1
|
Hernández CJ, Medina R, Maza Mejía I, Hurtado M, Khan S, Picasso G, López R, Sotomayor MDPT. Preparation of a Molecularly Imprinted Polymer on Polyethylene Terephthalate Platform Using Reversible Addition-Fragmentation Chain Transfer Polymerization for Tartrazine Analysis via Smartphone. Polymers (Basel) 2024; 16:1325. [PMID: 38794519 PMCID: PMC11125313 DOI: 10.3390/polym16101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
This work describes the preparation of a molecularly imprinted polymer (MIP) platform on polyethylene terephthalate (MIP-PET) via RAFT polymerization for analyzing tartrazine using a smartphone. The MIP-PET platform was characterized using Fourier transform infrared (FTIR) techniques, Raman Spectroscopy, X-ray photoelectron spectroscopy (XPS), and confocal microscopy. The optimal pH and adsorption time conditions were determined. The adsorption capacity of the MIP-PET plates with RAFT treatment (0.057 mg cm-2) was higher than that of the untreated plates (0.028 mg cm-2). The kinetic study revealed a pseudo-first-order model with intraparticle diffusion, while the isotherm study indicated a fit for the Freundlich model. Additionally, the MIP-PET demonstrated durability by maintaining its adsorption capacity over five cycles of reuse without significant loss. To quantify tartrazine, images were captured using a smartphone, and the RGB values were obtained using the ImageJ® free program. A partial least squares regression (PLS) was performed, obtaining a linear range of 0 to 7 mg L-1 of tartrazine. The accuracy of the method was 99.4% (4.97 ± 0.74 mg L-1) for 10 samples of 5 mg L-1. The concentration of tartrazine was determined in two local soft drinks (14.1 mg L-1 and 16.5 mg L-1), with results comparable to the UV-visible spectrophotometric method.
Collapse
Affiliation(s)
- Christian Jacinto Hernández
- Laboratory of Instrumental Analysis Environment, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru; (C.J.H.); (R.M.)
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru;
| | - Raúl Medina
- Laboratory of Instrumental Analysis Environment, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru; (C.J.H.); (R.M.)
| | - Ily Maza Mejía
- Laboratory of Instrumental Analysis Environment, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru; (C.J.H.); (R.M.)
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru;
| | - Mario Hurtado
- Facultad de Ingeniería de Petróleo, Gas Natural y Petroquímica, Universidad Nacional de Ingeniería, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru;
| | - Sabir Khan
- Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus 45662-900, BA, Brazil;
| | - Gino Picasso
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru;
| | - Rosario López
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru;
| | - María D. P. T. Sotomayor
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara 14801-970, SP, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutantans Radioactives (INCT-DATREM), Araraquara 14801-970, SP, Brazil
| |
Collapse
|
2
|
Farooq S, Xu L, Ostovan A, Qin C, Liu Y, Pan Y, Ping J, Ying Y. Assessing the greenification potential of cyclodextrin-based molecularly imprinted polymers for pesticides detection. Food Chem 2023; 429:136822. [PMID: 37450994 DOI: 10.1016/j.foodchem.2023.136822] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Cyclodextrins, with their unparalleled attributes of eco-friendliness, natural abundance, versatile utility, and facile functionalization, make a paramount contribution to the field of molecular imprinting. Leveraging the unique properties of cyclodextrins in molecularly imprinted polymers synthesis has revolutionized the performance of molecularly imprinted polymers, resulting in enhanced adsorption selectivity, capacity, and rapid extraction of pesticides, while also circumventing conventional limitations. As the concern for food quality and safety continues to grow, the need for standard analytical methods to detect pesticides in food and environmental samples has become paramount. Cyclodextrins, being non-toxic and biodegradable, present an attractive option for greener reagents in imprinting polymers that can also ensure environmental safety post-application. This review provides a comprehensive summary of the significance of cyclodextrins in molecular imprinting for pesticide detection in food and environmental samples. The recent advancements in the synthesis and application of molecularly imprinted polymers using cyclodextrins have been critically analyzed. Furthermore, the current limitations have been meticulously examined, and potential opportunities for greenification with cyclodextrin applications in this field have been discussed. By harnessing the advantages of cyclodextrins in molecular imprinting, it is possible to develop highly selective and efficient methods for detecting pesticides in food and environmental samples while also addressing the challenges of sustainability and environmental impact.
Collapse
Affiliation(s)
- Saqib Farooq
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Lizhou Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Chunlian Qin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yingjia Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yuxiang Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Jianfeng Ping
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| |
Collapse
|
3
|
Boukadida M, Jaoued-Grayaa N, Anene A, Chevalier Y, Hbaieb S. Effect of cross-linking agents on the adsorption of histamine on molecularly imprinted polyacrylamide. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Zhao X, Wang Y, Zhang P, Lu Z, Xiao Y. Recent Advances of Molecularly Imprinted Polymers Based on Cyclodextrin. Macromol Rapid Commun 2021; 42:e2100004. [PMID: 33749077 DOI: 10.1002/marc.202100004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Molecular imprinting polymers (MIPs), generally considered as artificial mimics that are comparable to natural receptor, are polymers with tailor-made specific recognition sites complementary to the template molecules in shape and size. As a class of supramolecular compounds, cyclodextrins (CDs) are flourishing in the field of molecular imprinting with their unique structural properties. This review presents recent advances in application of MIPs based on CDs during the past five years. The discussion is grouped according to the different role of CDs in MIPs, that is, functional monomer, carrier modifier, etc. Main focus is the application of CD-based MIP on sample preparation, detection, and sensing. Additionally, drug delivery with CD-based MIP is also briefly discussed. Finally, challenges and future prospects of application of CDs in MIP are elaborated.
Collapse
Affiliation(s)
- Xiaoyue Zhao
- Tianjin Engineering Research Center of Functional Fine Chemicals, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yong Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Pan Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhemiao Lu
- Tianjin Engineering Research Center of Functional Fine Chemicals, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yin Xiao
- Tianjin Engineering Research Center of Functional Fine Chemicals, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
5
|
Mamman S, Suah FBM, Raaov M, Mehamod FS, Asman S, Zain NNM. Removal of bisphenol A from aqueous media using a highly selective adsorbent of hybridization cyclodextrin with magnetic molecularly imprinted polymer. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201604. [PMID: 33959329 PMCID: PMC8074973 DOI: 10.1098/rsos.201604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/27/2021] [Indexed: 05/03/2023]
Abstract
In this study, a unique magnetic molecularly imprinted polymer (MMIP) adsorbent towards bisphenol A (BPA) as a template molecule was developed by bulk polymerization using β-cyclodextrin (β-CD) as a co-monomer with methacrylic acid (MAA) to form MMIP MAA-βCD as a new adsorbent. β-CD was hybridized with MAA to obtain water-compactible imprinting sites for the effective removal of BPA from aqueous samples. Benzoyl peroxide and trimethylolpropane trimethacrylate were used as the initiator and cross-linker, respectively. The adsorbents were characterized by Fourier transform infrared spectroscopy, scanning electronic microscopy, transmission electron microscopy, vibrating sample magnetometer, Brunauer-Emmett-Teller and X-ray diffraction. 1H nuclear magnetic resonance spectroscopy was used to characterize the MAA-βCD and BPA-MAA-βCD complex. Several parameters influencing the adsorption efficiency of BPA such as adsorbent dosage, pH of sample solution, contact time, initial concentrations and temperature as well as selectivity and reusability study have been evaluated. MMIP MAA-βCD showed significantly higher removal efficiency and selective binding capacity towards BPA compared to MMIP MAA owing to its unique morphology with the presence of β-CD. The kinetics data can be well described by the pseudo second-order kinetic and Freundlich isotherm and Halsey models best fitted the isotherm data. The thermodynamic studies indicated that the adsorption reaction was a spontaneous and exothermic process. Therefore, MMIP based on the hybrid monomer of MAA-βCD shows good potential of a new monomer in molecularly imprinted polymer preparation and can be used as an effective adsorbent for the removal of BPA from aqueous solutions.
Collapse
Affiliation(s)
- S. Mamman
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
- Faculty of Natural and Applied Sciences Department of Chemistry, Nasarawa State University Keffi, PMB 1022 Keffi, Nasarawa, Nigeria
| | - F. B. M. Suah
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - M. Raaov
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - F. S. Mehamod
- Advanced Nano Materials (ANoMA) Research Group, School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - S. Asman
- Department of Physics and Chemistry, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, UTHM Pagoh Campus, Pagoh Higher Education Hub, 84600 Muar, Johor, Malaysia
| | - N. N. M. Zain
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Penang, Malaysia
| |
Collapse
|
6
|
Li N, Yang H. Construction of natural polymeric imprinted materials and their applications in water treatment: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123643. [PMID: 32846267 DOI: 10.1016/j.jhazmat.2020.123643] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/08/2020] [Accepted: 08/03/2020] [Indexed: 05/17/2023]
Abstract
Molecularly imprinted materials (MIMs) have been widely used in various fields, including water treatment, chemical sensing, and biotechnology, because of their specific recognition and high selectivity. MIMs are usually obtained via two successive steps, namely, (1) copolymerization and crosslinking reactions of the preassembled complex of comonomers and a specific target compound (2) and thorough removal of template molecules. Some functional polymers are directly used as supporting materials and functional groups assembled with target compound are provided to simplify the preparation of MIMs. Natural polymers, such as chitosan, cyclodextrin, sodium alginate, starch, cellulose, lignin and their derivatives, are good candidates because of their environmentally friendly properties, low costs, and abundant active functional groups. In this study, different methods for the preparation of natural polymeric MIMs were reviewed in terms of the construction of microscopic binding cavities and macroscopic visible condensed structures with different shapes. Natural polymeric MIMs in water treatment applications, such as adsorption and detection of various pollutants from aqueous solutions, were summarized. Prospects on the development of novel and high-performance natural polymeric MIMs were discussed to overcome the difficulties in their preparation and applications.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Department of Environmental Science, School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou 571199, PR China
| | - Hu Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
7
|
Liu Y, Wang J, Zhang M, Li H, Lin Z. Polymer-Ligated Nanocrystals Enabled by Nonlinear Block Copolymer Nanoreactors: Synthesis, Properties, and Applications. ACS NANO 2020; 14:12491-12521. [PMID: 32975934 DOI: 10.1021/acsnano.0c06936] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The past several decades have witnessed substantial advances in synthesis and self-assembly of inorganic nanocrystals (NCs) due largely to their size- and shape-dependent properties for use in optics, optoelectronics, catalysis, energy conversion and storage, nanotechnology, and biomedical applications. Among various routes to NCs, the nonlinear block copolymer (BCP) nanoreactor technique has recently emerged as a general yet robust strategy for crafting a rich diversity of NCs of interest with precisely controlled dimensions, compositions, architectures, and surface chemistry. It is notable that nonlinear BCPs are unimolecular micelles, where each block copolymer arm of nonlinear BCP is covalently connected to a central core or polymer backbone. As such, their structures are static and stable, representing a class of functional polymers with complex architecture for directing the synthesis of NCs. In this review, recent progress in synthesizing NCs by capitalizing on two sets of nonlinear BCPs as nanoreactors are discussed. They are star-shaped BCPs for producing 0D spherical nanoparticles, including plain, hollow, and core-shell nanoparticles, and bottlebrush-like BCPs for creating 1D plain and core/shell nanorods (and nanowires) as well as nanotubes. As the surface of these NCs is intimately tethered with the outer blocks of nonlinear BCPs used, they can thus be regarded as polymer-ligated NCs (i.e., hairy NCs). First, the rational design and synthesis of nonlinear BCPs via controlled/living radical polymerizations is introduced. Subsequently, their use as the NC-directing nanoreactors to yield monodisperse nanoparticles and nanorods with judiciously engineered dimensions, compositions, and surface chemistry is examined. Afterward, the intriguing properties of such polymer-ligated NCs, which are found to depend sensitively on their sizes, architectures, and functionalities of surface polymer hairs, are highlighted. Some practical applications of these polymer-ligated NCs for energy conversion and storage and drug delivery are then discussed. Finally, challenges and opportunities in this rapidly evolving field are presented.
Collapse
Affiliation(s)
- Yijiang Liu
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Jialin Wang
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Mingyue Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Huaming Li
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Luo K, Chen H, Zhou Q, Yan Z, Su Z, Li K. A sensitive and visual molecularly imprinted fluorescent sensor incorporating CaF 2 quantum dots and β-cyclodextrins for 5-hydroxymethylfurfural detection. Anal Chim Acta 2020; 1124:113-120. [PMID: 32534663 DOI: 10.1016/j.aca.2020.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/20/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Abstract
Calcium fluoride (CaF2) quantum dots have many applications in various fields. But there is no report on fluorescent characteristics of CaF2 quantum dots (CaF2 QDs). Here, a synthesis of multiple-color emission CaF2 QDs by changing the temperature, time and raw ratio is reported, by which the CaF2 QDs with purple, blue, green, and yellow emission can be obtained, respectively. They were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). On this basis, a novel molecular imprinting ratiometric fluorescence sensor (MIR sensor) had been constructed based on the prepared CaF2 QDs and CdTe QDs, in which the yellow emission CaF2 QDs was used as a responsive signal material and the red emission CdTe QDs was served as a reference signal material. And the β-CD and methylacrylic acid (MAA) as bifunctional monomers were used for constructing the specific molecularly imprinted polymers (MIPs) in MIR sensor. This MIR sensor was applied for highly selective and excellent sensitive detection of 5-hydroxymethylfurfural (HMF). Under optimum conditions, it exhibited an excellent linear relationship between the fluorescence intensity ratio (I599/I625) and the concentration of HMF in the range of 0.1-6.0 μg/mL with a detection limit of 0.043 μg/mL. Finally, the established HMF-MIR sensor was successfully utilized to detect HMF in honey with satisfactory results. This work provided a reference for the application of the CaF2 QDs and the detection of the furfural substances.
Collapse
Affiliation(s)
- Kang Luo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haicheng Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qing Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhihong Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Separation and determination of alkylamides from prickly ash powder using molecularly imprinting technique. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2019.103387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Seidi F, Shamsabadi AA, Amini M, Shabanian M, Crespy D. Functional materials generated by allying cyclodextrin-based supramolecular chemistry with living polymerization. Polym Chem 2019. [DOI: 10.1039/c9py00495e] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclodextrin molecules are cyclic oligosaccharides that display a unique structure including an inner side and two faces on their outer sides.
Collapse
Affiliation(s)
- Farzad Seidi
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | | | - Mojtaba Amini
- Department of Chemistry
- Faculty of Science
- University of Maragheh
- Maragheh
- Iran
| | - Meisam Shabanian
- Faculty of Chemistry and Petrochemical Engineering
- Standard Research Institute (SRI)
- Karaj
- Iran
| | - Daniel Crespy
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| |
Collapse
|