1
|
Kochkina NE, Butikova OA. Preparation of starch/PVA nanoparticles and evaluation of their ability to stabilize Pickering emulsions. Int J Biol Macromol 2024; 274:133406. [PMID: 38925201 DOI: 10.1016/j.ijbiomac.2024.133406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Biodegradable and biocompatible polymer-based nanoparticles (NPs) hold great promise for various industries. We report the first development of composite NPs consisting of starch (St) and polyvinyl alcohol (PVA) using the nanoprecipitation technique with ethanol as an antisolvent. We varied the St:PVA ratios in the precursor solutions to evaluate their impact on the structure and properties of the composite NPs. The ratios used were 4:1, 1:1, and 1:4. Characterization by X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis revealed distinct XRD and TGA patterns for the composite St/PVANPs compared to their corresponding physical blends. This indicated the presence of mixed St/PVA crystallites within their structures. Additionally, the crystallinity of St/PVANPs increased with rising St content. Dynamic light scattering and scanning electron microscopy showed that nanoparticle sizes increased with higher PVA proportions. The St/PVANPs showed superior performance as stabilizers in Pickering emulsions, forming denser continuous networks in the gel-like structure of the emulsions. Additionally, increasing the PVA content in the composition of St/PVANPs strengthened the structure of Pickering emulsions. The emulsion stabilized by St20/PVA80NPs showed exceptional stability for one month. These findings highlight the potential of St/PVANPs as innovative materials for various applications, including emulsion stabilization.
Collapse
Affiliation(s)
- Nataliya E Kochkina
- Laboratory "Chemistry of oligosaccharides and functional materials on their basis", G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya St., 1, Ivanovo 153045, Russia.
| | - Olga A Butikova
- Laboratory of Nonlinear Waves Generation, Mechanical Engineering Research Institute of the Russian Academy of Sciences, Bardina St., 4, Moscow 119337, Russia
| |
Collapse
|
2
|
Yaman SM, Demir D, Bölgen N. Design of gelatin cryogel scaffolds with the ability to release simvastatin for potential bone tissue engineering applications. Biomed Mater 2024; 19:055019. [PMID: 39025109 DOI: 10.1088/1748-605x/ad651e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Tissue engineering aims to improve or restore damaged tissues by using scaffolds, cells and bioactive agents. In tissue engineering, one of the most important concepts is the scaffold because it has a key role in keeping up and promoting the growth of the cells. It is also desirable to be able to load these scaffolds with drugs that induce tissue regeneration/formation. Based on this, in our study, gelatin cryogel scaffolds were developed for potential bone tissue engineering applications and simvastatin loading and release studies were performed. Simvastatin is lipoliphic in nature and this form is called inactive simvastatin (SV). It is modified to be in hydrophilic form and converted to the active form (SVA). For our study's drug loading and release process, simvastatin was used in both inactive and active forms. The blank cryogels and drug-loaded cryogels were prepared at different glutaraldehyde concentrations (1, 2, and 3%). The effect of the crosslinking agent and the amount of drug loaded were discussed with morphological and physicochemical analysis. As the glutaraldehyde concentration increased gradually, the pores size of the cryogels decreased and the swelling ratio decreased. For the release profile of simvastatin in both forms, we can say that it depended on the form (lipophilic and hydrophilic) of the loaded simvastatin.
Collapse
Affiliation(s)
- Suzan Melis Yaman
- Chemical Engineering Department, Faculty of Engineering, Mersin University, Mersin 33110, Turkey
| | - Didem Demir
- Chemistry and Chemical Process Technologies Department, Mersin Tarsus Organized Industrial Zone Technical Sciences Vocational School, Tarsus University, Mersin 33100, Turkey
| | - Nimet Bölgen
- Chemical Engineering Department, Faculty of Engineering, Mersin University, Mersin 33110, Turkey
| |
Collapse
|
3
|
Cuahuizo-Huitzil G, Olivares-Xometl O, Arellanes-Lozada P, Laguna Cortés JO, Arriola Morales J, Santacruz-Vázquez C, Santacruz-Vázquez V. Estimation of Digital Porosity of Electrospun Veils by Image Analysis. Polymers (Basel) 2024; 16:300. [PMID: 38276707 PMCID: PMC10820155 DOI: 10.3390/polym16020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The present work reports on an empirical mathematical expression for predicting the digital porosity (DP) of electrospun nanofiber veils, employing emulsions of poly(vinyl alcohol) (PVOH) and olive and orange oils. The electrospun nanofibers were analyzed by scanning electron microscopy (SEM), observing orientation and digital porosity (DP) in the electrospun veils. To determine the DP of the veils, the SEM micrographs were transformed into a binary system, and then the threshold was established, and the nanofiber solid surfaces were emphasized. The relationship between the experimental results and those obtained with the empirical mathematical expression displayed a correlation coefficient (R2) of 0.97 by employing threshold II. The mathematical expression took into account experimental variables such as the nanofiber humidity and emulsion conductivity prior to electrospinning, in addition to the corresponding operation conditions. The results produced with the proposed expression showed that the prediction of the DP of the electrospun veils was feasible with the considered thresholds.
Collapse
Affiliation(s)
- Guadalupe Cuahuizo-Huitzil
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Puebla 72570, Mexico; (G.C.-H.); (O.O.-X.); (P.A.-L.); (J.A.M.)
| | - Octavio Olivares-Xometl
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Puebla 72570, Mexico; (G.C.-H.); (O.O.-X.); (P.A.-L.); (J.A.M.)
| | - Paulina Arellanes-Lozada
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Puebla 72570, Mexico; (G.C.-H.); (O.O.-X.); (P.A.-L.); (J.A.M.)
| | - José Oscar Laguna Cortés
- Departamento de Ciencias Básicas, Tecnológico Nacional de México—Instituto Tecnológico de Puebla, Av. Tecnológico 420, Puebla 72220, Mexico;
| | - Janette Arriola Morales
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Puebla 72570, Mexico; (G.C.-H.); (O.O.-X.); (P.A.-L.); (J.A.M.)
| | - Claudia Santacruz-Vázquez
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Puebla 72570, Mexico; (G.C.-H.); (O.O.-X.); (P.A.-L.); (J.A.M.)
| | - Verónica Santacruz-Vázquez
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Puebla 72570, Mexico; (G.C.-H.); (O.O.-X.); (P.A.-L.); (J.A.M.)
| |
Collapse
|
4
|
Omidian H, Dey Chowdhury S, Babanejad N. Cryogels: Advancing Biomaterials for Transformative Biomedical Applications. Pharmaceutics 2023; 15:1836. [PMID: 37514023 PMCID: PMC10384998 DOI: 10.3390/pharmaceutics15071836] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cryogels, composed of synthetic and natural materials, have emerged as versatile biomaterials with applications in tissue engineering, controlled drug delivery, regenerative medicine, and therapeutics. However, optimizing cryogel properties, such as mechanical strength and release profiles, remains challenging. To advance the field, researchers are exploring advanced manufacturing techniques, biomimetic design, and addressing long-term stability. Combination therapies and drug delivery systems using cryogels show promise. In vivo evaluation and clinical trials are crucial for safety and efficacy. Overcoming practical challenges, including scalability, structural integrity, mass transfer constraints, biocompatibility, seamless integration, and cost-effectiveness, is essential. By addressing these challenges, cryogels can transform biomedical applications with innovative biomaterials.
Collapse
Affiliation(s)
- Hossein Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Sumana Dey Chowdhury
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
5
|
Voriconazole Eye Drops: Enhanced Solubility and Stability through Ternary Voriconazole/Sulfobutyl Ether β-Cyclodextrin/Polyvinyl Alcohol Complexes. Int J Mol Sci 2023; 24:ijms24032343. [PMID: 36768671 PMCID: PMC9917179 DOI: 10.3390/ijms24032343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Voriconazole (VCZ) is a broad-spectrum antifungal agent used to treat ocular fungal keratitis. However, VCZ has low aqueous solubility and chemical instability in aqueous solutions. This study aimed to develop VCZ eye drop formulations using cyclodextrin (CD) and water-soluble polymers, forming CD complex aggregates to improve the aqueous solubility and chemical stability of VCZ. The VCZ solubility was greatly enhanced using sulfobutyl ether β-cyclodextrin (SBEβCD). The addition of polyvinyl alcohol (PVA) showed a synergistic effect on VCZ/SBEβCD solubilization and a stabilization effect on the VCZ/SBEβCD complex. The formation of binary VCZ/SBEβCD and ternary VCZ/SBEβCD/PVA complexes was confirmed by spectroscopic techniques and in silico studies. The 0.5% w/v VCZ eye drop formulations were developed consisting of 6% w/v SBEβCD and different types and concentrations of PVA. The VCZ/SBEβCD systems containing high-molecular-weight PVA prepared under freeze-thaw conditions (PVA-H hydrogel) provided high mucoadhesion, sustained release, good ex vivo permeability through the porcine cornea and no sign of irritation. Additionally, PVA-H hydrogel was effective against the filamentous fungi tested. The stability study revealed that our VCZ eye drops provide a shelf-life of more than 2.5 years at room temperature, while a shelf-life of only 3.5 months was observed for the extemporaneous Vfend® eye drops.
Collapse
|
6
|
Sampaio NMFM, de Oliveira BH, Riegel-Vidotti IC, da Silva BJG. Polyvinyl alcohol-based hydrogel sorbent for extraction of parabens in human milk samples by in-tube SPME–LC–UV. Anal Bioanal Chem 2022:10.1007/s00216-022-04481-x. [PMID: 36525120 DOI: 10.1007/s00216-022-04481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
In this work, we developed an in-tube solid-phase microextraction (SPME) device consisting of a fused silica capillary modified with a polyvinyl alcohol (PVOH) hydrogel. Methylparaben, ethylparaben, propylparaben, and butylparaben were determined in human milk samples by using the in-tube SPME device coupled with liquid chromatography with spectrophotometric detection in the ultraviolet region (LC-UV). The inner surface of the fused silica capillary was silanized to allow covalent modification with the PVOH-hydrogel, using glutaraldehyde as cross-linking agent. The developed device was used up to 250 times with no reduction in the analytes' peak areas or carryover effect, besides having a low production cost. The human milk samples showed a significant matrix effect for parabens with higher logKo/w. Low limits of quantification (LLOQ) between 10.0 and 15.0 ng mL-1 were obtained with RSD values in the range of 1.18 to 18.3%. For the intra- and inter-day assays, RSD values from 5.6 to 16.5% and accuracy from 74.5 to 128.8% were achieved. The PVOH-based hydrogel sorbent allowed the use of water as desorption solvent, eliminating the use of organic solvents, which follows the principles of green chemistry. The results showed a great application potential of the PVOH-based hydrogel sorbent for the extraction of organic compounds from high-complexity samples.
Collapse
|
7
|
Honaker L, Chen C, Dautzenberg FM, Brugman S, Deshpande S. Designing Biological Microsensors with Chiral Nematic Liquid Crystal Droplets. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37316-37329. [PMID: 35969154 PMCID: PMC9412956 DOI: 10.1021/acsami.2c06923] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/03/2022] [Indexed: 05/16/2023]
Abstract
Biosensing using liquid crystals has a tremendous potential by coupling the high degree of sensitivity of their alignment to their surroundings with clear optical feedback. Many existing set-ups use birefringence of nematic liquid crystals, which severely limits straightforward and frugal implementation into a sensing platform due to the sophisticated optical set-ups required. In this work, we instead utilize chiral nematic liquid crystal microdroplets, which show strongly reflected structural color, as sensing platforms for surface active agents. We systematically quantify the optical response of closely related biological amphiphiles and find unique optical signatures for each species. We detect signatures across a wide range of concentrations (from micromolar to millimolar), with fast response times (from seconds to minutes). The striking optical response is a function of the adsorption of surfactants in a nonhomogeneous manner and the topology of the chiral nematic liquid crystal orientation at the interface requiring a scattering, multidomain structure. We show that the surface interactions, in particular, the surface packing density, to be a function of both headgroup and tail and thus unique to each surfactant species. We show lab-on-a-chip capability of our method by drying droplets in high-density two-dimensional arrays and simply hydrating the chip to detect dissolved analytes. Finally, we show proof-of-principle in vivo biosensing in the healthy as well as inflamed intestinal tracts of live zebrafish larvae, demonstrating CLC droplets show a clear optical response specifically when exposed to the gut environment rich in amphiphiles. Our unique approach shows clear potential in developing on-site detection platforms and detecting biological amphiphiles in living organisms.
Collapse
Affiliation(s)
- Lawrence
W. Honaker
- Laboratory
of Physical Chemistry and Soft Matter, Wageningen
University & Research, Wageningen 6708 WE, The Netherlands
| | - Chang Chen
- Laboratory
of Physical Chemistry and Soft Matter, Wageningen
University & Research, Wageningen 6708 WE, The Netherlands
| | - Floris M.H. Dautzenberg
- Laboratory
of Physical Chemistry and Soft Matter, Wageningen
University & Research, Wageningen 6708 WE, The Netherlands
| | - Sylvia Brugman
- Host-Microbe
Interactomics, Wageningen University &
Research, Wageningen 6708 WD, The Netherlands
| | - Siddharth Deshpande
- Laboratory
of Physical Chemistry and Soft Matter, Wageningen
University & Research, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
8
|
Bulgakov AI, Ivanov VA, Vasilevskaya VV. Self-Assembly of Gel-Like Particles and Vesicles in Solutions of Polymers with Amphiphilic Repeat Unit. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Enhanced water absorption of tissue paper by cross-linking cellulose with poly(vinyl alcohol). CHEMICAL PAPERS 2022; 76:4497-4507. [PMID: 35431412 PMCID: PMC8992785 DOI: 10.1007/s11696-022-02188-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/20/2022] [Indexed: 01/30/2023]
Abstract
Abstract Tissue paper was the only paper grade whose consumption increased during 2020 in Europe. In a highly competitive context, this work explores a strategy based on bisacrylamide cross-linkers and poly(vinyl alcohol) (PVA), seeking to enhance the water uptake of pulps for tissue paper and the key properties of the resulting tissue sheets: water absorption capacity, capillarity, softness, porosity, and strength. For that, α-cellulose from cotton and a kraft hardwood pulp, in parallel, were reacted with N,N’-methylenebisacrylamide, both in the absence and in the presence of PVA. The water desorption rate of the modified polymers was monitored. Pulp blends were then mixed with a conventional softwood pulp (30%) to prepare laboratory tissue paper sheets (20 g m–2). For cotton cellulose, cross-linking with PVA more than doubled the water uptake, up to 7.3 g/g. A significant enhancement was also obtained in the case of pulps, up to 9.6 g/g, and in the case of paper, to 11.9 g/g. This improvement was consistent with a drastic increase in porosity, and it was not detrimental to paper strength. Graphical Abstract ![]()
Collapse
|
10
|
Podorozhko EA, Buzin MI, Golubev EK, Shcherbina MA, Lozinsky VI. A Study of Cryostructuring of Polymer Systems. 59. Effect of Cryogenic Treatment of Preliminarily Deformed Poly(vinyl alcohol) Cryogels on Their Physicochemical Properties. COLLOID JOURNAL 2021. [DOI: 10.1134/s1061933x21050112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Kolosova OY, Karelina PA, Vasil'ev VG, Grinberg VY, Kurochkin II, Kurochkin IN, Lozinsky VI. Cryostructuring of polymeric systems. 58. Influence of the H2N-(CH2) -COOH–type amino acid additives on formation, properties, microstructure and drug release behaviour of poly(vinyl alcohol) cryogels. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
|
13
|
Solís AC, Bento D, Nunes S, Valente A, Pais A, Vitorino C. Rethinking transdermal drug delivery using PVA-NLC based films. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Sudjaipraparat N, Suteewong T, Tangboriboonrat P. Facile Control of Structured ZnO Polymeric Nanoparticles through Miniemulsion Polymerization: Kinetic and UV Shielding Effects. Polymers (Basel) 2021; 13:polym13152526. [PMID: 34372128 PMCID: PMC8347249 DOI: 10.3390/polym13152526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Zinc oxide polymeric nanoparticles (ZPPs) of poly (styrene-co-acrylic acid) P(St/AA), containing oleic acid modified zinc oxide nanoparticles (OA-ZnO NPs), were synthesized via miniemulsion polymerization. By simply adjusting the quantity of reactants, i.e., sodium dodecyl sulfate (SDS) surfactant, potassium persulfate (KPS) initiator, and divinyl benzene (DVB) crosslinking agent, the location of ZnO NPs were altered from the inner (core) to the outer (shell), leading to core-shell and Pickering-like morphologies, respectively. The Pickering-like ZPPs were obtained when using SDS at below or equal to the critical micelle concentration (CMC). At above the CMC, the complete encapsulation of OA-ZnO NPs within the ZPPs depicted a kinetically controlled morphology. The transition to Pickering-like ZPPs also occurred when reducing the KPS from 2 to 0.5-1%. Whereas the DVB accelerated the polymerization rate and viscosity in the growing monomer-swollen nanodroplets and, hence, contributed to kinetic parameters on particle morphology, i.e., an increase in the DVB content increased the rate of polymerization. A hollow structure was obtained by replacing styrene with the more hydrophilic monomer, i.e., methyl methacrylate. All ZPPs-incorporated poly (vinyl alcohol) (PVA) films greatly improved shielding performance over the UV region and were relatively transparent on a white paper background. Due to the large number of ZnO NPs in the central region and, hence, the ease of electron transfer, composite films containing core-shell ZPPs possessed the highest UV blocking ability. ZnO NPs in the outer part of the hollow and Pickering-like ZPPs, on the other hand, facilitated the multiple light scattering according to the difference of refractive indices between the inorganic shell and organic/air core. These results confirm the advantage of structured ZPPs and their potential use as transparent UV shielding fillers.
Collapse
Affiliation(s)
- Narissara Sudjaipraparat
- Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok 10400, Thailand;
| | - Teeraporn Suteewong
- Department of Chemical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
- Correspondence: (T.S.); or (P.T.)
| | - Pramuan Tangboriboonrat
- Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok 10400, Thailand;
- Correspondence: (T.S.); or (P.T.)
| |
Collapse
|
15
|
Nishiyama K, Maeki M, Ishida A, Tani H, Hisamoto H, Tokeshi M. Simple Approach for Fluorescence Signal Amplification Utilizing a Poly(vinyl alcohol)-Based Polymer Structure in a Microchannel. ACS OMEGA 2021; 6:8340-8345. [PMID: 33817494 PMCID: PMC8015073 DOI: 10.1021/acsomega.1c00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Analytical methods with fluorescence detection are in widespread use for detecting low abundance analytes. Here, we report a simple method for fluorescence signal amplification utilizing a structure of an azide-unit pendant water-soluble photopolymer (AWP) in a microchannel. The AWP is a poly(vinyl alcohol)-based photocross-linkable polymer, which is often used in biosensors. We determined that the wall-like structure of the AWP (AWP-wall) constructed in a microchannel functioned as an amplifier of a fluorescence signal. When a solution of fluorescent molecules was introduced into the microchannel having the AWP-wall, the fluorescent molecules accumulated inside the AWP-wall by diffusion. Consequently, the fluorescence intensity inside the AWP-wall increased locally. Among the fluorescent molecules considered in this paper, 9H-(1,3-dichloro-9,9-dimethylacridin-2-one-7-yl) (DDAO) showed the highest efficiency of fluorescence signal amplification. We prepared a calibration curve for DDAO using the fluorescence intensity inside the AWP-wall, and the sensitivity was 5-fold that for the microchannel without the AWP-wall. This method realizes the improved sensitivity of fluorescence detection easily because the fluorescence signal was amplified only by injecting the solution into the microchannel having the AWP-wall. Furthermore, since this method is not limited to only the use of microchannel, we expect it to be applicable in various fields.
Collapse
Affiliation(s)
- Keine Nishiyama
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Masatoshi Maeki
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Akihiko Ishida
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Hirofumi Tani
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Hideaki Hisamoto
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Osaka, Sakai 599-8531, Japan
| | - Manabu Tokeshi
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
- Innovative
Research Centre for Preventive Medical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Institute
of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
16
|
Gurung J, Anjudikkal J, Pulikkal AK. Amphiphilic drug–additive systems in aqueous and organic solvent–water mixed media: A comprehensive account on physicochemical properties. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
A review on cationic starch and nanocellulose as paper coating components. Int J Biol Macromol 2020; 162:578-598. [DOI: 10.1016/j.ijbiomac.2020.06.131] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/06/2020] [Accepted: 06/14/2020] [Indexed: 01/11/2023]
|
18
|
Kuddushi M, Patel NK, Gawali SL, Mata JP, Montes-Campos H, Varela LM, Hassan PA, Malek NI. Thermo-switchable de novo ionogel as metal absorbing and curcumin loaded smart bandage material. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112922] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Filho CMC, Bueno PVA, Matsushita AFY, Vilsinski BH, Rubira AF, Muniz EC, Murtinho DMB, Valente AJM. Uncommon Sorption Mechanism of Aromatic Compounds onto Poly(Vinyl Alcohol)/Chitosan/Maleic Anhydride-β-Cyclodextrin Hydrogels. Polymers (Basel) 2020; 12:E877. [PMID: 32290255 PMCID: PMC7652220 DOI: 10.3390/polym12040877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 11/24/2022] Open
Abstract
Aromatic hydrocarbons are extensive environmental pollutants occurring in both water and air media, and their removal is a priority effort for a healthy environment. The use of adsorbents is among the several strategies used for the remediation of these compounds. In this paper, we aim the synthesis of an amphiphilic hydrogel with the potential for the simultaneous sorption of a set of monocyclic and polycyclic aromatic hydrocarbons associated with toxicity effects in humans. Thus, we start by the synthesis of a copolymer-based in chitosan and β-cyclodextrin previously functionalized with the maleic anhydride. The presence of β-cyclodextrin will confer the ability to interact with hydrophobic compounds. The resulting material is posteriorly incorporated in a cryogel of poly(vinyl alcohol) matrix. We aim to improve the amphiphilic ability of the hydrogel matrix. The obtained hydrogel was characterized by swelling water kinetics, thermogravimetric analysis, rheological measurements, and scanning electron microscopy. The sorption of aromatic hydrocarbons onto the gel is characterized by pseudo-first-order kinetics and Henry isotherm, suggesting a physisorption mechanism. The results show that the presence of maleic anhydride-β-cyclodextrin and chitosan into hydrogels leads to an increase in the removal efficiency of the aromatic compounds. Additionally, the capacity of this hydrogel for removing these pollutants from a fossil fuel sample has also been tested.
Collapse
Affiliation(s)
- Cesar M. C. Filho
- Department of Chemistry, CQC, University of Coimbra, 3004-535 Coimbra, Portugal; (A.F.Y.M.); (B.H.V.); (D.M.B.M.)
- BRinova Biochemistry Lda., R. Fernanda Seno, 6, 7005-485 Évora, Portugal
| | - Pedro V. A. Bueno
- Grupo de Materiais Poliméricos e Compósitos (GMPC)-Departamento de Química, Universidade Estadual de Maringá, UEM, Maringá 87020-900, Brazil; (P.V.A.B.); (A.F.R.); (E.C.M.)
| | - Alan F. Y. Matsushita
- Department of Chemistry, CQC, University of Coimbra, 3004-535 Coimbra, Portugal; (A.F.Y.M.); (B.H.V.); (D.M.B.M.)
| | - Bruno H. Vilsinski
- Department of Chemistry, CQC, University of Coimbra, 3004-535 Coimbra, Portugal; (A.F.Y.M.); (B.H.V.); (D.M.B.M.)
- Grupo de Materiais Poliméricos e Compósitos (GMPC)-Departamento de Química, Universidade Estadual de Maringá, UEM, Maringá 87020-900, Brazil; (P.V.A.B.); (A.F.R.); (E.C.M.)
| | - Adley F. Rubira
- Grupo de Materiais Poliméricos e Compósitos (GMPC)-Departamento de Química, Universidade Estadual de Maringá, UEM, Maringá 87020-900, Brazil; (P.V.A.B.); (A.F.R.); (E.C.M.)
| | - Edvani C. Muniz
- Grupo de Materiais Poliméricos e Compósitos (GMPC)-Departamento de Química, Universidade Estadual de Maringá, UEM, Maringá 87020-900, Brazil; (P.V.A.B.); (A.F.R.); (E.C.M.)
- Post-graduate Program on Materials Science & Engineering, Federal University of Technology, Paraná (UTFPR-LD), Londrina 86036-370, Brazil
- Department of Chemistry, Federal University of Piauí, Teresina CEP 64049-550, Brazil
| | - Dina M. B. Murtinho
- Department of Chemistry, CQC, University of Coimbra, 3004-535 Coimbra, Portugal; (A.F.Y.M.); (B.H.V.); (D.M.B.M.)
| | - Artur J. M. Valente
- Department of Chemistry, CQC, University of Coimbra, 3004-535 Coimbra, Portugal; (A.F.Y.M.); (B.H.V.); (D.M.B.M.)
| |
Collapse
|
20
|
Filova B, Musilova L, Mracek A, Ramos ML, Veríssimo LM, Valente AJ, Ribeiro AC. Effect of sodium salts on diffusion of poly(vinyl alcohol) in aqueous solutions. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
|
22
|
Synergistic Effect of Polyvinyl Alcohol and Copovidone in Itraconazole Amorphous Solid Dispersions. Pharm Res 2018; 35:16. [DOI: 10.1007/s11095-017-2313-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
|
23
|
Filho CMC, Bueno PVA, Matsushita AFY, Rubira AF, Muniz EC, Durães L, Murtinho DMB, Valente AJM. Synthesis, characterization and sorption studies of aromatic compounds by hydrogels of chitosan blended with β-cyclodextrin- and PVA-functionalized pectin. RSC Adv 2018; 8:14609-14622. [PMID: 35540733 PMCID: PMC9079937 DOI: 10.1039/c8ra02332h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/11/2018] [Indexed: 11/21/2022] Open
Abstract
Complex coacervation of chitosan with β-cyclodextrin- and poly(vinyl alcohol)-functionalized pectin: ability for simultaneous removal of six different aromatic compounds.
Collapse
Affiliation(s)
- Cesar M. C. Filho
- CQC
- Department of Chemistry
- University of Coimbra
- 3004-535 Coimbra
- Portugal
| | - Pedro V. A. Bueno
- Grupo de Materiais Poliméricos e Compósitos (GMPC) – Departamento de Química
- Universidade Estadual de Maringá
- UEM
- Maringá
- Brazil
| | | | - Adley F. Rubira
- Grupo de Materiais Poliméricos e Compósitos (GMPC) – Departamento de Química
- Universidade Estadual de Maringá
- UEM
- Maringá
- Brazil
| | - Edvani C. Muniz
- Grupo de Materiais Poliméricos e Compósitos (GMPC) – Departamento de Química
- Universidade Estadual de Maringá
- UEM
- Maringá
- Brazil
| | - Luísa Durães
- CIEPQPF
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| | | | | |
Collapse
|
24
|
Knaapila M, Stewart B, Costa T, Rogers SE, Pragana J, Fonseca SM, Valente AJM, Ramos ML, Murtinho D, Pereira JC, Mallavia R, Burrows HD. Incorporation of a Cationic Conjugated Polyelectrolyte CPE within an Aqueous Poly(vinyl alcohol) Sol. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Matti Knaapila
- Department
of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Beverly Stewart
- Department
of Chemistry and Coimbra Chemistry Centre, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Telma Costa
- Department
of Chemistry and Coimbra Chemistry Centre, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Sarah E. Rogers
- Rutherford
Appleton
Laboratory, ISIS STFC, Chilton OX11 0QX, Oxon, U.K
| | - Joana Pragana
- Department
of Chemistry and Coimbra Chemistry Centre, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Sofia M. Fonseca
- Department
of Chemistry and Coimbra Chemistry Centre, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Artur J. M. Valente
- Department
of Chemistry and Coimbra Chemistry Centre, University of Coimbra, 3004-535 Coimbra, Portugal
| | - M. Luisa Ramos
- Department
of Chemistry and Coimbra Chemistry Centre, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Dina Murtinho
- Department
of Chemistry and Coimbra Chemistry Centre, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Jorge Costa Pereira
- Department
of Chemistry and Coimbra Chemistry Centre, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Ricardo Mallavia
- Instituto
de Biología Molecular y Celular, Universidad Miquel Hernandez de Elche, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Hugh D. Burrows
- Department
of Chemistry and Coimbra Chemistry Centre, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|