1
|
Veider F, To D, Saleh A, Laffleur F, Kali G, Hense D, Strube OI, Bernkop-Schnürch A. Charge-converting nanocarriers: Phosphorylated polysaccharide coatings for overcoming intestinal barriers. Int J Biol Macromol 2024; 281:136308. [PMID: 39374725 DOI: 10.1016/j.ijbiomac.2024.136308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/15/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
For the design of charge-converting nanocarriers (NCs), cationic lipid-based NCs containing curcumin as model drug were coated with phosphorylated starch (NC-SP) and phosphorylated dextran (NC-DP). NCs showed a drug encapsulation efficiency of 94 % and had a mean size of 175 to 180 nm. The recorded zeta potential of the core NC (cNC) was +8.3 mV, whereas it reversed to -10.6 mV and -7.4 mV after decorating with SP and DP, respectively. Furthermore, a 3-fold higher amount of curcumin having been incorporated in these NCs remained stable within 2 h of UV exposure indicating a photoprotective effect of this delivery system. Charge-converting properties were confirmed by cleavage with intestinal alkaline phosphatase (IAP) and resulted in a zeta potential shift of Δ15.4 mV for NC-SP and Δ11.2 mV for NC-DP. NC-SP and NC-DP showed enhanced mucus permeating properties compared to cNC, that were additionally confirmed by an up to 2.2-fold improved cellular uptake on mucus secreting Caco-2/HT29-MTX cells. According to these results, NC-SP and NC-DP coatings hold promise as a viable and efficient strategy for charge-converting NCs.
Collapse
Affiliation(s)
- Florina Veider
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Dennis To
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ahmad Saleh
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Gergely Kali
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Dominik Hense
- Institute of Chemical Engineering, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Oliver I Strube
- Institute of Chemical Engineering, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
2
|
Sayyar Z, Jafarizadeh-Malmiri H. Enhancing the efficacy of nano-curcumin on cancer cells through mixture design optimization of three emulsifiers. BMC Chem 2024; 18:62. [PMID: 38555446 PMCID: PMC10981834 DOI: 10.1186/s13065-024-01160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
Curcumin, a vital bioactive compound found naturally, has diverse biological applications. However, a major limitation of curcumin is its low bioavailability caused by its limited solubility in water. Hence, it is possible to overcome this problem through preparing oil in water nanodispersion of curcumin that emulsifier can play key role to produce nanodispersion. In the present study, the effect of three emulsifiers of Tween 80, Arabic Gum and Polyethylene glycol on preparing nanodispersions with desirable properties was investigated using subcritical water method and a mixture design. Zeta-potential and particle size of the achieved nanodispersions were taken into account as outcome factors. The optimum values for emulsifiers of Tween 80, Arabic Gum and Polyethylene glycol were obtained as 0.588 g, 0.639 g and 0.273 g, respectively, using the suggested model, so that obtained nanodispersion had minimum particle size (101.89 nm) and maximum zeta-potential (-24.99 mV). In fact, 102.5 nm and - 24.7 mV were obtained from experimental data at these values of emulsifiers. In addition, maximum loading potential (0.199 g/L), efficiency (99.5%), and minimum total curcumin loss (0.5%) were acquired at these optimum values. The results also show that the nanodispersion had a powerful antioxidant activity (65.27%) with extra antibacterial activity in facing with both E. coli and S. aureus strains. Moreover, curcumin nanodispersion was significantly taken up by HT-29 cells and resulted in the production of oxidative stress in the cells, leading to a decrease in the growth of cancer cells.
Collapse
Affiliation(s)
- Zahra Sayyar
- Department of Chemical Engineering, University of Bonab, Bonab, 55513-95133, Iran.
| | | |
Collapse
|
3
|
Alam S, Lee J, Sahebkar A. Curcumin in Cancer Prevention: Insights from Clinical Trials and Strategies to Enhance Bioavailability. Curr Pharm Des 2024; 30:1838-1851. [PMID: 38808709 DOI: 10.2174/0113816128303514240517054617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Cancer remains a leading cause of death worldwide, and current cancer drugs often have high costs and undesirable side effects. Additionally, the development of drug resistance can reduce their effectiveness over time. Natural products have gained attention as potential sources for the treatment and prevention of various diseases. Curcumin, an extract from turmeric (Curcuma longa), is a natural phenolic compound with diverse pharmacological properties, including antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, antiprotozoal, antidiabetic, antivenom, antiulcer, anticarcinogenic, antimutagenic, anticoagulant, and antifertility activities. Given the increasing interest in curcumin for cancer prevention, this review aims to comprehensively examine clinical trials investigating the use of curcumin in different types of cancer. Additionally, effective techniques and approaches to enhance the bioavailability of curcumin are discussed and summarized. This review article provides insights into the properties of curcumin and its potential as a future anticancer drug.
Collapse
Affiliation(s)
- Shabaz Alam
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaewon Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Effectiveness of temperature and preparation method on stability kinetic of Curcumin nanodispersion: Cytotoxicity and in vitro release assessment. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Mohapatra P, Chandrasekaran N. Effects of black cumin-based antimalarial drug loaded with nano-emulsion of bovine and human serum albumins by spectroscopic and molecular docking studies. Heliyon 2023; 9:e12677. [PMID: 36632107 PMCID: PMC9826829 DOI: 10.1016/j.heliyon.2022.e12677] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The growing understanding of nanoemulsion biomedical applications necessitates a basic understanding of protein-drug-loaded nanoemulsion interaction. In our present study, we investigated the binding interactions of Mefloquine (MEF)-loaded black cumin seed oil (Thymoquinone) nanoemulsion of different concentrations towards human and bovine serum albumin (HSA&BSA).Fluorescenceemission,three-dimensionalspectra,UV-visible spectroscopy, and FTIR-spectroscopy, techniques were used together with molecular docking studies to identify the binding effects. The ground state complex formation between Mefloquine-loaded black cumin seed oil nanoemulsion and protein fluorophores was confirmed by a decrease in fluorescence intensity and disputed hyper-chronicity found in the UV-visible spectra of albumins. According to three-dimensional fluorescence spectral analysis, the addition of MEF in thymoquinone impacted the microenvironment around aromatic amino acid (tryptophan and tyrosine) residues in HSA. The quenching mechanism is determined to be static contact by stern-volmer analysis, resulting in the formation of a stable bioconjugate. Significant modifications in the amide FTIR frequencies at around 1600 cm-1 correlate to variations in the secondary alpha-helical structures of biomolecules at the MEF-loaded nanoemulsion interface. Molecular dynamic studies have shown the binding affinity scores of the proteins BSA and HSA with the drug, MEF-loaded black cumin seed oil nanoemulsion. The determined thermodynamic parameters were found to agree with molecular docking data, indicating that vander-waals and hydrogen bonding forces were important in the interaction process. MEF prefers a highly polar binding site at the exterior area of domains in HSA than BSA, as shown in the molecular model, and the hydrogen bonds are highlighted. From our results, we have observed that drug delivery has a detrimental effect on protein frame confirmation by altering its physiological function.
Collapse
Affiliation(s)
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India
- Corresponding author.
| |
Collapse
|
6
|
Effectiveness of time and temperature on antioxidant activity and curcumin loss of the prepared nanodispersion using the subcritical water technique. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Isoliquiritigenin Nanoemulsion Preparation by Combined Sonication and Phase-Inversion Composition Method: In Vitro Anticancer Activities. Bioengineering (Basel) 2022; 9:bioengineering9080382. [PMID: 36004907 PMCID: PMC9404772 DOI: 10.3390/bioengineering9080382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Isoliquiritigenin (ILQ) has a number of biological activities such as antitumor and anti-inflammatory effects. However, biomedical applications of ILQ are impeded by its poor aqueous solubility. Therefore, in this research, we prepared a novel ILQ-loaded nanoemulsion, i.e., ILQ-NE, which consisted of Labrafil® M 1944 CS (oil), Cremophor® EL (surfactant), ILQ, and phosphate-buffered saline, by employing a combined sonication (high-energy) and phase-inversion composition (low-energy) method (denoted as the SPIC method). The ILQ-NE increased the ILQ solubility ~1000 times more than its intrinsic solubility. It contained spherical droplets with a mean diameter of 44.10 ± 0.28 nm and a narrow size distribution. The ILQ loading capacity was 4%. The droplet size of ILQ-NE remained unchanged during storage at 4 °C for 56 days. Nanoemulsion encapsulation effectively prevented ILQ from degradation under ultraviolet light irradiation, and enhanced the ILQ in vitro release rate. In addition, ILQ-NE showed higher cellular uptake and superior cytotoxicity to 4T1 cancer cells compared with free ILQ formulations. In conclusion, ILQ-NE may facilitate the biomedical application of ILQ, and the SPIC method presents an attractive avenue for bridging the merits and eliminating the shortcomings of traditional high-energy methods and low-energy methods.
Collapse
|
8
|
Perumalsamy H, Shanmugam R, Kim JR, Anandapadmanaban G, Huq MA, Dua K, Chellappan DK, Yoon TH, Balusamy SR. Nanoemulsion and Encapsulation Strategy of Hydrophobic Oregano Essential Oil Increased Human Prostate Cancer Cell Death via Apoptosis by Attenuating Lipid Metabolism. Bioinorg Chem Appl 2022; 2022:9569226. [PMID: 35662912 PMCID: PMC9162876 DOI: 10.1155/2022/9569226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022] Open
Abstract
Origanum vulgare essential oil (EO) is traditionally well-known for its aromatic properties and biomedical applications, including anticancer. This was the first report where oregano essential oil-based nano emulsion (OENE) was synthesized for studying its effects on prostate cancer cell lines (PC3). At first, we have synthesized OENE and characterized using various spectroscopic analyses. The toxicity and inhibitory concentration (IC50) of OENE toward prostate cancer by MTT analysis were performed. The lipid biogenesis mediated, molecular target pathway analyses were performed using fluorescence cellular staining techniques, real-time RT-PCR, or western blotting analysis. OENE showed IC50 at 13.82 µg/mL and significantly induced distinct morphological changes, including cell shrinkage, cell density, and cell shape reduction. In addition, OENE could also significantly decreased lipid droplet accumulation which was confirmed by studying mRNA transcripts of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) (0.31-fold), fatty acid synthase (FASN) (0.18-fold), and sterol regulatory element-binding protein (SREPB1) (0.11-fold), respectively. Furthermore, there is a significant upregulation BAX (BCL2 associated X) and caspase 3 expressions. Nevertheless, OENE decreased the transcript level of BCL2 (B-cell lymphoma 2), thus resulting in apoptosis. Overall, our present work demonstrated that OENE could be a therapeutic target for the treatment of prostate cancer and warrants in vivo studies.
Collapse
Affiliation(s)
- Haribalan Perumalsamy
- Institute for Next Generation Material Design, Hanyang University, Seoul 04763, Republic of Korea
- Center for Creative Convergence Education, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Rajeshkumar Shanmugam
- Department of Pharmacology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu, India
| | - Jun-Ran Kim
- Experiment & Analysis Division, Animal and Plant Quarantine Agency, Honam Regional Office, Jeollabuk-Do 540-96, Republic of Korea
| | - Gokulanathan Anandapadmanaban
- Experiment & Analysis Division, Animal and Plant Quarantine Agency, Honam Regional Office, Jeollabuk-Do 540-96, Republic of Korea
| | - Md. Amdadul Huq
- Department of Food and Nutrition, Chung Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo, NSW 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Tae Hyun Yoon
- Institute for Next Generation Material Design, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-Gu, Seoul 05006, Republic of Korea
| |
Collapse
|
9
|
On the adsorption kinetics of bovine serum albumin at the air–water interface. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Rathee J, Kanwar R, Kumari L, Pawar SV, Sharma S, Ali ME, Salunke DB, Mehta SK. Development of nanostructured lipid carriers as a promising tool for methotrexate delivery: physicochemical and in vitro evaluation. J Biomol Struct Dyn 2022; 41:2747-2758. [PMID: 35238266 DOI: 10.1080/07391102.2022.2037465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The aim of the present study is to fabricate the stable nanostructured lipid carriers (NLCs) using biocompatible excipients for the encapsulation of Methotrexate (MTX), a chemotherapeutic agent for breast cancer treatment. MTX has restricted clinical applications owing to its low solubility, non-specific targeting and adverse side effects. Glyceryl Monostearate (GMS) and Miglyol 812 (MI1) were chosen as solid and liquid lipids, respectively, for the fabrication of NLCs, and the influence of variation of solid and liquid composition was investigated. The prepared NLCs exhibited long-term stability and spherical shape morphology as characterized by electron microscopy. The internal structure of fabricated NLCs was arranged into cubic crystalline as confirmed by small-angle X-ray scattering (SAXS) analysis. MTX's encapsulation efficiency of ∼85 ± 0.9%. and sustained in vitro release of MTX ∼ 52% ± 3.0 in 24 h was achieved. Classical molecular dynamics (MD) simulations were performed to study the structural stability of the MTX encapsulated NLCs. Hemolysis carried out on the NLCs showcased the biosafety of the formulation under the tolerance limit (<10%). Further, the MTT assay demonstrates that MTX-loaded NLCs exhibited toxicity against HeLa and MCF-7 cell lines as compared to blank NLCs. The finding demonstrates NLCs as promising vehicles for MTX delivery to address cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jyoti Rathee
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Rohini Kanwar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India.,Department of Chemistry, Mehr Chand Mahajan DAV College for Women, Chandigarh, India
| | - Laxmi Kumari
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Shikha Sharma
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, India
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Surinder Kumar Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| |
Collapse
|
11
|
Ultrasonication induced synthesis of TPGS stabilized clove oil nanoemulsions and their synergistic effect against breast cancer cells and harmful bacteria. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Rathee J, Kanwar R, Kumari L, Pawar SV, Salunke DB, Mehta SK. Preparation of α-Tocopherol based nanoemulsion for efficacious delivery of Methotrexate. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2021.2022491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jyoti Rathee
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Rohini Kanwar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
- Mehr Chand Mahajan D.A.V. College For Women, Chandigarh, India
| | - Laxmi Kumari
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Sandip V. Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Deepak B. Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Surinder Kumar Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| |
Collapse
|
13
|
Recent advances in colloidal technology for the improved bioavailability of the nutraceuticals. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14
|
Ma HL, Varanda LC, Perussi JR, Carrilho E. Hypericin-loaded oil-in-water nanoemulsion synthesized by ultrasonication process enhances photodynamic therapy efficiency. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 223:112303. [PMID: 34509718 DOI: 10.1016/j.jphotobiol.2021.112303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 01/01/2023]
Abstract
Hypericin (Hy) is a hydrophobic photosensitizer used in photodynamic therapy for cancer therapeutic. In this study, Hy-loaded oil-in-water (O/W) nanoemulsions (NEs) were produced by the ultrasonication method combing different biocompatible oils and surfactants to enhance Hy aqueous solubility and bioavailability. Experimental parameters were optimized by the characterization of droplet size, zeta potential, and physicochemical properties. In vitro studies based on the release profile, cytotoxicity, cell morphology, and Hy intracellular accumulation were assayed. Hy at 100 mg L-1 was incorporated into the low viscosity (~0.005 Pa s) NEs with spherical droplets averaging 20-40 nm in size and polydispersity index <0.02. Hy release from the NE was significantly higher (4-fold) than its suspension (p < 0.001). The NEs demonstrated good physical stability during storage at 5 °C for at least six months. The Hy-loaded NEs exhibited an IC50 value 6-fold lower than Hy suspension during PDT against breast cancer cell lines (MCF-7). Cell microscopy imaging confirmed the increased cytotoxic effects of Hy-loaded NEs, showing damaged and apoptotic cells. Confocal laser scanning microscopy evidenced greater Hy delivery through NE into MCF-7 cells followed by improved intracellular ROS generation. Our results suggest that the Hy-loaded NEs can improve hypericin efficacy and assist Hy-PDT's preclinical development as a cancer treatment.
Collapse
Affiliation(s)
- Hui Ling Ma
- Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica - INCTBio, 13083-970 Campinas, SP, Brazil
| | - Laudemir Carlos Varanda
- Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil
| | | | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica - INCTBio, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
15
|
Garavand F, Jalai-Jivan M, Assadpour E, Jafari SM. Encapsulation of phenolic compounds within nano/microemulsion systems: A review. Food Chem 2021; 364:130376. [PMID: 34171813 DOI: 10.1016/j.foodchem.2021.130376] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022]
Abstract
Phenolic compounds (phenolics) have received great attention in the food, pharmaceutical and nutraceutical industries due to their health-promoting attributes. However, their extensive use is limited mainly due to their poor water dispersibility and instability under both processing conditions and/or gastrointestinal interactions, affecting their bioavailability/bioaccessibility. Therefore, different nanocarriers have been widely used to encapsulate phenolics and overcome the aforementioned challenges. To the best of our knowledge, besides many research studies, no comprehensive review on encapsulation of phenolics by microemulsions (MEs) and nanoemulsions (NEs) has been published so far. The present study was therefore attempted to review the loading of phenolics into MEs and NEs. In addition, the fundamental characteristics of the developed systems such as stability, encapsulation efficiency, cytotoxicity, bioavailability and releasing rate are also discussed. Both MEs and NEs are proved as appropriate vehicles to encapsulate and protect phenolics which may expand their applications in foods, supplements and pharmaceuticals.
Collapse
Affiliation(s)
- Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland
| | - Mehdi Jalai-Jivan
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Elham Assadpour
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| |
Collapse
|
16
|
Nagy NZ, Varga Z, Mihály J, Domján A, Fenyvesi É, Kiss É. Highly Enhanced Curcumin Delivery Applying Association Type Nanostructures of Block Copolymers, Cyclodextrins and Polycyclodextrins. Polymers (Basel) 2020; 12:polym12092167. [PMID: 32971985 PMCID: PMC7570166 DOI: 10.3390/polym12092167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
The limited bioavailability of the highly hydrophobic natural compound, curcumin with wide range of beneficial bioactivity is still a challenge. Self-association type systems of polyethylene oxide-polypropylene oxide-polyethylene oxide block copolymers (Pluronic) were applied to enhance the aqueous solubility of curcumin. Comparison of four Pluronics (94, 105, 127,108) with different compositions led to the conclusion that solubilization capacity is maximum for Pluronic 105 with intermediate polarity (hydrophilic/lipophilic balance (HLB) = 15) possessing the optimum balance between capacity of hydrophobic core of the micelle and hydrophilic stabilizing shell of the associate. Curcumin concentration in aqueous solution was managed to increase 105 times up to 1-3 g/L applying Pluronic at 0.01 mol/L. Formation of a host-guest complex of cyclodextrin as another way of increasing the curcumin solubility was also tested. Comparing the(2-hydroxypropyl)-α, β and γ cyclodextrins (CD) with 6, 7 and 8 sugar units and their polymers (poly-α-CD, poly-β-CD, poly-γ-CD) the γ-CD with the largest cavity found to be the most effective in curcumin encapsulation approaching the g/L range of concentration. The polymer type of the CDs presented prolonged and pH dependent release of curcumin in the gastrointestinal (GI) system modelled by simulated liquids. This retarding effect of polyCD was also shown and can be used for tuning in the combined system of Pluronic micelle and polyCD where the curcumin release was slower than from the micelle.
Collapse
Affiliation(s)
- Nóra Zsuzsanna Nagy
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Budapest 112, PO Box 32, H-1518 Budapest, Hungary;
| | - Zoltán Varga
- Biological Nanochemistry Research Group, Institute of Materials and EnvironmentalChemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; (Z.V.); (J.M.)
| | - Judith Mihály
- Biological Nanochemistry Research Group, Institute of Materials and EnvironmentalChemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; (Z.V.); (J.M.)
| | - Attila Domján
- NMR Research Laboratory, Instrumentation Center, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary;
| | - Éva Fenyvesi
- CycloLab Cyclodextrin Research and Development Laboratory Ltd., Illatos út 7, H-1097 Budapest, Hungary;
| | - Éva Kiss
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Budapest 112, PO Box 32, H-1518 Budapest, Hungary;
- Correspondence:
| |
Collapse
|
17
|
Kumar R, Uppal S, Kaur K, Mehta S. Curcumin nanoemulsion as a biocompatible medium to study the metal ion imbalance in a biological system. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Effect of benzyl isothiocyanate encapsulated biocompatible nanoemulsion prepared via ultrasonication on microbial strains and breast cancer cell line MDA MB 231. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Choi SJ, McClements DJ. Nanoemulsions as delivery systems for lipophilic nutraceuticals: strategies for improving their formulation, stability, functionality and bioavailability. Food Sci Biotechnol 2020; 29:149-168. [PMID: 32064124 PMCID: PMC6992823 DOI: 10.1007/s10068-019-00731-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/11/2019] [Accepted: 12/26/2019] [Indexed: 12/11/2022] Open
Abstract
The food and beverage industry often need to encapsulate hydrophobic functional ingredients in their products, including colors, flavors, lipids, nutraceuticals preservatives, and vitamins. Encapsulation can improve the handling, water-dispersibility, chemically stability, and efficacy of these functional ingredients. In this review article, we focus on the design of nanoemulsion-based delivery systems to encapsulate, protect, and deliver non-polar bioactive agents, such as vitamin A, D and E, β-carotene, lycopene, lutein, curcumin, resveratrol, and coenzyme Q10. Initially, the challenges associated with incorporating these different bioactives into foods are highlighted. The relative merits and drawbacks of different nanoemulsion fabrication methods are then discussed. Finally, examples of the application of nanoemulsions for improving the stability and bioavailability of various kinds of hydrophobic vitamins and nutraceuticals are provided.
Collapse
Affiliation(s)
- Seung Jun Choi
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
- Departement of Interdisciplinary Bio IT Materials, Seoul National University of Science and
Technology, Seoul, 01811 Republic of Korea
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003 USA
- Department of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou, 310018 Zhejiang China
| |
Collapse
|
20
|
Takbirgou H, Salami M, Emam-Djomeh Z, Waly MI, Momen S, Ghasemi A, Moosavi-Movahedi AA. A tailored nanostructure design to protect camel casein-curcumin complex against the upper gastrointestinal tract hydrolysis using aggregated whey proteins in order to increase its antioxidant activity. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1828458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Haniye Takbirgou
- Department of Food Science and Engineering, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Maryam Salami
- Department of Food Science and Engineering, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Zahra Emam-Djomeh
- Department of Food Science and Engineering, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Mostafa I. Waly
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Shima Momen
- Department of Food Sciences, Rue de L’Agriculture, Université Laval, Québec, Canada
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | |
Collapse
|
21
|
Sayyar Z, Jafarizadeh-Malmiri H. Preparation of Curcumin Nanodispersions Using Subcritical Water – Screening of Different Emulsifiers. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201900415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zahra Sayyar
- Sahand University of TechnologyFaculty of Chemical Engineering Sahand New Town 5331811111 Tabriz Iran
| | - Hoda Jafarizadeh-Malmiri
- Sahand University of TechnologyFaculty of Chemical Engineering Sahand New Town 5331811111 Tabriz Iran
| |
Collapse
|
22
|
Development and Characterization of Lipid-Based Nanosystems: Effect of Interfacial Composition on Nanoemulsion Behavior. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02372-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Kanwar R, Gradzielski M, Prevost S, Kaur G, Appavou MS, Mehta SK. Physicochemical stimuli as tuning parameters to modulate the structure and stability of nanostructured lipid carriers and release kinetics of encapsulated antileprosy drugs. J Mater Chem B 2019; 7:6539-6555. [PMID: 31584603 DOI: 10.1039/c9tb01330j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To unveil the effect of electrolyte concentration, pH and polymer addition on Tween 80 stabilized nanostructured lipid carriers (NLCs, based on dialkyldimethylammonium bromides DxDAB and Na oleate), an in-depth scattering analysis was performed. Dynamic and static light scattering (DLS/SLS) and small-angle neutron scattering (SANS) techniques along with zeta potential studies were exploited to understand the structural evolution and physical stability of NLCs. In these experiments, we varied the salt concentration, pH, and the admixture of Pluronic F127 in order to elucidate their effect on NLC morphologies. In most cases, two populations of different sizes are present which differ by one order of magnitude. The antileprosy drugs (ALD) Rifampicin and Dapsone were encapsulated in NLCs and the vector properties were assessed for a series of DxDAB (where x = 12, 14, 16 and 18) NLCs. The influence of composition on the entrapment and release behavior of NLCs was investigated: The size of NLCs correlates with the release rate of the incorporated drug. The interaction of drug-loaded NLCs with bovine serum albumin was studied to understand the release of ALD in the plasma.
Collapse
Affiliation(s)
- Rohini Kanwar
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
| | - Michael Gradzielski
- Stranski Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Sylvain Prevost
- Institut Max von Laue - Paul Langevin (ILL), 71 avenue des Martyrs, 38042 Grenoble, France.
| | - Gurpreet Kaur
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - S K Mehta
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
| |
Collapse
|
24
|
He S, Joseph N, Luo X, Raston CL. Vortex fluidic mediated food processing. PLoS One 2019; 14:e0216816. [PMID: 31145727 PMCID: PMC6542520 DOI: 10.1371/journal.pone.0216816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/29/2019] [Indexed: 11/25/2022] Open
Abstract
The high heat and mass transfer, and controlled mechanoenergy, in angled vortex fluidics has been applied in chemical and material sciences and allied fields, but its utility in food processing remains largely unexplored. Herein we report three models of food processing incorporating such vortex fluidics, including enzymatic hydrolysis, raw milk pasteurization and encapsulation. The processing times of enzymatic hydrolysis was reduced from about 2–3 hours to 20 minutes, with the processing time of raw milk pasteurization reduced from 30 to 10 minutes, and an encapsulated particle size reduced approximately 10-fold, from micro meters to hundreds of nanometers. These findings highlight exciting possibilities, in exploiting the value of vortex fluidic mediated processing in the food industry.
Collapse
Affiliation(s)
- Shan He
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, China
- Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
- * E-mail: (CLR); (SH)
| | - Nikita Joseph
- Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Xuan Luo
- Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Colin L. Raston
- Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
- * E-mail: (CLR); (SH)
| |
Collapse
|
25
|
Kumari N, Singh M, Om H, Sachin KM. Philic-phobic chemical dynamics of a 1 st tier dendrimer dispersed o/w nanoemulsion. RSC Adv 2019; 9:12507-12519. [PMID: 35515866 PMCID: PMC9063675 DOI: 10.1039/c9ra00728h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/18/2019] [Indexed: 11/21/2022] Open
Abstract
Olive, castor and linseed oil (oil-in-water) nanoemulsions were prepared using Tween-20, sodium dodecyl sulfate, and cetyltrimethylammonium bromide (0.12 w/w%) with 0.02 w/w% cellulose acetate propionate (CAP), 0.02 w/w% cellulose acetate butyrate (CAB), 6.2 w/w% ethyl acetate, 5.5 w/w% ethanol and 7.8 w/w% glycerol as dispersion agents. To study the dispersion effect of trimesoyl 1,3,5-tridimethyl malonate (TTDMM, 1st tier), nanoemulsions were prepared with olive, castor and linseed oil. Their density, viscosity, surface tension and friccohesity measurements at T = (293.15, 303.15, and 315.15) K, hydrodynamic radii, surface excess concentration, surface area per molecule, and antioxidant activities were studied. Dispersion variations of TTDMM on varying surfactant and specific interactions of the hydration spheres and ester moiety of TTDMM with ethyl acetate, ethanol and glycerol linked oil-water-surfactant networks have been established. The variations in physicochemical properties suggest that the oil-TTDMM interaction abilities of the surfactant and co-surfactant moieties in the nanoemulsions cause a hydrophobic segregation. The physicochemical study of both blank and TTDMM loaded nanoemulsions have illustrated the thermodynamic stabilities in terms of hydrophobic-hydrophilic, hydrophilic-hydrophilic, van der Waals and hydrogen bonding interactions.
Collapse
Affiliation(s)
- Naveen Kumari
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology Murthal Haryana India
- School of Chemical Sciences, Central University of Gujarat Gandhinagar Gujarat India
| | - Man Singh
- School of Chemical Sciences, Central University of Gujarat Gandhinagar Gujarat India
| | - Hari Om
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology Murthal Haryana India
| | - K M Sachin
- School of Chemical Sciences, Central University of Gujarat Gandhinagar Gujarat India
| |
Collapse
|
26
|
Sayyar Z, Malmiri HJ. Preparation, Characterization and Evaluation of Curcumin Nanodispersions Using Three Different Methods – Novel Subcritical Water Conditions, Spontaneous Emulsification and Solvent Displacement. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2018-1152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Curcumin as a lipophilic bioactive compound can be incorporated into water-based formulations when it turns into curcumin nanodispersions. In fact, nanodispersion systems, increase curcumin bioavailability, solubility and stability, and furthermore increase curcumin uses in aqueous food and pharmaceutical formulations. Present study focuses on the preparation of curcumin nanodispersions under subcritical water conditions (temperature of 120 °C and pressure of 1.5 bar for 2 h) and using selected another two different methods namely, spontaneous emulsification and solvent displacement. Lecithin as carrier oil, Tween 80 as emulsifier and polyethylene glycol as co-surfactant, with a ratio of 1:8:1, were used in all the preparation techniques. Obtained results indicated that curcumin nanodispersions with smallest mean particle size (70 nm), polydispersity index (0.57), curcumin loss (5.5%) and turbidity (0.04 Nephelometric Turbidity Unit), and maximum loading ability (0.189 g/L), loading efficiency (94.5%) and conductivity (0.157 mS/cm) were obtained under subcritical water conditions. The results also exhibited that the prepared spherical curcumin nanoparticles in the water by this technique had desirable physical stability as their mean zeta potential value was (−12.6 mV). It also observed that, as compared to spontaneous emulsification and solvent displacement methods, the prepared curcumin nanodispersions via subcritical water method had highest anti-oxidant and antibacterial activities.
Collapse
Affiliation(s)
- Zahra Sayyar
- Faculty of Chemical Engineering , Sahand University of Technology , Tabriz , 51335-1996, Iran
| | | |
Collapse
|
27
|
Sayyar Z, Jafarizadeh-Malmiri H. Temperature Effects on Thermodynamic Parameters and Solubility of Curcumin O/W Nanodispersions Using Different Thermodynamic Models. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2019. [DOI: 10.1515/ijfe-2018-0311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractSolubility of curcumin at different temperatures is of great importance in subcritical water extraction systems. We newly developed an approach for the solid–liquid equilibrium under subcritical condition to determine the solubility of curcumin. The experimental results were correlated successfully with thermodynamics models such as Van’t Hoff, modified Apelblat equation, Wilson, non-random two-liquid (NRTL) and λh equation and the interaction parameters’ values of curcumin-water were acquired. Good agreement between the experimental and calculated values with λh equation was observed at different temperatures (373.15–433.15 °K) at 1.5 bar. The obtained value of the relative average deviation was 2.29 × 10–5. The molar enthalpy (ΔH0), entropy (ΔS0), Gibbs energy (ΔG0) and their relative fraction of the total process were calculated. The calculated enthalpy with the Van’t Hoff equation (25.32 kJ/mol) agreed well with the differential scanning calorimetry analysis data (26.15 kJ/mol).
Collapse
Affiliation(s)
- Zahra Sayyar
- Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran
| | | |
Collapse
|
28
|
Silva HD, Beldíková E, Poejo J, Abrunhosa L, Serra AT, Duarte CM, Brányik T, Cerqueira MA, Pinheiro AC, Vicente AA. Evaluating the effect of chitosan layer on bioaccessibility and cellular uptake of curcumin nanoemulsions. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.09.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Rafiee Z, Nejatian M, Daeihamed M, Jafari SM. Application of different nanocarriers for encapsulation of curcumin. Crit Rev Food Sci Nutr 2018; 59:3468-3497. [DOI: 10.1080/10408398.2018.1495174] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Zahra Rafiee
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Mohammad Nejatian
- Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Marjan Daeihamed
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| |
Collapse
|
30
|
Kumar R, Kaur K, Pandey SK, Kumar R, Uppal S, Mehta S. Fabrication of benzylisothiocynate encapsulated nanoemulsion through ultrasonication: Augmentation of anticancer and antimicrobial attributes. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.04.110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Chitosan nanoparticles as a biocompatible and efficient nanowagon for benzyl isothiocyanate. Int J Biol Macromol 2018; 115:18-28. [DOI: 10.1016/j.ijbiomac.2018.04.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/19/2018] [Accepted: 04/08/2018] [Indexed: 01/29/2023]
|
32
|
Development of new nanostructure based on poly(aspartic acid)-g-amylose for targeted curcumin delivery using helical inclusion complex. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.02.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
|
34
|
Kaur K, Kaur J, Kumar R, Mehta SK. Formulation and physiochemical study of α-tocopherol based oil in water nanoemulsion stabilized with non toxic, biodegradable surfactant: Sodium stearoyl lactate. ULTRASONICS SONOCHEMISTRY 2017; 38:570-578. [PMID: 27566966 DOI: 10.1016/j.ultsonch.2016.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/19/2016] [Accepted: 08/19/2016] [Indexed: 05/16/2023]
Abstract
The unique properties such as high optical clarity, stability and enhanced bioavailability of nanoemulsion make them useful for food, cosmetic and pharmaceutical industries. In this work, sodium stearoyl lactate and Tween 80 surfactants were collectively used to fabricate alpha tocopherol based oil in water nanoemulsion using high energy ultrasonication method. The spherical nature of pure and drug loaded nanoemulsion has been confirmed with transmission electron microscopy (TEM). The influence of pH, dilution, surfactant concentration and ionic strength on average particle size of pure and nutraceutical (benzylisothiocyanate and curcumin) encapsulated emulsion was examined. The prepared emulsion exhibited good stability up to 90days in salt solution (50-200mM) and different pH conditions. The cumulative release % of benzylisothiocyanate and curcumin was found to be 50.29% in 36h and 89.15% in 150h respectively. The antioxidant activity of pure, benzylisothiocyanate, curcumin and cocktail (benzylisothiocyanate and curcumin) nanoemulsion was calculated with 2,2-diphenyl-1-picrylhydrazyl radical. The IC50 value of different antioxidant showed that benzylisothiocyanate nanoemulsion acted as better antioxidant as compared to pure and curcumin encapsulated nanoemulsion. Also the cell viability of pure nanoemulsion was found to be 24% on hep G2 cell. The effect of UV light irradiation on curcumin and benzylisothiocyanate stability was carried out in different solvent conditions (water/ethanol and nanoemulsion). The degradation of curcumin by the impact of UV light was successfully controlled by trapping in NEm.
Collapse
Affiliation(s)
- Khushwinder Kaur
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
| | - Jaspreet Kaur
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Raj Kumar
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - S K Mehta
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
35
|
Kumar R, Kaur K, Uppal S, Mehta SK. Ultrasound processed nanoemulsion: A comparative approach between resveratrol and resveratrol cyclodextrin inclusion complex to study its binding interactions, antioxidant activity and UV light stability. ULTRASONICS SONOCHEMISTRY 2017; 37:478-489. [PMID: 28427660 DOI: 10.1016/j.ultsonch.2017.02.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 05/28/2023]
Abstract
Resveratrol is a naturally occurring therapeutic molecule used for treatment of diseases caused by oxidative stress. This investigation elucidates the advantages of fabrication of size controlled resveratrol inclusion complex. This has been done by encapsulating resveratrol-cyclodextrin inclusion complex in a phospholipid stabilized nanoemulsion formulated by ultrasonication emulsification method. The prepared nanoemulsion has been compared with resveratrol encapsulated nanoemulsion system. The morphology of the resveratrol nanoemulsion and inclusion complex nanoemulsion have been observed using transmission electron microscopy with average size 20.41±3.41 and 24.48±5.70nm respectively. The nanoemulsion showed good loading and release efficiency. The radical diminishing potential of resveratrol and its inclusion complex has been compared in nanoemulsion. The effect of UV irradiation (365nm) on resveratrol in different solvent systems (ethanol, water and nanoemulsion) indicated that nanoemulsion prevents degradation of resveratrol. Efforts have also been made to explore the interactions between bovine serum albumin and resveratrol in nanoemulsion.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| | - Khushwinder Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India.
| | - Shivani Uppal
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| | - S K Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| |
Collapse
|
36
|
Kaur K, Kumar R, Goel S, Uppal S, Bhatia A, Mehta SK. Physiochemical and cytotoxicity study of TPGS stabilized nanoemulsion designed by ultrasonication method. ULTRASONICS SONOCHEMISTRY 2017; 34:173-182. [PMID: 27773233 DOI: 10.1016/j.ultsonch.2016.05.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/21/2016] [Accepted: 05/21/2016] [Indexed: 06/06/2023]
Abstract
The main aim of the present work was to prepare TPGS stabilized D-α-Tocopherol, lemon oil, tween-80, and water nanoemulsion by low cost and highly effective sonication method. The prepared nanoemulsion showed good stability for 60days at variable temperature conditions i.e. 4, 25 and 37°C. The tolerance of the prepared nanoemulsion to salt (50mM-500mM) and pH (pH 2-pH 7.4) was also studied. The morphology and droplet size of pure and quinine loaded nanoemulsion was characterized with transmission electron microscopy. The prepared formulation was transparent and the obtained average particle size ranged between 25nm and 35nm. The nanoemulsion was found to be non toxic. The cell viability study of pure nanoemulsion carried out on Hep G2 cells revealed that the cell viability was 100%. The formulation further exhibited high quinine loading and release capacity with cumulative release up to 76±2% and 65±2% at pH 7.4 and pH 5.5 respectively. The interaction between quinine and vitamins (riboflavin, thiamine and biotin) was also carried out (aqueous medium). The study revealed that riboflavin had strong interaction with quinine and vitamins vis-à-vis thiamine and biotin.
Collapse
Affiliation(s)
- Khushwinder Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India.
| | - Raj Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| | - Sumit Goel
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Shivani Uppal
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - S K Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| |
Collapse
|
37
|
Pentak D, Maciążek-Jurczyk M. Self-assembled nanostructures formed by phospholipids and anticancer drugs. Serum albumin-nanoparticle interactions. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.09.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Kaur K, Kumar R, Mehta SK. Formulation of saponin stabilized nanoemulsion by ultrasonic method and its role to protect the degradation of quercitin from UV light. ULTRASONICS SONOCHEMISTRY 2016; 31:29-38. [PMID: 26964921 DOI: 10.1016/j.ultsonch.2015.11.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 05/26/2023]
Abstract
The objective of the present study was to prepare quercitin (QT) loaded o/w nanoemulsion using food grade surfactants (saponin and tween 80). The prepared nanoemulsion) was stable up to 30 days. The average particle size of the nanoemulsion was 52 ± 10 nm. The formation of saponin stabilized nanoemulsion was confirmed by transmission electron microscopy. Quercitin (QT) trapped nanoemulsion showed higher stability on exposure to UV light (254 nm) as compared to water/ethanol system. The degradation rate was found to decrease from 9 ± 1%, 11 ± 1% at pH 7.4, 8.0 respectively as compared to 42 ± 2% in water/ethanol system. Attempt was also made to study the interaction of QT with two different bile salts (sodium cholate and sodium taurocholate). The free radical scavenging activity of DPPH quercitin and curcumin was compared in NEm media. The obtained IC50 value of quercitin, curcumin and ascorbic acid are 28.88 ± 1, 45.53 ± 2 and 51.51 ± 2 μM respectively. The values of binding constant for sodium cholate (NaC) and sodium taurocholate (NaTC) are 2.66 × 10(5) and 2.72 × 10(4) M(-1) respectively. Sodium cholate (NaC) was found to show strong interaction towards quercitin (QT) due to more electron density on oxygen atom of carboxylate ion.
Collapse
Affiliation(s)
- Khushwinder Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India.
| | - Raj Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| | - S K Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| |
Collapse
|
39
|
Phase Transitions of Isotropic to Anisotropic Biocompatible Lipid-Based Drug Delivery Systems Overcoming Insoluble Benznidazole Loading. Int J Mol Sci 2016; 17:ijms17070981. [PMID: 27376278 PMCID: PMC4964366 DOI: 10.3390/ijms17070981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 02/08/2023] Open
Abstract
Previous studies reported low benznidazole (BNZ) loading in conventional emulsions due to the weak interaction of the drug with the most common oils used to produce foods or pharmaceuticals. In this study, we focused on how the type of surfactant, surfactant-to-oil ratio w/w (SOR) and oil-to-water ratio w/w (OWR) change the phase behavior of different lipid-based drug delivery systems (LBDDS) produced by emulsion phase inversion. The surfactant mixture composed of soy phosphatidylcholine and sodium oleate (1:7, w/w, hydrophilic lipophilic balance = 16) stabilized medium chain triglyceride in water. Ten formulations with the clear aspect or less turbid dispersions (five with the SOR ranging from 0.5 to 2.5 and five with the OWR from 0.06 to 0.4) were selected from the phase behavior diagram to assess structural features and drug-loading capacity. The rise in the SOR induced the formation of distinct lipid-based drug delivery systems (nanoemulsions and liquid crystal lamellar type) that were identified using rheological measurements and cross-polarized light microscopy images. Clear dispersions of small and narrow droplet-sized liquid-like nanoemulsions, Newtonian flow-type, were produced at SOR from 0.5 to 1.5 and OWR from 0.12 to 0.4, while clear liquid or gel-like liquid crystals were produced at SOR from 1.5 to 2.5. The BNZ loading was improved according to the composition and type of LBDDS produced, suggesting possible drug location among surfactant layers. The cell viability assays proved the biocompatibility for all of the prepared nanoemulsions at SOR less than 1.5 and liquid crystals at SOR less than 2.5, demonstrating their promising features for the oral or parenteral colloidal delivery systems containing benznidazole for Chagas disease treatment.
Collapse
|
40
|
Sekar G, Sivakumar A, Mukherjee A, Chandrasekaran N. Probing the interaction of neem oil based nanoemulsion with bovine and human serum albumins using multiple spectroscopic techniques. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Mahmood K, Zia KM, Zuber M, Salman M, Anjum MN. Recent developments in curcumin and curcumin based polymeric materials for biomedical applications: A review. Int J Biol Macromol 2015; 81:877-90. [PMID: 26391597 DOI: 10.1016/j.ijbiomac.2015.09.026] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/05/2015] [Accepted: 09/16/2015] [Indexed: 01/15/2023]
Abstract
Turmeric (Curcuma longa) is a popular Indian spice that has been used for centuries in herbal medicines for the treatment of a variety of ailments such as rheumatism, diabetic ulcers, anorexia, cough and sinusitis. Curcumin (diferuloylmethane) is the main curcuminoid present in turmeric and responsible for its yellow color. Curcumin has been shown to possess significant anti-inflammatory, anti-oxidant, anti-carcinogenic, anti-mutagenic, anticoagulant and anti-infective effects. This review summarizes and discusses recently published papers on the key biomedical applications of curcumin based materials. The highlighted studies in the review provide evidence of the ability of curcumin to show the significant vitro antioxidant, diabetic complication, antimicrobial, neuroprotective, anti-cancer activities and detection of hypochlorous acid, wound healing, treatment of major depression, healing of paracentesis, and treatment of carcinoma and optical detection of pyrrole properties. Hydrophobic nature of this polyphenolic compound along with its rapid metabolism, physicochemical and biological instability contribute to its poor bioavailability. To redress these problems several approaches have been proposed like encapsulation of curcumin in liposomes and polymeric micelles, inclusion complex formation with cyclodextrin, formation of polymer-curcumin conjugates, etc.
Collapse
Affiliation(s)
- Kashif Mahmood
- Institute of Chemistry, Government College University, Faisalabad, Pakistan
| | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad, Pakistan.
| | - Mohammad Zuber
- Institute of Chemistry, Government College University, Faisalabad, Pakistan
| | - Mahwish Salman
- Institute of Chemistry, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|