1
|
Sun J, Liu Z, Zhou H, Cao M, Cai W, Xu C, Xu J, Huang Z. Ionic Liquids Modulating Local Microenvironment of Ni-Fe Binary Single Atom Catalyst for Efficient Electrochemical CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308522. [PMID: 38161261 DOI: 10.1002/smll.202308522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Indexed: 01/03/2024]
Abstract
The Ni and Fe dual-atom catalysts still undergo strikingly attenuation under high current density and high overpotential. To ameliorate the issue, the ionic liquids with different cations or anions are used in this work to regulate the micro-surface of nitrogen-doped carbon supported Ni and Fe dual-atom sites catalyst (NiFe-N-C) by an impregnation method. The experimental data reveals the dual function of ionic liquids, which enhances CO2 adsorption ability and modulates electronic structure, facilitating CO2 anion radical (CO2 •¯) stabilization and decreasing onset potential. The theoretical calculation results prove that the attachment of ionic liquids modulates electronic structure, reduces energy barrier of CO2 •¯ formation, and enhances overall ECR performance. Based on these merits, BMImPF6 modified NiFe-N-C (NiFe-N-C/BMImPF6) achieves the high CO faradaic efficiency of 91.9% with a CO partial current density of -120 mA cm-2 at -1.0 V. When the NiFe-N-C/BMImPF6 is assembled as cathode of Zn-CO2 battery, it delivers the highest power density of 2.61 mW cm-2 at 2.57 mA cm-2 and superior cycling stability. This work will afford a direction to modify the microenvironment of other dual-atom catalysts for high-performance CO2 electroreduction.
Collapse
Affiliation(s)
- Jiale Sun
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhen Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Haihui Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Mengxue Cao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Weiming Cai
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chenxi Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Junwei Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhongyuan Huang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 510000, P. R. China
| |
Collapse
|
2
|
Drake AD, He Y, Ladipo F, Knutson BL, Rankin SE. Effect of Pore Confinement of Ionic Liquids on Solute Diffusion within Mesoporous Silica Microparticles. J Phys Chem B 2024. [PMID: 38478906 DOI: 10.1021/acs.jpcb.4c01018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The transport properties of the ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) confined within silica microparticles with well-ordered, accessible mesopores (5.4 or 9 nm diameter) were investigated. [BMIM][PF6] confinement was confirmed by using differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The transport properties of the confined IL were studied using the neutral and cationic fluorescent probes 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) and rhodamine 6G, respectively, through fluorescence recovery after photobleaching (FRAP) in confocal microscopy. The diffusivity of DCM in 9 nm pores is 0.026 ± 0.0091 μm2/s, which is 2 orders of magnitude less than in the bulk ionic liquid. The pore size did not affect the diffusivity of DCM in unmodified silica nanopores. The diffusivity of the cationic probe is reduced by 63% relative to that of the neutral probe. Diffusivity is increased with water content, where equilibrium hydration of the system leads to a 37% increase in DCM diffusivity. The most dramatic impact on diffusivity was caused by tethering an IL-like methylimidazolium chloride group to the pores, which increased the pore hydrophobicity and resulted in 3-fold higher diffusivity of DCM compared to bare silica pores. Subsequent exchange of the chloride anion from the tethering group with PF6- decreased the diffusivity to half that of bare silica. The diffusion of probe molecules is affected most strongly by the pore wall effects on probe interactions rather than by the pore size itself, which suggests that understanding pore wall diffusion is critical to the design of nanoconfined ILs for separations, catalysis, and energy storage.
Collapse
Affiliation(s)
- Andrew D Drake
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F.P. Anderson Tower, Lexington, Kentucky 40506-0046, United States
| | - Yuxin He
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F.P. Anderson Tower, Lexington, Kentucky 40506-0046, United States
| | - Folami Ladipo
- Department of Chemistry, University of Kentucky, 125 Chemistry/Physics Building, Lexington, Kentucky 40506-0055, United States
| | - Barbara L Knutson
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F.P. Anderson Tower, Lexington, Kentucky 40506-0046, United States
| | - Stephen E Rankin
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F.P. Anderson Tower, Lexington, Kentucky 40506-0046, United States
| |
Collapse
|
3
|
Marimuthu T, Sidat Z, Kumar P, Choonara YE. An Imidazolium-Based Ionic Liquid as a Model to Study Plasticization Effects on Cationic Polymethacrylate Films. Polymers (Basel) 2023; 15:polym15051239. [PMID: 36904480 PMCID: PMC10006978 DOI: 10.3390/polym15051239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Ionic liquids (ILs) have been touted as effective and environmentally friendly agents, which has driven their application in the biomedical field. The study compares the effectiveness of an IL agent, 1-hexyl-3-methyl imidazolium chloride ([HMIM]Cl), to current industry standards for plasticizing a methacrylate polymer. Industrial standards glycerol, dioctyl phthalate (DOP) and the combination of [HMIM]Cl with a standard plasticizer was also evaluated. Plasticized samples were evaluated for stress-strain, long-term degradation, thermophysical characterizations, and molecular vibrational changes within the structure, and molecular mechanics simulations were performed. Physico-mechanical studies showed that [HMIM]Cl was a comparatively good plasticizer than current standards reaching effectiveness at 20-30% w/w, whereas plasticizing of standards such as glycerol was still inferior to [HMIM]Cl even at concentrations up to 50% w/w. Degradation studies show HMIM-polymer combinations remained plasticized for longer than other test samples, >14 days, compared to glycerol <5 days, while remaining more pliable. The combination of [HMIM]Cl-DOP was effective at concentrations >30% w/w, demonstrating remarkable plasticizing capability and long-term stability. ILs used as singular agents or in tandem with other standards provided equivalent or better plasticizing activity than the comparative free standards.
Collapse
|
4
|
Dynamics of Poly(methyl methacrylate) in Ionic Liquids with Different Concentration and Cationic Structures. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Liu G, Fang D, Dan Y, Luo H, Luo C, Niu Y, Li G. Influence of ionic liquids on the chain dynamics and enthalpy relaxation of poly(methyl methacrylate). Phys Chem Chem Phys 2022; 24:16388-16396. [PMID: 35762774 DOI: 10.1039/d2cp02223k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imidazolium ionic liquids (ILs) with various alkyl chain lengths on the cations ([Cnmim]+, n = 2, 4 and 8) and different combined anions ([TFSI]- and [PF6]-) were blended with poly(methyl methacrylate) (PMMA), and the effects of the IL structure on the chain dynamics of PMMA were experimentally investigated by rheology and DSC measurements combined with a simulation method. The results indicate that the interaction between PMMA and ILs becomes stronger as the alkyl chain length on the imidazolium ring increases or the anion changes from [PF6]- to [TFSI]-. As a result, a higher critical entanglement concentration and a larger entanglement molecular weight of PMMA were found in [C8mim][TFSI] due to the stiffer conformation. Molecular dynamics (MD) simulations further demonstrated stronger interactions between PMMA and ILs with longer cationic alkyl chain lengths or [TFSI]- anions, which showed smaller Flory-Huggins interaction parameters and larger radii of gyration, Rg. However, the larger size of alkyl chains or [TFSI]- anions produced a larger free volume in the system as evidenced by positron annihilation lifetime spectroscopy (PALS), which competed with the molecular interaction and dominated the segmental motion. Therefore, a lower Tg and accelerated segmental relaxation were observed. Compared to alkyl chain length, the effect of anions on the interactions between ILs and PMMA is more prominent.
Collapse
Affiliation(s)
- Gang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China.
| | - Dong Fang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China.
| | - Yongjie Dan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China.
| | - Huan Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China.
| | - Cong Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China.
| | - Yanhua Niu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China.
| | - Guangxian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Agafonov AV, Ramenskaya LM, Grishina EP, Kudryakova NO. Cation effects on the properties of halloysite-confined bis(trifluoromethylsulfonyl)imide based ionic liquids. RSC Adv 2021; 11:38605-38615. [PMID: 35493252 PMCID: PMC9044193 DOI: 10.1039/d1ra05466j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022] Open
Abstract
Four types of ionic liquids (ILs) of [X]TFSI ([X]+ is a cation such as 1-butyl-3-methylimidazolium BMIm+, 1-butyl-1-methylpyrrolidinium BMPyrr+, 1-butyl-1-methylpiperidinium BMPip+ and methyltrioctylammonium MOc3Am+ and TFSI- is the bis(trifluoromethylsulfonyl)imide anion) were confined in halloysite nanoclay (Hal) at an excess ionic liquid concentration (IL : Hal ∼55 : 45 wt%) and studied by X-ray diffraction, TG, DSC analysis and FTIR spectroscopy. It was found that the physicochemical properties of ILs trapped by halloysite at maximum loading are similar to those of bulk ILs and change depending on the cation type and size. The cold crystallization temperature (T cc) and melting point (T m) of the crystalline mesophase in confined BMIm+ and BMPyrr+ ionic liquids are higher than in the bulk ones, while in the amorphous BMPyrr+ mesophase, the T cc and T m values decrease by 9.7 and 14.2 °C, respectively. Confined BMPip+ and MOc3Am+ only have the glass transition temperature (T g), which increases by 1.5 and 8.0 °C, respectively, compared to bulk ILs. The onset decomposition temperature (T d) decreases by 106.5, 40.7, 19.0 and 7.7 °C in BMIm+, BMPip+, BMPyrr+ and MOc3Am+, respectively. The changes in the properties are explained by the cation and anion interaction with halloysite, as well as by the transformation of the ionic liquid structure. It is found that in this case the amount of the TFSI- anion trans-conformer increases in the following order: BMIm+ > BMPyrr+ ∼ BMPip+ >> MOc3Am+.
Collapse
Affiliation(s)
- A V Agafonov
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences Ivanovo Russia +7-4932-336237 +7-4932-336259
| | - L M Ramenskaya
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences Ivanovo Russia +7-4932-336237 +7-4932-336259
| | - E P Grishina
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences Ivanovo Russia +7-4932-336237 +7-4932-336259
| | - N O Kudryakova
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences Ivanovo Russia +7-4932-336237 +7-4932-336259
| |
Collapse
|
7
|
Atashrouz Z, Rostami E, Zare A. Chitosan and functionalized graphene oxide nanocomposite as a novel and highly efficient catalyst for production of bis-coumarins under solvent-free conditions. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04616-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Galiano F, Mancuso R, Guazzelli L, Mauri M, Chiappe C, Simonutti R, Brunetti A, Pomelli CS, Barbieri G, Gabriele B, Figoli A. Phosphonium ionic liquid-polyacrylate copolymer membranes for improved CO2 separations. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119479] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Agafonov A, Kudryakova N, Ramenskaya L, Grishina E. The confinement and anion type effect on the physicochemical properties of ionic liquid/halloysite nanoclay ionogels. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
10
|
Agafonov A, Shibaeva V, Kraev A, Guseinov S, Ramenskaya L, Kudryakova N, Grishina E. Effect of synthesis conditions on the properties of an ionic liquid in the 1-butyl-3-methylimidazolium acetate - Na-bentonite ionogel. Steric stabilization and confinement. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
He X, Kong M, Niu Y, Li G. Entanglement and Relaxation of Poly(methyl methacrylate) Chains in Imidazolium-Based Ionic Liquids with Different Cationic Structures. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00805] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Xi He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| | - Miqiu Kong
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Yanhua Niu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| | - Guangxian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| |
Collapse
|
12
|
Cao C, Luo Y, Xiao M. Preparation and characterization of imidazolyl ionic
liquid‐based
shear thickening dispersion system. J Appl Polym Sci 2020. [DOI: 10.1002/app.49719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chuanzhi Cao
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Yan Luo
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Key Laboratory of Science and Technology of Eco‐Textile Ministry of Education, Donghua University Shanghai China
| | - Min Xiao
- Guangzhou Fibre Product Testing and Research Institute Guangzhou China
| |
Collapse
|
13
|
Zhang Y, Kou K, Ji T, Huang Z, Zhang S, Zhang S, Wu G. Preparation of Ionic Liquid-Coated Graphene Nanosheets/PTFE Nanocomposite for Stretchable, Flexible Conductor via a Pre-Stretch Processing. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 10:E40. [PMID: 31877983 PMCID: PMC7022427 DOI: 10.3390/nano10010040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 11/27/2022]
Abstract
The various volume concentrations of ionic liquid-modified graphene nanosheets filled polytetrafluoroethylene nanocomposites (IL-GNs/PTFE) for flexible conductors were fabricated via a pre-stretch processing method after cold-press sintering. The results indicated that pre-stretching has no significant weakening in the electrical conductivity of the nanocomposites, while the Young's modulus greatly reduced by 62.5%, which is more suitable for flexible conductors. This may be because the reduced conductivity by the destructive conductive pathway cancels out the enhanced conductivity by the increased interlamellar spacing of IL-GNs via a pre-stretch processing, and the nanocomposite exhibits a phase transition from two to three-phase (with the introduction of an air phase) during pre-stretching. It was also found that the tensile strength of the nanocomposites was enhanced by 42.9% and the elongation at break and thermal conductivity decreased slightly with the same filler content after pre-stretching. The electrical conductivity of the pre-stretched nanocomposites tended to stabilize at 5.5 × 10-2 s·m-1, when the volume content of the packings achieved a percolation threshold (1.49 vol%). Meanwhile, the electrical resistivity of the pre-stretched 3.0 vol% IL-GNs/PTFE nanocomposite was slightly reduced by 0.30%, 0.38%, and 0.87% respectively after 180° twisting, 180° bending, and 10% stretching strain for 1000 cycles.
Collapse
Affiliation(s)
- Yu Zhang
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710129, China; (Y.Z.); (K.K.); (T.J.); (S.Z.)
| | - Kaichang Kou
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710129, China; (Y.Z.); (K.K.); (T.J.); (S.Z.)
| | - Tiezheng Ji
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710129, China; (Y.Z.); (K.K.); (T.J.); (S.Z.)
| | - Zhengyong Huang
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400040, China
| | - Shuangcun Zhang
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710129, China; (Y.Z.); (K.K.); (T.J.); (S.Z.)
| | - Shijie Zhang
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710129, China; (Y.Z.); (K.K.); (T.J.); (S.Z.)
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
| |
Collapse
|
14
|
Ramenskaya L, Grishina E, Kudryakova N. Physicochemical features of short-chain 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide ionic liquids containing equilibrium water absorbed from air. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Xi T, Tang L, Hao W, Yao L, Cui P. Morphology and pervaporation performance of ionic liquid and waterborne polyurethane composite membranes. RSC Adv 2018; 8:7792-7799. [PMID: 35539130 PMCID: PMC9078503 DOI: 10.1039/c7ra13761c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/12/2018] [Indexed: 11/21/2022] Open
Abstract
Blending an aromatic-selective ionic liquid (IL, namely 1-ethyl-3-methylimidazolium hexafluorophosphate, [emim][PF6]) with waterborne polyurethane (WPU) enabled us to obtain [emim][PF6]-modified waterborne polyurethane composite membranes. We characterized the structure and properties of the [emim][PF6]/WPU composite membranes by ATR-FTIR, DSC, UV, SEM, EDX, swelling tests, and pervaporation testing. Characterization of the change in the morphology of the membranes in response to the IL loading indicated that a preferential interaction between the IL and soft segments of WPU was induced by hydrogen bonding. This interaction inhibited a potential interaction with benzene (Bz), which initially lowered the permeability. However, at high IL loading, the IL incorporation became ineffective owing to macrophase separation, which caused an increase in the permeability, as indicated by the SEM results. Swelling testing of the [emim][PF6]/WPU composite membranes showed that the membranes exhibited preferential adsorption of Bz, and the swelling degree of the composite membranes in Bz solvent increased from 58% to 98% and remained almost constant in cyclohexane solvent as the IL content was increased. The [emim][PF6]/WPU composite membranes enhanced the separation selectivity of Bz/Cy for an IL loading < 10 wt%. The best separation factor was 8.4, and the total flux was 0.19 kg (m2 h)−1 (50 wt% Bz/Cy mixtures at 50 °C) at w([emim][PF6]) : w(WPU) = 10 : 100. In addition, the composite membrane exhibited excellent stability over long-term operation. These results demonstrated that the [emim][PF6]/WPU composite membranes could be effective for separation of Bz/Cy mixtures by the pervaporation method. Possible model of interactions in [emim][PF6]/WPU composite membranes.![]()
Collapse
Affiliation(s)
- Tao Xi
- School of Chemistry & Chemical Engineering
- Anhui Key Laboratory of Controllable Chemistry Reaction & Material Chemical
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Lin Tang
- School of Chemistry & Chemical Engineering
- Anhui Key Laboratory of Controllable Chemistry Reaction & Material Chemical
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Wentao Hao
- School of Chemistry & Chemical Engineering
- Anhui Key Laboratory of Controllable Chemistry Reaction & Material Chemical
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Lulu Yao
- School of Chemistry & Chemical Engineering
- Anhui Key Laboratory of Controllable Chemistry Reaction & Material Chemical
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Peng Cui
- School of Chemistry & Chemical Engineering
- Anhui Key Laboratory of Controllable Chemistry Reaction & Material Chemical
- Hefei University of Technology
- Hefei
- People's Republic of China
| |
Collapse
|
16
|
Cheng YY, Du CH, Wu CJ, Sun KX, Chi NP. Improving the hydrophilic and antifouling properties of poly(vinyl chloride) membranes by atom transfer radical polymerization grafting of poly(ionic liquid) brushes. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4172] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuan-Yuan Cheng
- School of Environmental Science and Engineering; Zhejiang Gongshang University; Hangzhou 310018 China
| | - Chun-Hui Du
- School of Environmental Science and Engineering; Zhejiang Gongshang University; Hangzhou 310018 China
| | - Chun-Jin Wu
- School of Environmental Science and Engineering; Zhejiang Gongshang University; Hangzhou 310018 China
| | - Kai-Xiang Sun
- School of Environmental Science and Engineering; Zhejiang Gongshang University; Hangzhou 310018 China
| | - Nian-Ping Chi
- School of Environmental Science and Engineering; Zhejiang Gongshang University; Hangzhou 310018 China
| |
Collapse
|