (A.M.); (M.F.-M.); (T.C.)
| | - Asier Medel
- Department of Organic and Inorganic Chemistry, Institute of Chemical Research “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28871 Madrid, Spain; (C.R.); (J.D.); (A.M.); (M.F.-M.); (T.C.)
| | - María Fernández-Millán
- Department of Organic and Inorganic Chemistry, Institute of Chemical Research “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28871 Madrid, Spain; (C.R.); (J.D.); (A.M.); (M.F.-M.); (T.C.)
| | - Yolanda Rusconi
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Via Cintia, 80124 Napoli, Italy; (Y.R.); (G.T.)
| | - Giovanni Talarico
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Via Cintia, 80124 Napoli, Italy; (Y.R.); (G.T.)
| | - Tomás Cuenca
- Department of Organic and Inorganic Chemistry, Institute of Chemical Research “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28871 Madrid, Spain; (C.R.); (J.D.); (A.M.); (M.F.-M.); (T.C.)
| | - Valentina Sessini
- Department of Organic and Inorganic Chemistry, Institute of Chemical Research “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28871 Madrid, Spain; (C.R.); (J.D.); (A.M.); (M.F.-M.); (T.C.)
- Correspondence: (V.S.); (M.E.G.M.)
| | - Marta E. G. Mosquera
- Department of Organic and Inorganic Chemistry, Institute of Chemical Research “Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, 28871 Madrid, Spain; (C.R.); (J.D.); (A.M.); (M.F.-M.); (T.C.)
- Correspondence: (V.S.); (M.E.G.M.)
| |
Collapse
|
5
|
Murali K, Machado LA, Carvalho RL, Pedrosa LF, Mukherjee R, Da Silva Júnior EN, Maiti D. Decoding Directing Groups and Their Pivotal Role in C-H Activation. Chemistry 2021; 27:12453-12508. [PMID: 34038596 DOI: 10.1002/chem.202101004] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Synthetic organic chemistry has witnessed a plethora of functionalization and defunctionalization strategies. In this regard, C-H functionalization has been at the forefront due to the multifarious applications in the development of simple to complex molecular architectures and holds a brilliant prospect in drug development and discovery. Despite been explored tremendously by chemists, this functionalization strategy still enjoys the employment of novel metal catalysts as well metal-free organic ligands. Moreover, the switch to photo- and electrochemistry has widened our understanding of the alternative pathways via which a reaction can proceed and these strategies have garnered prominence when applied to C-H activation. Synthetic chemists have been foraging for new directing groups and templates for the selective activation of C-H bonds from a myriad of carbon-hydrogen bonds in aromatic as well as aliphatic systems. As a matter of fact, by varying the templates and directing groups, scientists found the answer to the challenge of distal C-H bond activation which remained an obstacle for a very long time. These templates have been frequently harnessed for selectively activating C-H bonds of natural products, drugs, and macromolecules decorated with multiple C-H bonds. This itself was a challenge before the commencement of this field as functionalization of a site other than the targeted site could modify and hamper the biological activity of the pharmacophore. Total synthesis and pharmacophore development often faces the difficulty of superfluous reaction steps towards selective functionalization. This obstacle has been solved by late-stage functionalization simply by harnessing C-H bond activation. Moreover, green chemistry and metal-free reaction conditions have seen light in the past few decades due to the rising concern about environmental issues. Therefore, metal-free catalysts or the usage of non-toxic metals have been recently showcased in a number of elegant works. Also, research groups across the world are developing rational strategies for directing group free or non-directed protocols that are just guided by ligands. This review encapsulates the research works pertinent to C-H bond activation and discusses the science devoted to it at the fundamental level. This review gives the readers a broad understanding of how these strategies work, the execution of various metal catalysts, and directing groups. This not only helps a budding scientist towards the commencement of his/her research but also helps a matured mind searching out for selective functionalization. A detailed picture of this field and its progress with time has been portrayed in lucid scientific language with a motive to inculcate and educate scientific minds about this beautiful strategy with an overview of the most relevant and significant works of this era. The unique trait of this review is the detailed description and classification of various directing groups and their utility over a wide substrate scope. This allows an experimental chemist to understand the applicability of this domain and employ it over any targeted substrate.
Collapse
Affiliation(s)
- Karunanidhi Murali
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Luana A Machado
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.,Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Renato L Carvalho
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Leandro F Pedrosa
- Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Rishav Mukherjee
- Department of Chemistry IIT Bombay, Powai, Mumbai, 400076, India
| | | | - Debabrata Maiti
- Department of Chemistry IIT Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
6
|
Pashirova TN, Fetin PA, Lezov AA, Kadnikov MV, Valeeva FG, Burilova EA, Bilibin AY, Zorin IM. Self-Assembled Quaternary Ammonium-Containing Comb-Like Polyelectrolytes for the Hydrolysis of Organophosphorous Esters: Effect of Head Groups and Counter-Ions. Chempluschem 2020; 85:1939-1948. [PMID: 32865345 DOI: 10.1002/cplu.202000417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/27/2020] [Indexed: 12/17/2022]
Abstract
The aim of this work was to increase the efficiency of catalytic systems for the hydrolytic cleavage of 4-nitrophenyl esters of phosphonic acids. Quaternary ammonium-containing comb-like polyelectrolytes («polymerized micelles») with ester cleavable fragments and a low aggregation threshold were used as catalysts. The synthesis of poly(11-acryloyloxyundecylammonium) surfactants with different counterions (Br- , NO3 - , CH3 C6 H4 SO3 - ) and head groups was realized by micellar free-radical polymerization. Molecular weight, critical association concentration, particle sizes and solubilization properties toward Orange OT were determined. Self-assemblies organized by poly(11-acryloyloxyundecyltrimethyl ammonium) bromide successfully catalyze the hydrolysis of 4-nitrophenyl butylchloromethylphosphonate up to two orders of magnitude compared to aqueous alkaline hydrolysis. The development of these catalysts is promising for industrial applications and organophosphorus compound detoxification.
Collapse
Affiliation(s)
- Tatiana N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Petr A Fetin
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab, St., Petersburg, 199034, Russian Federation
| | - Alexey A Lezov
- Department of Molecular Biophysics and Polymer Physics, Physical Faculty, St. Petersburg State University, 7/9 Universitetskaya nab, St., Petersburg, 199034, Russian Federation
| | - Matvey V Kadnikov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab, St., Petersburg, 199034, Russian Federation
| | - Farida G Valeeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Evgenia A Burilova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Alexander Yu Bilibin
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab, St., Petersburg, 199034, Russian Federation
| | - Ivan M Zorin
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab, St., Petersburg, 199034, Russian Federation
| |
Collapse
|
7
|
Pandya SJ, Kapitanov IV, Usmani Z, Sahu R, Sinha D, Gathergood N, Ghosh KK, Karpichev Y. An example of green surfactant systems based on inherently biodegradable IL-derived amphiphilic oximes. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Abstract
Organophosphorus compounds are organic compounds widely employed in agriculture as well as in chemical weapons. The use in agriculture is due to their insecticidal properties. However, in chemical warfare, the use of organophosphorus is associated with acetylcholinesterase inhibition, which promotes the cholinergic syndromes. In this line, the fast detection of this class of compound is crucial for the determination of environmental exposure. This improved detection will naturally allow for more prompt courses of treatment depending on the contaminant findings. In this perspective, the dipyrrinone oxime (1) was employed for the detection of organophosphorus compounds that are employed as nerve agents, such as cyclosarin, sarin, soman, diethyl chlorophosphate, diisopropylfluorophosphate, 2-(dimethylamino)ethyl N,N-dimethylphosphoramidofluoridate, O-ethyl-S-[2-(diethylamino)ethyl]methylphosphonothioate, O-ethyl-S-[2(diisopropylamino)ethyl] methylphosphonothioate, and O,O-diethyl-S-[2-(diethylamino)ethyl] phosphorothioate, through fluorescent emission. The thermodynamics and kinetic parameters as well as spectroscopic properties of the complexes formed for 1 and all organophosphorus compounds previously cited were investigated by means of theoretical calculations. From our findings, only the diethyl chlorophosphate, 2-(dimethylamino)ethyl N,N-dimethylphosphoramidofluoridate, and O,O-diethyl-S-[2-(diethylamino)ethyl] phosphorothioate emitted fluorescence in the hexane, toluene, chloroform, dichloromethane, methanol, acetonitrile, water, and dimethyl sulfoxide solvents. The study of the absorption wavelength with the most polar solvent showed higher values compared to apolar solvents. In the same solvent, for instance, soman in hexane showed the lowest absorption wavelength value, 324.5 nm, and DCP the highest value, 330.8 nm. This behavior was observed in other tested solvents. The thermodynamic parameters indicate negative Gibbs free energy (ΔG) values for the O-ethyl-S-[2(diisopropylamino)ethyl] methylphosphonothioate with 1 reaction. On the other hand, the sarin and cyclosarin revealed the lowest Gibbs free energy (ΔG‡) values, being kinetically favorable and presenting more reactivity.
Collapse
|
9
|
Zhou X, Zhang XP, Li W, Jiang J, Xu H, Ke Z, Phillips DL, Zhao C. Unraveling mechanisms of the uncoordinated nucleophiles: theoretical elucidations of the cleavage of bis( p-nitrophenyl) phosphate mediated by zinc-complexes with apical nucleophiles. RSC Adv 2019; 9:37696-37704. [PMID: 35541823 PMCID: PMC9075727 DOI: 10.1039/c9ra06737j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/01/2019] [Indexed: 02/01/2023] Open
Abstract
A theoretical approach was used to investigate the hydrolytic cleavage mechanisms of the bis(p-nitrophenyl) phosphate (BNPP-) catalyzed by Zn(ii)-complexes featuring uncoordinated nucleophiles. Ligand-based and alternative solvent-based nucleophilic attack reaction models are proposed. The pK a values of the Zn(ii)-bound water molecules or ligands in the [Zn(L n H)(η-H2O)(H2O)]2+ (n = 1, 2 and 3) complexes, as well as the dimerization tendency of the mononuclear Zn(ii)-complexes, were found to significantly influence the reaction mechanisms. The Zn(ii)-L3 complexes were found to be more favorable for the hydrolytic cleavage of the BNPP- via a ligand-based nucleophilic attack pathway. This was due to the lower pK a value for the deprotonation of the oxime ligand, the hard dimerization of the mononuclear Zn(ii)-L3 species, and the presence of an uncoordinated nucleophile. The origins of the uncoordinated reactions were systematically elucidated. The theoretical results reported here are in good agreement with experimental observations and more importantly, help to elucidate the factors that influence intermolecular nucleophilic attack reactions with coordinated/uncoordinated nucleophiles.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xue-Peng Zhang
- School of Chemisty and Chemical Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
| | - Weikang Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jingxing Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, School of Materials Science and Engineering, Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Huiying Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zhuofeng Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, School of Materials Science and Engineering, Sun Yat-sen University Guangzhou 510275 P. R. China
| | - David Lee Phillips
- Department of Chemistry, University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Cunyuan Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
10
|
Decontamination of Chemical Warfare Agents by Novel Oximated Acrylate Copolymer. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
da Silva JAV, Nepovimova E, Ramalho TC, Kuca K, Costa França TC. Molecular modelling studies on the interactions of 7-methoxytacrine-4-pyridinealdoxime with VX-inhibited human acetylcholinesterase. A near attack approach to assess different spacer-lengths. Chem Biol Interact 2019; 307:195-205. [DOI: 10.1016/j.cbi.2019.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/18/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
|
12
|
da Silva JAV, Nepovimova E, Ramalho TC, Kuca K, Celmar Costa França T. Molecular modeling studies on the interactions of 7-methoxytacrine-4-pyridinealdoxime, 4-PA, 2-PAM, and obidoxime with VX-inhibited human acetylcholinesterase: a near attack conformation approach. J Enzyme Inhib Med Chem 2019; 34:1018-1029. [PMID: 31074292 PMCID: PMC6522925 DOI: 10.1080/14756366.2019.1609953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
7-methoxytacrine-4-pyridinealdoxime (7-MEOTA-4-PA, named hybrid 5C) is a compound formerly synthesized and evaluated in vitro, together with 4-pyridine aldoxime (4-PA) and commercial reactivators of acetylcholinesterase (AChE). This compound was designed with the purpose of being a prophylactic reactivator, capable of interacting with different subdomains of the active site of AChE. To investigate these interactions, theoretical results from docking were first compared with experimental data of hybrid 5C, 4-PA, and two commercial oximes, on the reactivation of human AChE (HssAChE) inhibited by VX. Then, further docking studies, molecular dynamics simulations, and molecular mechanics Poisson–Boltzmann surface area calculations, were carried out to investigate reactivation performances, considering the near attack conformation (NAC) approach, prior to the nucleophilic substitution mechanism. Our results helped to elucidate the interactions of such molecules with the different subdomains of the active site of HssAChE. Additionally, NAC poses of each oxime were suggested for further theoretical studies on the reactivation reaction.
Collapse
Affiliation(s)
- Jorge Alberto Valle da Silva
- a Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Department of Chemical Engineering , Military Institute of Engineering , Rio de Janeiro/RJ , Brazil
| | - Eugenie Nepovimova
- b Faculty of Science, Department of Chemistry , University of Hradec Kralove , Hradec Kralove , Czech Republic
| | - Teodorico Castro Ramalho
- b Faculty of Science, Department of Chemistry , University of Hradec Kralove , Hradec Kralove , Czech Republic.,c Laboratory of Molecular Modeling, Chemistry Department , Federal University of Lavras , Lavras , Brazil
| | - Kamil Kuca
- b Faculty of Science, Department of Chemistry , University of Hradec Kralove , Hradec Kralove , Czech Republic
| | - Tanos Celmar Costa França
- a Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Department of Chemical Engineering , Military Institute of Engineering , Rio de Janeiro/RJ , Brazil.,b Faculty of Science, Department of Chemistry , University of Hradec Kralove , Hradec Kralove , Czech Republic
| |
Collapse
|
13
|
Prokop’eva TM, Belousova IA, Turovskaya MK, Razumova NG, Panchenko BV, Mikhailov VA. Supernucleophilic Systems Underlain by Functionalized Surfactants in Cleavage of 4-Nitrophenyl Esters of Phosphorus and Sulfur Acids: IV. Micellar Effects of Functionalized Surfactants with a Variable Nature of the Head Group and Hydrophobicity in Transfer Reactions of the Phosphonyl Group. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428018110027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Millán D, Tapia RA, Pavez P. Efficient Nucleophilic Degradation of an Organophosphorus Pesticide "Diazinon" Mediated by Green Solvents and Microwave Heating. Front Chem 2019; 6:669. [PMID: 30693279 PMCID: PMC6340133 DOI: 10.3389/fchem.2018.00669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/21/2018] [Indexed: 02/03/2023] Open
Abstract
An efficient strategy for the degradation of organophosphate pesticide Diazinon was investigated. In this work, ionic liquids, bio-based solvents, and two conventional organic solvents were used as reaction media. Kinetics studies by means of half-life (t1/2,h) were followed by 31P NMR and the products analyzed by GC-MS, HPLC-MS and NMR techniques. These results have shown that t1/2 values in ionic liquids were the lowest and also they were able to activate two electrophilic centers in Diazinon, whilst degradation in bio-based solvents occurred slowly by only an aromatic pathway. In addition, a study to estimate the influence of green activation techniques was carried out by using Ultrasound irradiation and Microwave heating in combination with greener solvents and two conventional organic solvents. Under Microwave heating, faster degradation than under ultrasound irradiation was found. Finally, considering both families of solvent used here and their behavior under green activation techniques, we propose that the more efficient way for degradation of Diazinon with piperidine is by microwave heating using ionic liquids as solvents.
Collapse
Affiliation(s)
- Daniela Millán
- Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro Integrativo de Biologia y Quimica Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Ricardo A Tapia
- Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Pavez
- Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
15
|
Shen G, Khan R, Yang F, Yang Y, Pu D, Gao Y, Zhan Y, Luo Y, Fan B. Pd/Zn Co-catalyzed Asymmetric Ring-Opening Reactions of Aza/Oxabicyclic Alkenes with Oximes. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Guoli Shen
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine/Key Laboratory of Chemistry in Ethnic Medicinal Resources; Yunnan Minzu University; Kunming 650500 China
| | - Ruhima Khan
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine/Key Laboratory of Chemistry in Ethnic Medicinal Resources; Yunnan Minzu University; Kunming 650500 China
| | - Fan Yang
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine/Key Laboratory of Chemistry in Ethnic Medicinal Resources; Yunnan Minzu University; Kunming 650500 China
| | - Yong Yang
- Chongqing Academy of Chinese Materia Medica; Chongqing 400065 China
| | - Dongdong Pu
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine/Key Laboratory of Chemistry in Ethnic Medicinal Resources; Yunnan Minzu University; Kunming 650500 China
| | - Yang Gao
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine/Key Laboratory of Chemistry in Ethnic Medicinal Resources; Yunnan Minzu University; Kunming 650500 China
| | - Yong Zhan
- Chongqing Academy of Chinese Materia Medica; Chongqing 400065 China
| | - Yang Luo
- Chongqing Academy of Chinese Materia Medica; Chongqing 400065 China
| | - Baomin Fan
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine/Key Laboratory of Chemistry in Ethnic Medicinal Resources; Yunnan Minzu University; Kunming 650500 China
| |
Collapse
|
16
|
Wang X, He B, Nie J, Yin W, Fa H, Chen C. An enhanced oxime-based biomimetic electrochemical sensor modified with multifunctional AuNPs–Co3O4–NG composites for dimethoate determination. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3516-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Gentili P, Nardi M, Antignano I, Cambise P, D'Abramo M, D'Acunzo F, Pinna A, Ussia E. 2-(Hydroxyimino)aldehydes: Photo- and Physicochemical Properties of a Versatile Functional Group for Monomer Design. Chemistry 2018. [PMID: 29528510 DOI: 10.1002/chem.201800059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the context of our research on stimuli-responsive polymers bearing the 2-(hydroxyimino)aldehyde (HIA) group, we have explored the photochemical behavior and physicochemical properties of a number of HIAs. Interpretation of the experimental data is supported by quantum mechanical calculations. HIAs are expected to undergo photoisomerization, chelate metal ions, yield hydrogen-bonded dimers or oligomers, exhibit relatively low pKa s, and form >C=NO. radicals through OH hydrogen abstraction or oxidation of the oximate ion. Besides the well-established E/Z oxime photoisomerism, we observed a Norrish-Yang cyclization resulting in cyclobutanol oximes, to our knowledge not previously described in the literature. The acidity, bond dissociation enthalpies, and electrochemical properties of the HIAs are compared with literature data of simple oximes. The results are discussed in relation to the many potential applications for HIAs, with emphasis on the synthesis of novel HIA-containing responsive polymers.
Collapse
Affiliation(s)
- Patrizia Gentili
- Dipartimento di Chimica, Università degli Studi "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy.,CNR, Istituto di Metodologie Chimiche, Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica, Università degli Studi "La Sapienza", P.le A. Moro 5, 00185, Roma, Italy
| | - Martina Nardi
- Dipartimento di Chimica, Università degli Studi "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy.,CNR, Istituto di Metodologie Chimiche, Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica, Università degli Studi "La Sapienza", P.le A. Moro 5, 00185, Roma, Italy
| | - Irene Antignano
- Dipartimento di Chimica, Università degli Studi "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| | - Paolo Cambise
- Dipartimento di Chimica, Università degli Studi "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| | - Marco D'Abramo
- Dipartimento di Chimica, Università degli Studi "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| | - Francesca D'Acunzo
- CNR, Istituto di Metodologie Chimiche, Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica, Università degli Studi "La Sapienza", P.le A. Moro 5, 00185, Roma, Italy
| | - Alessandro Pinna
- Dipartimento di Chimica, Università degli Studi "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| | - Emanuele Ussia
- Dipartimento di Chimica, Università degli Studi "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
18
|
Sørensen M, Neilson EHJ, Møller BL. Oximes: Unrecognized Chameleons in General and Specialized Plant Metabolism. MOLECULAR PLANT 2018; 11:95-117. [PMID: 29275165 DOI: 10.1016/j.molp.2017.12.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 05/19/2023]
Abstract
Oximes (R1R2C=NOH) are nitrogen-containing chemical constituents that are formed in species representing all kingdoms of life. In plants, oximes are positioned at important metabolic bifurcation points between general and specialized metabolism. The majority of plant oximes are amino acid-derived metabolites formed by the action of a cytochrome P450 from the CYP79 family. Auxin, cyanogenic glucosides, glucosinolates, and a number of other bioactive specialized metabolites including volatiles are produced from oximes. Oximes with the E configuration have high biological activity compared with Z-oximes. Oximes or their derivatives have been demonstrated or proposed to play roles in growth regulation, plant defense, pollinator attraction, and plant communication with the surrounding environment. In addition, oxime-derived products may serve as quenchers of reactive oxygen species and storage compounds for reduced nitrogen that may be released on demand by the activation of endogenous turnover pathways. As highly bioactive molecules, chemically synthesized oximes have found versatile uses in many sectors of society, especially in the agro- and medical sectors. This review provides an update on the structural diversity, occurrence, and biosynthesis of oximes in plants and discusses their role as key players in plant general and specialized metabolism.
Collapse
Affiliation(s)
- Mette Sørensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark; VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark
| | - Elizabeth H J Neilson
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark; VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark; VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark; Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
19
|
Samarkina DA, Gabdrakhmanov DR, Semenov VE, Valeeva FG, Nikolaev AE, Saifina LF, Zakharova LY. New amphiphilic multiheterocycle: Micelle-forming properties and effect on the reactivity of phosphorus acid esters. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217090134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Bolotin DS, Bokach NA, Demakova MY, Kukushkin VY. Metal-Involving Synthesis and Reactions of Oximes. Chem Rev 2017; 117:13039-13122. [PMID: 28991449 DOI: 10.1021/acs.chemrev.7b00264] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review classifies and summarizes the past 10-15 years of advancements in the field of metal-involving (i.e., metal-mediated and metal-catalyzed) reactions of oximes. These reactions are diverse in nature and have been employed for syntheses of oxime-based metal complexes and cage-compounds, oxime functionalizations, and the preparation of new classes of organic species, in particular, a wide variety of heterocyclic systems spanning small 3-membered ring systems to macroheterocycles. This consideration gives a general outlook of reaction routes, mechanisms, and driving forces and underlines the potential of metal-involving conversions of oxime species for application in various fields of chemistry and draws attention to the emerging putative targets.
Collapse
Affiliation(s)
- Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University , Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University , Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Marina Ya Demakova
- Institute of Chemistry, Saint Petersburg State University , Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University , Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| |
Collapse
|
21
|
Physicochemical properties and esterolytic reactivity of oxime functionalized surfactants in pH-responsive mixed micellar system. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.04.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Prokop’eva TM, Kapitanov IV, Belousova IA, Shumeiko AE, Kostrikin ML, Serdyuk AA, Turovskaya MK, Razumova NG. Reactivity of co-micellar systems based on dimeric functionalized tetraalkylammonium surfactant in phosphoryl and sulfonyl group transfer processes. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1070428017040029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Turovskaya MK, Mikhailov VA, Burakov NI, Kapitanov IV, Zubareva TM, Lobachev VL, Panchenko BV, Prokop’eva TM. Reactivity of inorganic α-nucleophiles in acyl group transfer processes in water and surfactant micelles: I. Systems based on organic complexes of tribromide anion. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2017. [DOI: 10.1134/s107042801703006x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Mirgorodskaya A, Ya Zakharova L, Khairutdinova E, Lukashenko S, Sinyashin O. Supramolecular systems based on gemini surfactants for enhancing solubility of spectral probes and drugs in aqueous solution. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.07.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Serdyuk AA, Mirgorodskaya AB, Kapitanov IV, Gathergood N, Zakharova LY, Sinyashin OG, Karpichev Y. Effect of structure of polycyclic aromatic substrates on solubilization capacity and size of cationic monomeric and gemini 14-s-14 surfactant aggregates. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.09.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Samarkina DA, Gabdrakhmanov DR, Semenov VE, Valeeva FG, Gubaidullina LM, Zakharova LY, Reznik VS, Konovalov AI. Self-assembling catalytic systems based on new amphiphile containing purine fragment, exhibiting substrate specificity in hydrolysis of phosphorus acids esters. RUSS J GEN CHEM+ 2016. [DOI: 10.1134/s1070363216030233] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
Skočibušić M, Odžak R, Štefanić Z, Križić I, Krišto L, Jović O, Hrenar T, Primožič I, Jurašin D. Structure–property relationship of quinuclidinium surfactants—Towards multifunctional biologically active molecules. Colloids Surf B Biointerfaces 2016; 140:548-559. [DOI: 10.1016/j.colsurfb.2015.11.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/02/2015] [Accepted: 11/12/2015] [Indexed: 01/06/2023]
|
28
|
Kapitanov IV, Abakumov AA, Serdyuk AA. Identification of products in the reaction of 2-[(hydroxyimino)methyl]-1,3-dimethylimidazolium iodide with diethyl 4-nitrophenyl phosphate in alkaline medium. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2015. [DOI: 10.1134/s1070428015100024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Prokop’eva TM, Kapitanov IV, Belousova IA, Shumeiko AE, Kostrikin ML, Turovskaya MK, Razumova NG, Popov AF. Supernucleophilic systems based on functionalized surfactants in the decomposition of 4-nitrophenyl esters derived from phosphorus and sulfur acids. III. Reactivity of mixed micellar systems based on tetraalkylammonium and imidazolium surfactants. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2015. [DOI: 10.1134/s1070428015080047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|