1
|
Murathan Z, Zahirul Kabir M, Seng J, Mohamad SB, Uslu B. Multi-spectral and docking assessments to explore the combination of an antiviral drug, entecavir with bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124792. [PMID: 38981287 DOI: 10.1016/j.saa.2024.124792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Molecular interaction of entecavir (ETV) with the transport protein, albumin from bovine serum (BSA) was explored through multispectral and molecular docking approaches. The BSA fluorescence was appreciably quenched upon ETV binding and the quenching nature was static. The ETV-BSA complexation and the static quenching process were further reiterated using UV-visible absorption spectra. The binding constant (Ka) values of the complex were found as 1.47 × 104-4.0 × 103 M-1, which depicting a modarate binding strength in the ETV-BSA complexation. The experimental outcomes verified that the stable complexation was primarily influenced by hydrophobic interactions, hydrogen bonds and van der Waals forces. Synchronous and 3-D fluorescence spectral results demonstrated that ETV had significant impact on the hydrophobicity and polarity of the molecular environment near Tyr and Trp residues. Competitive site-markers displacement (with warfarin and ketoprofen) results discovered the suitable binding locus of ETV at site I in BSA. The molecular docking assessments also revealed that ETV formed hydrogen bonds and hydrophobic interactions with BSA, predominantly binding to site I (sub-domain IIA) of BSA.
Collapse
Affiliation(s)
- Zeynep Murathan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey
| | - Md Zahirul Kabir
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey.
| | - Jane Seng
- Faculty of Science, Bioinformatics Programme, Institute of Biological Sciences, Malaysia; Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| | - Saharuddin B Mohamad
- Faculty of Science, Bioinformatics Programme, Institute of Biological Sciences, Malaysia; Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| | - Bengi Uslu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey.
| |
Collapse
|
2
|
Cunha RS, Cruz PF, Costa T, Almeida ZL, de Lima MEF, Serpa C, Chaves OA. Revisiting and Updating the Interaction between Human Serum Albumin and the Non-Steroidal Anti-Inflammatory Drugs Ketoprofen and Ketorolac. Molecules 2024; 29:3001. [PMID: 38998953 PMCID: PMC11243439 DOI: 10.3390/molecules29133001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Ketoprofen (KTF) and ketorolac (KTL) are among the most primarily used non-steroidal anti-inflammatory drugs (NSAIDs) in humans to alleviate moderate pain and to treat inflammation. Their binding affinity with albumin (the main globular protein responsible for the biodistribution of drugs in the bloodstream) was previously determined by spectroscopy without considering some conventional pitfalls. Thus, the present work updates the biophysical characterization of the interactions of HSA:KTF and HSA:KTL by 1H saturation-transfer difference nuclear magnetic resonance (1H STD-NMR), ultraviolet (UV) absorption, circular dichroism (CD), steady-state, and time-resolved fluorescence spectroscopies combined with in silico calculations. The binding of HSA:NSAIDs is spontaneous, endothermic, and entropically driven, leading to a conformational rearrangement of HSA with a slight decrease in the α-helix content (7.1% to 7.6%). The predominance of the static quenching mechanism (ground-state association) was identified. Thus, both Stern-Volmer quenching constant (KSV) and binding constant (Kb) values enabled the determination of the binding affinity. In this sense, the KSV and Kb values were found in the order of 104 M-1 at human body temperature, indicating moderate binding affinity with differences in the range of 0.7- and 3.4-fold between KTF and KTL, which agree with the previously reported experimental pharmacokinetic profile. According to 1H STD-NMR data combined with in silico calculations, the aromatic groups in relation to the aliphatic moiety of the drugs interact preferentially with HSA into subdomain IIIA (site II) and are stabilized by interactions via hydrogen bonding and hydrophobic forces. In general, the data obtained in this study have been revised and updated in comparison to those previously reported by other authors who did not account for inner filter corrections, spectral backgrounds, or the identification of the primary mathematical approach for determining the binding affinity of HSA:KTF and HSA:KTL.
Collapse
Affiliation(s)
- Rita S. Cunha
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Pedro F. Cruz
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Telma Costa
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Zaida L. Almeida
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Marco Edilson Freire de Lima
- Departament of Organic Chemistry, Institute of Chemistry, Federal Rural University of Rio de Janeiro, Seropédica 23890-000, RJ, Brazil
| | - Carlos Serpa
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Otávio A. Chaves
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| |
Collapse
|
3
|
Rahman N, Khalil N. Characterization of sulfasalazine-bovine serum albumin and human serum albumin interaction by spectroscopic and theoretical approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122865. [PMID: 37269654 DOI: 10.1016/j.saa.2023.122865] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/20/2023] [Accepted: 05/10/2023] [Indexed: 06/05/2023]
Abstract
The interaction of sulfasalazine (SZ) with the carrier proteins bovine serum albumin (BSA) and human serum albumin (HSA) was explored by fluorescence, absorption and circular dichroism (CD) spectroscopy along within silicotechniques. The spectral alteration observed in fluorescence, absorption and CD spectra upon the addition of SZ confirmed the complex formation of SZ with BSA and HSA. The inverse temperature dependence behaviour of theKsvvalues as well as the increase in the protein's absorption signals after the addition of SZ indicate that SZ triggered quenching of BSA/HSA fluorescence as the static quenching. The binding affinity (kb) of the order of 106 M-1 was reported towards the BSA-SZ and HSA-SZ association process. Interpretation of thermodynamic data (enthalpy change = -93.85 kJ mol-1and entropy change = -200.81 J mol-1K-1for BSA-SZ system; enthalpy change = -74.12 kJ mol-1and entropy change = -123.90 J mol-1K-1for HSA-SZ system) anticipated that hydrogen bond and van der Waals forces were the main intermolecular forces in the complex stabilization. Inclusion of SZ to BSA/HSA produced microenvironmental perturbations around Tyr and Trp residues. The UV, synchronous and 3D analysis confirmed the structural alteration of proteins after SZ binding, which was supported by CD results. The binding location of SZ in BSA/HSA was detected in Sudlow's site I (subdomain IIA) and the same was revealed by competitive site-marker displacement investigations. Density functional theory study was done to comprehend the feasibility of the analysis and to optimize the structure and energy gap that validated the experimental results. This study is expected to provide deep information about the pharmacology of SZ with its pharmacokinetic properties.
Collapse
Affiliation(s)
- Nafisur Rahman
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Nabila Khalil
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
4
|
Liu Y, Bu Y, Zhu W, Li J, Li X. Effects of divalent mercury on myosin structure of large yellow croaker and its binding mechanism: Multi-spectroscopies and molecular docking. Food Chem 2023; 418:135972. [PMID: 36965387 DOI: 10.1016/j.foodchem.2023.135972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 03/27/2023]
Abstract
Heavy metals have long biological half-lives and are therefore a major threat to aquatic organisms, especially fish. Divalent mercury (Hg(II)) is an important form from a toxicological viewpoint. In this paper, we studied the interaction mechanism between large yellow croaker myosin and Hg(II) by multi-spectroscopies and molecular docking. Hg(II) had a positive effect on improving the elasticity of myosin gel, and the constant increase of charge would destroy the gel. Hg(II) caused myosin to aggregate, and the protein's apparent structure rapidly increased in length. The content of α-helix obviously decreased, β-turns and β-sheet increased. The myosin and Hg(II) quenching type was static quenching. Thermodynamic analysis suggested hydrogen bonding and van der Waals forces were the main forces for the combination. The molecular docking further confirmed the mechanism of action. This study provides a theoretical guidance for the preventions and control of marine heavy metals.
Collapse
Affiliation(s)
- Yingnan Liu
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Ying Bu
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Wenhui Zhu
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
5
|
Exploring the HSA/DNA/lung cancer cells binding behavior of p-Synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: multi spectroscopic, molecular dynamic and cellular approaches. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Sahu G, Banerjee A, Samanta R, Mohanty M, Lima S, Tiekink ERT, Dinda R. Water-Soluble Dioxidovanadium(V) Complexes of Aroylhydrazones: DNA/BSA Interactions, Hydrophobicity, and Cell-Selective Anticancer Potential. Inorg Chem 2021; 60:15291-15309. [PMID: 34597028 DOI: 10.1021/acs.inorgchem.1c01899] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Five new anionic aqueous dioxidovanadium(V) complexes, [{VO2L1,2}A(H2O)n]α (1-5), with the aroylhydrazone ligands pyridine-4-carboxylic acid (3-ethoxy-2-hydroxybenzylidene)hydrazide (H2L1) and furan-2-carboxylic acid (3-ethoxy-2-hydroxybenzylidene)hydrazide (H2L2) incorporating different alkali metals (A = Na+, K+, Cs+) as countercation were synthesized and characterized by various physicochemical techniques. The solution-phase stabilities of 1-5 were determined by time-dependent NMR and UV-vis, and also the octanol/water partition coefficients were obtained by spectroscopic techniques. X-ray crystallography of 2-4 confirmed the presence of vanadium(V) centers coordinated by two cis-oxido-O atoms and the O, N, and O atoms of a dianionic tridentate ligand. To evaluate the biological behavior, all complexes were screened for their DNA/protein binding propensity through spectroscopic experiments. Finally, a cytotoxicity study of 1-5 was performed against colon (HT-29), breast (MCF-7), and cervical (HeLa) cancer cell lines and a noncancerous NIH-3T3 cell line. The cytotoxicity was cell-selective, being more active against HT-29 than against other cells. In addition, the role of hydrophobicity in the cytotoxicity was explained in that an optimal hydrophobicity is essential for high cytotoxicity. Moreover, the results of wound-healing assays indicated antimigration in case of HT-29 cells. Remarkably, 1 with an IC50 value of 5.42 ± 0.15 μM showed greater activity in comparison to cisplatin against the HT-29 cell line.
Collapse
Affiliation(s)
- Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Atanu Banerjee
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Rajib Samanta
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Edward R T Tiekink
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, 5 Jalan Universiti, Sunway University, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| |
Collapse
|
7
|
Patra SA, Mohanty M, Banerjee A, Kesarwani S, Henkel F, Reuter H, Dinda R. Protein binding and cytotoxic activities of monomeric and dimeric oxido-vanadium(V) salan complexes: Exploring the solution behavior of monoalkoxido-bound oxido-vanadium(V) complex. J Inorg Biochem 2021; 224:111582. [PMID: 34450411 DOI: 10.1016/j.jinorgbio.2021.111582] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 02/09/2023]
Abstract
Three ONNO donor tetradentate diamino bis(phenolato) "salan" ligands, N, N'-dimethyl-N, N'-bis-(5-chloro-2-hydroxy-3-methyl-benzyl)-1,2-diaminoethane (H2L1), N, N'-dimethyl-N, N'-bis-(5-chloro-2-hydroxy-3-isopropyl-6-methyl-benzyl)-1,2-diamino-ethane (H2L2) and N, N'-bis-(5-chloro-2-hydroxy-3-isopropyl-6-methyl-benzyl)-1,2-diaminocyclohexane (H2L3) have been synthesized by following Mannich condensation reaction. Reaction of these ligands with their corresponding vanadium metal precursors gave one oxidomethoxidovanadium(V) [VVOL1(OCH3)] (1) and two monooxido-bridged divanadium (V, V) complexes [VVOL2-3]2(μ-O) (2-3). The complexes were characterized by IR, UV-vis, NMR and ESI mass spectrometry. Also, the structure of all the complexes (1-3) was confirmed by the Single-Crystal X-ray diffraction analysis, which revealed a distorted octahedral geometry around the metal centres. The solution behavior of the [VVOL1(OCH3)] (1) reveals the formation of two different types of V(V) species in solution, the structurally characterized compound 1 and its corresponding monooxido-bridged divanadium (V, V) complex [VVOL1]2(μ-O), which was further studied by IR, and NMR spectroscopy. The electrochemical behavior of all the complexes was evaluated through cyclic voltammetry. Interaction of the salan-V(V) complexes with human serum albumin (HSA) and bovine serum albumin (BSA) were analysed through fluorescence quenching, UV-vis absorption titration, synchronous fluorescence, circular dichroism studies, and förster resonance energy transfer (FRET). Finally, the in vitro cytotoxicity of the complexes was investigated against MCF-7 and HT-29 and NIH-3T3 cell lines. Cytotoxicity value of complexes in both MCF-7 and HT-29 follows the same trend that is 3 > 1 > 2 which is in line with protein binding affinity of the complexes.
Collapse
Affiliation(s)
- Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Atanu Banerjee
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Shivani Kesarwani
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Felix Henkel
- Institute of Chemistry of New Materials, University of Osnabrück, Barbarastraße 6, 49069 Osnabruck, Germany
| | - Hans Reuter
- Institute of Chemistry of New Materials, University of Osnabrück, Barbarastraße 6, 49069 Osnabruck, Germany
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
8
|
Elucidating the interaction of propofol as an intravenous anesthetic drug with blood components: IgG and peripheral blood mononuclear cell as targets. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Acunha TV, Chaves OA, Iglesias BA. Fluorescent pyrene moiety in fluorinated C6F5-corroles increases the interaction with HSA and CT-DNA. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620500534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two fluorinated meso-C6F5-corroles (5,15-bis(pentafluorophenyl)-10-(phenyl)corrole and 5,15-bis(pentafluorophenyl)-10-(1-pyrenyl)corrole) were biologically evaluated in terms of binding affinity to human serum albumin (HSA) and calf-thymus DNA (CT-DNA) via multiple spectroscopic techniques under physiological conditions combined with molecular docking calculations. The HSA:corrole interaction is spontaneous and moderate via static binding, disturbing both secondary and tertiary albumin structures at high fluorinated corrole concentrations. The competitive binding studies indicated positive cooperativity or allosteric activation, while molecular docking calculations suggested that both fluorinated corroles bind preferentially inside subdomains IIA and IB (sites I and III, respectively). The experimental CT-DNA binding assays indicated that fluorinated corroles interact spontaneously by non-classical modes in the minor groove of the CT-DNA strands via static fluorescence quenching mechanism. Molecular docking results also showed the minor groove as the main binding site for CT-DNA. Overall, the pyrene moiety increased the interaction with HSA and CT-DNA, which is probably due to the planarity and volume that favors the pyrene unit to be buried inside the biomacromolecule pockets.
Collapse
Affiliation(s)
- Thiago V. Acunha
- Laboratory of Bioinorganics and Porphyrinic Materials, Department of Chemistry, Federal University of Santa Maria — UFSM, Roraima 1000, Santa Maria — RS, 97105-900, Brazil
| | - Otávio A. Chaves
- SENAI Institute of Innovation in Green Chemistry, Morais e Silva 53, Rio de Janeiro — RJ, 20271-030, Brazil
| | - Bernardo A. Iglesias
- Laboratory of Bioinorganics and Porphyrinic Materials, Department of Chemistry, Federal University of Santa Maria — UFSM, Roraima 1000, Santa Maria — RS, 97105-900, Brazil
| |
Collapse
|
10
|
Chaves OA, Calheiro TP, Netto-Ferreira JC, de Oliveira MC, Franceschini SZ, de Salles CMC, Zanatta N, Frizzo CP, Iglesias BA, Bonacorso HG. Biological assays of BF2-naphthyridine compounds: Tyrosinase and acetylcholinesterase activity, CT-DNA and HSA binding property evaluations. Int J Biol Macromol 2020; 160:1114-1129. [DOI: 10.1016/j.ijbiomac.2020.05.162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/30/2023]
|
11
|
Elucidation of the interaction between human serum albumin (HSA) and 3,4-methylenedioxyde-6-iodo-benzaldehyde-thiosemicarbazone, a potential drug for Leishmania amazonensis: Multiple spectroscopic and dynamics simulation approach. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Chaves OA, Acunha TV, Iglesias BA, Jesus CS, Serpa C. Effect of peripheral platinum(II) bipyridyl complexes on the interaction of tetra-cationic porphyrins with human serum albumin. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112466] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Banerjee A, Mohanty M, Lima S, Samanta R, Garribba E, Sasamori T, Dinda R. Synthesis, structure and characterization of new dithiocarbazate-based mixed ligand oxidovanadium(iv) complexes: DNA/HSA interaction, cytotoxic activity and DFT studies. NEW J CHEM 2020. [DOI: 10.1039/d0nj01246g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis, structure and characterization of mixed ligand oxidovanadium(iv) complexes [VIVOL1–2(LN–N)] (1–3) are reported. With a view to evaluating their biological activity, their DNA/HSA interaction and cytotoxicity activity have been explored.
Collapse
Affiliation(s)
- Atanu Banerjee
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Monalisa Mohanty
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Sudhir Lima
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Rajib Samanta
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| | - Takahiro Sasamori
- Graduate School of Natural Sciences
- Nagoya City University Yamanohata 1
- Nagoya
- Japan
| | - Rupam Dinda
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| |
Collapse
|
14
|
Multifunctional Ln-MOF luminescent probe displaying superior capabilities for highly selective sensing of Fe3+ and Al3+ ions and nitrotoluene. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124094] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Sun P, Zhang S, Xiang Z, Zhao T, Sun D, Zhang G, Chen M, Guo K, Xin X. Photoluminescent sensing vesicle platform self-assembled by polyoxometalate and ionic-liquid-type imidazolium gemini surfactants for the detection of Cr3+ and MnO4− ions. J Colloid Interface Sci 2019; 547:60-68. [DOI: 10.1016/j.jcis.2019.03.085] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 01/29/2023]
|
16
|
Tayyab S, Sam SE, Kabir MZ, Ridzwan NFW, Mohamad SB. Molecular interaction study of an anticancer drug, ponatinib with human serum albumin using spectroscopic and molecular docking methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:199-206. [PMID: 30780089 DOI: 10.1016/j.saa.2019.02.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Binding of a potent anticancer agent, ponatinib (PTB) to human serum albumin (HSA), main ligand transporter in blood plasma was analyzed with several spectral techniques such as fluorescence, absorption and circular dichroism along with molecular docking studies. Decrease in the KSV value with increasing temperature pointed towards PTB-induced quenching as the static quenching, thus affirming complexation between PTB and HSA. An intermediate binding affinity was found to stabilize the PTB-HSA complex, as suggested by the Ka value. Thermodynamic analysis of the binding phenomenon revealed participation of hydrophobic and van der Waals interactions along with hydrogen bonds, which was also supported by molecular docking analysis. Changes in both secondary and tertiary structures as well as in the microenvironment around Trp and Tyr residues of HSA were anticipated upon PTB binding to the protein, as manifested from circular dichroism and three-dimensional fluorescence spectra, respectively. Binding of PTB to HSA led to protein's thermal stabilization. Competitive ligand displacement experiments using different site markers such as warfarin, indomethacin and ketoprofen disclosed the binding site of PTB as Sudlow's site I in HSA, which was further confirmed by molecular docking analysis.
Collapse
Affiliation(s)
- Saad Tayyab
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia.
| | - Si Enn Sam
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Md Zahirul Kabir
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Nor Farrah Wahidah Ridzwan
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Saharuddin B Mohamad
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Chaves OA, Sasidharan R, dos Santos de Oliveira CHC, Manju SL, Joy M, Mathew B, Netto-Ferreira JC. In Vitro
Study of the Interaction Between HSA and 4-Bromoindolylchalcone, a Potent Human MAO-B Inhibitor: Spectroscopic and Molecular Modeling Studies. ChemistrySelect 2019. [DOI: 10.1002/slct.201802665] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Otávio Augusto Chaves
- SENAI Innovation Institute for Green Chemistry.; Rua Morais e Silva N° 53, Maracanã 20271030 Rio de Janeiro-RJ Brazil
- Institute of Chemistry; Department of Organic Chemistry; Universidade Federal Rural do Rio de Janeiro; BR-465 Km 7 23970-000 Seropédica-RJ Brazil
| | - Rani Sasidharan
- College of Pharmaceutical Science; Government T.D. Medical College, Alappuzha; Kerala India
- Department of Chemistry, SAS; VIT University, Vellore; 632014 Tamil Nadu India
| | - Cosme H. C. dos Santos de Oliveira
- Institute of Chemistry; Department of Organic Chemistry; Universidade Federal Rural do Rio de Janeiro; BR-465 Km 7 23970-000 Seropédica-RJ Brazil
| | | | - Monu Joy
- School of Pure & Applied Physics; M.G. University; 686560 Kottayam India
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab; Department of Pharmaceutical Chemistry; Ahalia School of Pharmacy, Palakkad; 678557 Kerala India
| | - José Carlos Netto-Ferreira
- SENAI Innovation Institute for Green Chemistry.; Rua Morais e Silva N° 53, Maracanã 20271030 Rio de Janeiro-RJ Brazil
- Divisão de Metrologia Química; Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO); 25250-020 Duque de Caxias-RJ Brazil
| |
Collapse
|
18
|
In vitro and in vivo cytotoxic activity and human serum albumin interaction for a methoxy-styryl-thiosemicarbazone. Invest New Drugs 2019; 37:994-1005. [PMID: 30661149 DOI: 10.1007/s10637-018-00722-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 12/26/2018] [Indexed: 12/15/2022]
Abstract
Thiosemicarbazone is a class of compounds with potential applications in medicine, presenting high capacity to inhibit the growth of cancer cells as well as low toxicity. Because of high interest in anticancer studies involving thiosemicarbazones as new chemotherapeutic agents, a synthetic thiosemicarbazone derivative, 4-N-(2'-methoxy-styryl)-thiosemicarbazone (MTSC) was evaluated in vivo against Ehrlich carcinoma in an animal model. In vivo results demonstrated that MTSC treatment induced the survival of mice and altered significantly the body weight of the surviving mice 12 days after tumor inoculation. Treatment with 30 mg/kg of MTSC exhibited effective cytotoxic activity with T/C values of 150.49% (1 dose) and 278% (2 doses). Its interaction with human serum albumin (HSA), which plays a crucial role in the biodistribution of a wide variety of ligands, was investigated by multiple spectroscopic techniques at 296 K, 303 K, and 310 K, as well as by theoretical calculations. The interaction between HSA and MTSC occurs via ground-state association in the subdomain IIA (Sudlow's site I). The binding is moderate (Ka ≈ 104 M-1), spontaneous, entropically, and enthalpically driven. Molecular docking results suggested hydrogen bonding and hydrophobic interactions as the main binding forces. Overall, the interaction HSA:MTSC could provide therapeutic benefits, improving its cytotoxic efficacy and tolerability.
Collapse
|
19
|
Gan N, Sun Q, Zhang M, Tang P, Zhao L, Xie T, Zhang Y, Li H. Insights into the interaction of ulipristal acetate and human serum albumin using multi-spectroscopic methods, molecular docking, and dynamic simulation. J Biomol Struct Dyn 2018; 37:2989-2998. [DOI: 10.1080/07391102.2018.1502686] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Na Gan
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Qiaomei Sun
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Man Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Peixiao Tang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Ludan Zhao
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Tonghui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Yongkui Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Shahabadi N, Hashempour S, Taherpour A(A, Mohsenzadeh F. Synthesis, characterization, HSA interaction, and antibacterial activity of a new water-soluble Pt(II) complex containing the drug cephalexin. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1525488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Nahid Shahabadi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shokoufeh Hashempour
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Avat (Arman) Taherpour
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
- Organic Chemistry Department, Chemistry Faculty, Razi University, Kermanshah, Iran
| | - Fariba Mohsenzadeh
- Laboratory of Plant Cell Biology, Department of Biology, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
21
|
Ding X, Suo Z, Sun Q, Gan R, Tang P, Hou Q, Wu D, Li H. Study of the interaction of broad-spectrum antimicrobial drug sitafloxacin with human serum albumin using spectroscopic methods, molecular docking, and molecular dynamics simulation. J Pharm Biomed Anal 2018; 160:397-403. [DOI: 10.1016/j.jpba.2018.07.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/20/2018] [Accepted: 07/30/2018] [Indexed: 01/30/2023]
|
22
|
Multi-Spectroscopic and Theoretical Analysis on the Interaction between Human Serum Albumin and a Capsaicin Derivative-RPF101. Biomolecules 2018; 8:biom8030078. [PMID: 30142945 PMCID: PMC6164054 DOI: 10.3390/biom8030078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023] Open
Abstract
The interaction between the main carrier of endogenous and exogenous compounds in the human bloodstream (human serum albumin, HSA) and a potential anticancer compound (the capsaicin analogue RPF101) was investigated by spectroscopic techniques (circular dichroism, steady-state, time-resolved, and synchronous fluorescence), zeta potential, and computational method (molecular docking). Steady-state and time-resolved fluorescence experiments indicated an association in the ground state between HSA:RPF101. The interaction is moderate, spontaneous (ΔG° < 0), and entropically driven (ΔS° = 0.573 ± 0.069 kJ/molK). This association does not perturb significantly the potential surface of the protein, as well as the secondary structure of the albumin and the microenvironment around tyrosine and tryptophan residues. Competitive binding studies indicated Sudlow’s site I as the main protein pocket and molecular docking results suggested hydrogen bonding and hydrophobic interactions as the main binding forces.
Collapse
|
23
|
A Diversified Spectrometric and Molecular Docking Technique to Biophysical Study of Interaction between Bovine Serum Albumin and Sodium Salt of Risedronic Acid, a Bisphosphonate for Skeletal Disorders. Bioinorg Chem Appl 2018; 2018:6954951. [PMID: 30050563 PMCID: PMC6046188 DOI: 10.1155/2018/6954951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/10/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022] Open
Abstract
The binding interaction between bovine serum albumin (BSA) and sodium salt of risedronic acid (RSN) was studied by using the FT-IR (Fourier transform infrared), UV-Vis (ultraviolet–visible), fluorescence (emission and synchronous), CD (circular dichroism) spectrometric, and computational (molecular docking) techniques at 289, 297, and 305 K temperatures with physiological buffer of pH 7.40. The conformational and secondary structural changes observed for BSA from CD spectra and by curve fitting procedure were applied to Fourier self-deconvolution in FT-IR spectra. The formation of a BSA-RSN complex was confirmed from UV-Vis spectroscopy. The static type of quenching shown for RSN to BSA was verified from Stern–Volmer and modified Stern–Volmer equations. The binding constant of order 105 was obtained to be confirming that there exists a strong binding interaction between BSA and RSN. Synchronous fluorescence shows that the microenvironment of tryptophan was altered, not tyrosine of BSA; in addition to this, the distance between tryptophan of BSA and RSN was found out from Forster's theory of nonradiation energy transfer. The interaction between BSA and RSN mainly occurred as a result of hydrogen bonds and van der Waals forces, the process is exothermic and spontaneous, and it was achieved through van 't Hoff equation. This interaction was affected by the presence of biologically active Fe2+, Ni2+, Ca2+, Mg2+, and Cd2+ ions and was also studied. The subdomain IIIA of BSA involved with RSN interaction was authenticated from molecular docking analysis.
Collapse
|
24
|
Soltanabadi O, Atri MS, Bagheri M. Spectroscopic analysis, docking and molecular dynamics simulation of the interaction of cinnamaldehyde with human serum albumin. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0811-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
25
|
Tanzadehpanah H, Mahaki H, Moradi M, Afshar S, Rajabi O, Najafi R, Amini R, Saidijam M. Human serum albumin binding and synergistic effects of gefitinib in combination with regorafenib on colorectal cancer cell lines. COLORECTAL CANCER 2018. [DOI: 10.2217/crc-2017-0018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study aimed to evaluate the combination effect of gefitinib (GEF) and regorafenib (REG) against HCT116, CT26 and SW948 colorectal cancer cell lines. Results showed synergistic effects on HCT116 and CT26 cells, while the additive effect was observed on SW948 cells. Combination of GEF and REG induced sub-G1 peak as the apoptotic population on HCT116 cells, through flow cytometry histogram. Downregulation of AKT1 and TGFB2 and upregulation of CASP3 were observed in the combination of GEF and REG in HCT116 cells, using quantitative real-time PCR analysis. HSA binding properties exhibit that the first drug increased binding affinity between the second drug and HSA; as a result, HSA could transport both drugs. Thus, we hope this study creates a promising strategy to treat colorectal cancer.
Collapse
Affiliation(s)
- Hamid Tanzadehpanah
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hanie Mahaki
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammadreza Moradi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Omid Rajabi
- Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
26
|
Chaves OA, de Lima Santos MR, de Oliveira MC, Sant'Anna CMR, Ferreira RC, Echevarria A, Netto-Ferreira JC. Synthesis, tyrosinase inhibition and transportation behavior of novel β-enamino thiosemicarbazide derivatives by human serum albumin. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.083] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Tanzadehpanah H, Mahaki H, Moghadam NH, Salehzadeh S, Rajabi O, Najafi R, Amini R, Saidijam M. Binding site identification of anticancer drug gefitinib to HSA and DNA in the presence of five different probes. J Biomol Struct Dyn 2018; 37:823-836. [DOI: 10.1080/07391102.2018.1441073] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hamid Tanzadehpanah
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hanie Mahaki
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | | | - Omid Rajabi
- Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
28
|
Lopes ND, Chaves OA, de Oliveira MCC, Sant'Anna CMR, Sousa-Pereira D, Netto-Ferreira JC, Echevarria A. Novel piperonal 1,3,4-thiadiazolium-2-phenylamines mesoionic derivatives: Synthesis, tyrosinase inhibition evaluation and HSA binding study. Int J Biol Macromol 2018; 112:1062-1072. [PMID: 29447969 DOI: 10.1016/j.ijbiomac.2018.02.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/15/2023]
Abstract
A novel series of piperonal mesoionic derivatives (PMI 1-6) was synthesized. Tyrosinase inhibition in the presence of PMI-1, -2, -3, -4, -5 and -6 as well as human serum albumin (HSA) binding studies with PMI-5 and PMI-6 were done by spectroscopic and theoretical methods. The mesoionic compound PMI-5 is the most promising tyrosinase inhibitor with a noncompetitive inhibitory mechanism and an IC50=124μmolL-1. In accordance with the kinetic profile, molecular docking results show that PMI-5 is able to interact favorably with the tyrosinase active site containing the substrate molecule, L-DOPA, interacting with Val-247, Phe-263 and Val-282 residues. The spectroscopic results for the interaction HSA:PMI-5 and HSA:PMI-6 indicated that these mesoionic compounds can associate with HSA in the ground state and energy transfer can occur with high probability. The binding was moderate, spontaneous and can perturb significantly the secondary structure of the albumin. The molecular docking results suggest that PMI-5 and PMI-6 are able to be accommodated inside the Sudlow's site I in HSA, interacting with hydrophobic and hydrophilic amino acid residues.
Collapse
Affiliation(s)
- Natália Drumond Lopes
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, BR-465 Km 7, 23970-000 Seropédica, RJ, Brazil
| | - Otávio Augusto Chaves
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, BR-465 Km 7, 23970-000 Seropédica, RJ, Brazil
| | - Márcia C C de Oliveira
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, BR-465 Km 7, 23970-000 Seropédica, RJ, Brazil
| | - Carlos Mauricio R Sant'Anna
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, BR-465 Km 7, 23970-000 Seropédica, RJ, Brazil
| | - Danilo Sousa-Pereira
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, BR-465 Km 7, 23970-000 Seropédica, RJ, Brazil
| | - José Carlos Netto-Ferreira
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, BR-465 Km 7, 23970-000 Seropédica, RJ, Brazil.
| | - Aurea Echevarria
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, BR-465 Km 7, 23970-000 Seropédica, RJ, Brazil.
| |
Collapse
|
29
|
Xiong X, Gan R, Suo Z, Tang P, Zhang S, Zhu Y, Sun Q, Li H. Interactions between the antiviral drug telaprevir and human serum albumin: a combined study with spectroscopic methods and molecular modeling. NEW J CHEM 2018. [DOI: 10.1039/c8nj00655e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding mechanism between telaprevir and human serum albumin was explored by combining spectroscopic methods and molecular dynamics simulations.
Collapse
Affiliation(s)
- Xinnuo Xiong
- College of Chemical Engineering
- Sichuan University
- Chengdu Sichuan
- China
| | - Ruixue Gan
- College of Chemical Engineering
- Sichuan University
- Chengdu Sichuan
- China
| | - Zili Suo
- College of Chemical Engineering
- Sichuan University
- Chengdu Sichuan
- China
| | - Peixiao Tang
- College of Chemical Engineering
- Sichuan University
- Chengdu Sichuan
- China
| | | | - Yujie Zhu
- College of Chemical Engineering
- Sichuan University
- Chengdu Sichuan
- China
| | - Qiaomei Sun
- College of Chemical Engineering
- Sichuan University
- Chengdu Sichuan
- China
| | - Hui Li
- College of Chemical Engineering
- Sichuan University
- Chengdu Sichuan
- China
| |
Collapse
|
30
|
Hasanzadeh A, Dehghan G, Shaghaghi M, Panahi Y, Jouyban A, Yekta R. Multispectral and molecular docking studies on the interaction of human serum albumin with iohexol. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.096] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Influence of antidepressant clomipramine hydrochloride drug on human serum albumin: Spectroscopic study. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.05.143] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Chaves OA, de Barros LS, de Oliveira MC, Sant’Anna CMR, Ferreira AB, da Silva FA, Cesarin-Sobrinho D, Netto-Ferreira JC. Biological interactions of fluorinated chalcones: Stimulation of tyrosinase activity and binding to bovine serum albumin. J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2017.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Chaves OA, de Oliveira CHCDS, Ferreira RC, Pereira RP, de Melos JLR, Rodrigues-Santos CE, Echevarria A, Cesarin-Sobrinho D. Investigation of interaction between human plasmatic albumin and potential fluorinated anti-trypanosomal drugs. J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2017.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Xiong X, He J, Yang H, Tang P, Tang B, Sun Q, Li H. Investigation on the interaction of antibacterial drug moxifloxacin hydrochloride with human serum albumin using multi-spectroscopic approaches, molecular docking and dynamical simulation. RSC Adv 2017. [DOI: 10.1039/c7ra08731d] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Investigating the interactions of moxifloxacin hydrochloride with human serum albuminviamulti-spectroscopic approaches, molecular docking and dynamical simulation.
Collapse
Affiliation(s)
- Xinnuo Xiong
- College of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Jiawei He
- College of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Hongqin Yang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Peixiao Tang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Bin Tang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Qiaomei Sun
- College of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Hui Li
- College of Chemical Engineering
- Sichuan University
- Chengdu
- China
| |
Collapse
|
35
|
Jafari Azad V, Kasravi S, Alizadeh Zeinabad H, Memar Bashi Aval M, Saboury AA, Rahimi A, Falahati M. Probing the conformational changes and peroxidase-like activity of cytochrome c upon interaction with iron nanoparticles. J Biomol Struct Dyn 2016; 35:2565-2577. [PMID: 27632558 DOI: 10.1080/07391102.2016.1222972] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Herein, the interaction of iron nanoparticle (Fe-NP) with cytochrome c (Cyt c) was investigated, and a range of techniques such as dynamic light scattering (DLS), zeta potential measurements, static and synchronous fluorescence spectroscopy, near and far circular dichroism (CD) spectroscopy, and ultraviolet-visible (UV-vis) spectroscopy were used to analyze the interaction between Cyt c and Fe-NP. DLS and zeta potential measurements showed that the values of hydrodynamic radius and charge distribution of Fe-NP are 83.95 ± 3.7 nm and 4.5 ± .8 mV, respectively. The fluorescence spectroscopy results demonstrated that the binding of Fe-NP with Cyt c is mediated by hydrogen bonds and van der Waals interactions. Also Fe-NP induced conformational changes in Cyt c and reduced the melting temperature value of Cyt c from 79.18 to 71.33°C. CD experiments of interaction between Fe-NP and Cyt c revealed that the secondary structure of Cyt c with the dominant α-helix structures remained unchanged whereas the tertiary structure and heme position of Cyt c are subjected to remarkable changes. Absorption spectroscopy at 695 nm revealed that Fe-NP considerably disrupt the Fe…S(Met80) bond. In addition, the UV-vis experiment showed the peroxidase-like activity of Cyt c upon interaction with Fe-NP. Hence, the data indicate the Fe-NP results in unfolding of Cyt c and subsequent peroxidase-like activity of denatured species. It was concluded that a comprehensive study of the interaction of Fe-NP with biological system is a crucial step for their potential application as intracellular delivery carriers and medicinal agents.
Collapse
Affiliation(s)
- Vida Jafari Azad
- a Faculty of Advance Science and Technology, Department of Nanotechnology , Islamic Azad University (IAUPS) , Pharmaceutical Sciences Branch, Tehran , Iran
| | - Shahab Kasravi
- b Biology Department , Islamic Azad University , Tehran Medical Sciences Branch, Tehran , Iran
| | - Hojjat Alizadeh Zeinabad
- c Brain Engineering Research Center , Institute for Research in Fundamental Sciences (IPM) , P.O.Box 19395-5746, Tehran , Iran
| | - Mehri Memar Bashi Aval
- a Faculty of Advance Science and Technology, Department of Nanotechnology , Islamic Azad University (IAUPS) , Pharmaceutical Sciences Branch, Tehran , Iran
| | - Ali Akbar Saboury
- d Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| | - Arash Rahimi
- e Faculty of Basic Science, Department of Biophysics , Islamic Azad University , Science and Research Branch, Tehran , Iran
| | - Mojtaba Falahati
- a Faculty of Advance Science and Technology, Department of Nanotechnology , Islamic Azad University (IAUPS) , Pharmaceutical Sciences Branch, Tehran , Iran
| |
Collapse
|