1
|
Abumounshar N, Pandey RP, Hasan SW. Enhanced hydrophilicity and antibacterial efficacy of in-situ silver nanoparticles decorated Ti 3C 2T x/Polylactic acid composite membrane for real hospital wastewater purification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176697. [PMID: 39366577 DOI: 10.1016/j.scitotenv.2024.176697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/13/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
This study investigates the integration of Ti3C2Tx (MX) and Ag/Ti3C2Tx (Ag/MX) nanocomposites into polylactic acid membranes to enhance hydrophilicity and impart antibacterial properties, targeting hospital wastewater treatment. MX and silver nanoparticles are known for their hydrophilicity and antimicrobial capabilities, were synthesized and incorporated into PLA; a green polymer. The impact of nanocomposite concentration on the membrane's chemical structure, morphology, and overall performance were characterized using various PLA membrane properties and to evaluate the nanocomposite's performance in enhancing pure water flux and antibacterial efficacy. The pure water permeability increased from 1512 L m-2 h-1 bar-1 to 3108 L m-2 h-1 bar-1 in PLA/AgMX4 compared to PLA. Furthermore, a total bacteria count (TBC) rejection of up to 97 % was obtained using the PLA/AgMX4 membrane. The results demonstrated significant improvements in PLA/AgMX membranes compared to pristine PLA, showing a large potential for hospital wastewater treatment.
Collapse
Affiliation(s)
- Najah Abumounshar
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Ravi P Pandey
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Islam M, Javed A, Rahman ZU, Al-Ghamdi YO, Khan SA. Antibacterial composite films of oxidized alginate-chitosan-ZnO anchored Cu nanoparticles for the degradation of organic pollutants. Int J Biol Macromol 2024; 278:134764. [PMID: 39153670 DOI: 10.1016/j.ijbiomac.2024.134764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The growing population and urbanization have adversely affected the environment including water. The waste water from industries has affected not only human but also animals. The availability of clean water is one of the foremost needs for living organism. This makes very urgent to find reliable solutions for cleaning waste water. These days catalysis is one the best solutions to remove and degrade organic pollutants. In this work, porous composite polymer films have been designed through facile method which were employed to stabilize zero-valent metal nanoparticles (NPs). The sustainable, environmentally friendly polymer matrix with attached metal NPs was applied for the effective catalytic degradation of both phenolic compounds and organic dyes. The different composite films consist of ZnO NPs embedded in an Oxidized Alginate-Chitosan (OAlg-CS) biomatrix named as OAlg-CS/ZnO with various percentages of ZnO as a support for metallic Cu NPs. The ZnO NPs have been incorporated into OAlg-CS polymer with 10, 15, and 20 wt% and are designated as OAlg-CS/ZnO-10, OAlg-CS/ZnO-15, OAlg-CS/ZnO-20. Various analytical techniques were utilized to investigate the shape, morphology, elemental composition, functional groups and stability of the composite films. All these polymer nanocomposite films were then evaluated for removal of model organic pollutants comprising p-nitrophenol (4-NP), methylene blue (MB), and methyl orange (MO). The Kapp value for 4-NP was 2.19 × 10-1 min-1, 4.68 × 10-1 min-1 for MO and 8.99× 10-1 min-1 for MB. The experimental results demonstrated that OAlg-CS/ZnO-20 films show the highest catalytic activity as compared to OAlg-CS/ZnO, OAlg-CS/ZnO-10, and OAlg-CS/ZnO-15. The order of rate constants for nitrophenol and dyes using OAlg-CS/ZnO-20 was found to be MB ˃ MO ˃ 4-NP, showing the selectivity of these composite films. The prepared composite films were also investigated for their antibacterial activity against Gram-positive and Gram-negative bacteria and all the films exhibited good anti-bacterial activity, with OAlg-CS/ZnO-20 showed the highest anti-bacterial activity.
Collapse
Affiliation(s)
- Momina Islam
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Aiman Javed
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Zia Ur Rahman
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Youssef O Al-Ghamdi
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan; Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China.
| |
Collapse
|
3
|
Serov DA, Gritsaeva AV, Yanbaev FM, Simakin AV, Gudkov SV. Review of Antimicrobial Properties of Titanium Dioxide Nanoparticles. Int J Mol Sci 2024; 25:10519. [PMID: 39408848 PMCID: PMC11476587 DOI: 10.3390/ijms251910519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
There is a growing interest in the utilization of metal oxide nanoparticles as antimicrobial agents. This review will focus on titanium dioxide nanoparticles (TiO2 NPs), which have been demonstrated to exhibit high antimicrobial activity against bacteria and fungi, chemical stability, low toxicity to eukaryotic cells, and therefore high biocompatibility. Despite the extensive research conducted in this field, there is currently no consensus on how to enhance the antimicrobial efficacy of TiO2 NPs. The aim of this review is to evaluate the influence of various factors, including particle size, shape, composition, and synthesis parameters, as well as microbial type, on the antibacterial activity of TiO2 NPs against bacteria and fungi. Furthermore, the review offers a comprehensive overview of the methodologies employed in the synthesis and characterization of TiO2 NPs. The antimicrobial activity of TiO2 exhibits a weak dependence on the microorganism species. A tendency towards increased antibacterial activity is observed with decreasing TiO2 NP size. The dependence on the shape and composition is more pronounced. The most pronounced antimicrobial potential is exhibited by amorphous NPs and NPs doped with inorganic compounds. This review may be of interest to specialists in biology, medicine, chemistry, and other related fields.
Collapse
Affiliation(s)
- Dmitriy A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (A.V.G.); (S.V.G.)
| | - Ann V. Gritsaeva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (A.V.G.); (S.V.G.)
| | - Fatikh M. Yanbaev
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Lobachevskogo St. 2/31, Tatarstan, 420111 Kazan, Russia;
| | - Alexander V. Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (A.V.G.); (S.V.G.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (A.V.G.); (S.V.G.)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod Institute, Gagarin Av. 23, 603105 Nizhny Novgorod, Russia
| |
Collapse
|
4
|
Mousa H, Abd El-Hay SS, El Sheikh R, Gouda AA, El-Ghaffar SA, El-Aal MA. Development of environmentally friendly catalyst Ag-ZnO@cellulose acetate derived from discarded cigarette butts for reduction of organic dyes and its antibacterial applications. Int J Biol Macromol 2024; 258:128890. [PMID: 38134996 DOI: 10.1016/j.ijbiomac.2023.128890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
The release of harmful organic dyes from different industries besides its degradation products is a major contributor to environmental contamination. The catalytic reduction of these organic pollutants using nanocomposites based on polymeric material presents potential advantages for the environment. In this study, novel nanocomposite based on cellulose acetate (CA)-derived from discharged cigarette butts and zinc oxide nanoparticles (ZnO NPs) was prepared utilizing a very simple and low-cost solution blending method and used as support for silver nanoparticles (Ag NPs). A simple reduction method was used to anchor different percentages of Ag NPs on the ZnO@CA nanocomposite surface via utilizing sodium borohydride as a reducing agent. The Ag-ZnO@CA nanocomposite was characterized using X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The TEM analysis showed spherical Ag NPs, with an average diameter of ∼17.6 nm, were uniformly anchored on the ZnO@CA nanocomposite surface. The prepared nanocomposites were evaluated as catalysts for the reduction of organic dyes in water. It was found that 10 % Ag-ZnO@CA nanocomposite showed a remarkable reduction of Rhodamine B (RhB), Rhodamine 6G (Rh6G), Methylene Blue (MB), and Sunset Yellow (SY) dyes in short time. In the presence of this nanocomposite, the rate constant, kapp values for RhB, Rh6G, MB, and SY were 0.3498 min-1, 1.51 min-1, 0.2292 min-1, and 0.733 min-1, respectively. This nanocomposite was recovered and reused in five successive cycles, with a negligible loss of its activity. Furthermore, the nanocomposites demonstrated moderate antibacterial activity toward Staphylococcus aureus and Escherichia coli. Thus, this study directed attention on recycling of waste material to a valuable nanocomposite and its applications in environmental protection.
Collapse
Affiliation(s)
- Heba Mousa
- Department of Special Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Soad S Abd El-Hay
- Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Ragaa El Sheikh
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ayman A Gouda
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | | | - Mohamed Abd El-Aal
- Catalysis and Surface Chemistry Lab, Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
5
|
Javed A, Islam M, Al-Ghamdi YO, Iqbal M, Aljohani M, Sohni S, Shah SSA, Khan SA. Synthesis of oxidized carboxymethyl cellulose-chitosan and its composite films with SiC and SiC@SiO 2 nanoparticles for methylene blue dye adsorption. Int J Biol Macromol 2024; 256:128363. [PMID: 38000612 DOI: 10.1016/j.ijbiomac.2023.128363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
The cationic methylene blue (MB) dye sequestration was studied by using oxidized carboxymethyl cellulose-chitosan (OCMC-CS) and its composite films with silicon carbide (OCMC-CS-SiC), and silica-coated SiC nanoparticles (OCMC-CS-SiC@SiO2). The resulting composite films were characterized through various analytical techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Field emission scanning electron microscopy (FESEM), and energy-dispersive X-ray spectroscopy (EDS). The dye adsorption properties of the synthesized composite films were comprehensively investigated in batch experiments and the effect of parameters such as contact time, initial dye concentration, catalyst dosages, temperature, and pH were systematically evaluated. The results indicated that the film's adsorption efficiency was increased by increasing the contact time, catalyst amount, and temperature, and with a decreased initial concentration of dye solution. The adsorption efficiency was highest at neutral pH. The experimental results demonstrated that OCMC-CS films have high dye adsorption capabilities as compared to OCMC-CS-SiC, and OCMC-CS-SiC@SiO2. Additionally, the desorption investigation suggested that the adsorbents are successfully regenerated. Overall, this study contributes to the development of sustainable and effective adsorbent materials for dye removal applications. These films present a promising and environmentally friendly approach to mitigate dye pollution from aqueous systems.
Collapse
Affiliation(s)
- Aiman Javed
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Momina Islam
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Youssef O Al-Ghamdi
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Mudassir Iqbal
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Marwah Aljohani
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
| | - Saima Sohni
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan; Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China.
| |
Collapse
|
6
|
Abood TW, Shabeeb KM, Alzubaydi AB, Majdi HS, Al-Juboori RA, Alsalhy QF. Effect of MAX Phase Ti 3ALC 2 on the Ultrafiltration Membrane Properties and Performance. MEMBRANES 2023; 13:membranes13050456. [PMID: 37233517 DOI: 10.3390/membranes13050456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
Membrane fouling remains a major obstacle to ultrafiltration. Due to their effectiveness and minimal energy demand, membranes have been extensively employed in water treatment. To improve the antifouling property of the PVDF membrane, a composite ultrafiltration membrane was created employing the in-situ embedment approach throughout the phase inversion process and utilizing a new 2D material, MAX phase Ti3ALC2. The membranes were described using FTIR (Fourier transform infrared spectroscopy), EDS (energy dispersive spectroscopy), CA (water contact angle), and porosity measurements. Additionally, atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), and energy dispersive spectroscopy (EDS) were employed. Standard flux and rejection tests were applied to study the produced membranes' performance. Adding Ti3ALC2 reduced composite membranes' surface roughness and hydrophobicity compared to the pristine membrane. Porosity and membrane pore size increased with the addition up to 0.3% w/v, which decreased as the additive percentage increased. The mixed matric membrane with 0.7% w/v of Ti3ALC2 (M7) had the lowest CA. The alteration in the membranes' properties reflected well on their performance. The membrane with the highest porosity (0.1% w/v of Ti3ALC2, M1) achieved the highest pure water and protein solution fluxes of 182.5 and 148.7. The most hydrophilic membrane (M7) recorded the highest protein rejection and flux recovery ratio of 90.6, which was much higher than that of the pristine membrane, 26.2. MAX phase Ti3ALC2 is a potential material for antifouling membrane modification because of its protein permeability, improved water permeability, and outstanding antifouling characteristics.
Collapse
Affiliation(s)
- Tamara Wahid Abood
- Department of Materials Engineering, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq
| | - Kadhum M Shabeeb
- Department of Materials Engineering, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq
| | - Aseel B Alzubaydi
- Department of Materials Engineering, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq
| | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, AlMustaqbal University College, Babylon 51001, Iraq
| | - Raed A Al-Juboori
- NYUAD Water Research Centre, Abu Dhabi Campus, New York University, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Qusay F Alsalhy
- Membrane Technology Research Unit, Department of Chemical Engineering, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq
| |
Collapse
|
7
|
Karimi S, Gholinejad M, Khezri R, Sansano JM, Nájera C, Yus M. Gold and palladium supported on an ionic liquid modified Fe-based metal-organic framework (MOF) as highly efficient catalysts for the reduction of nitrophenols, dyes and Sonogashira-Hagihara reactions. RSC Adv 2023; 13:8101-8113. [PMID: 36909743 PMCID: PMC10001704 DOI: 10.1039/d3ra00283g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Two supported noble metal species, gold and palladium anchored on an ionic liquid-modified Fe-based metal-organic framework (MOF), were successfully synthesized and characterized by FT-IR, XRD, TEM, XPS, SEM, EDX, and elemental mapping. The ionic liquid post-modified MOF was used for anchoring Au or Pd at ppm levels, and the resulting materials were employed as catalysts in the reduction of nitrophenol isomers, dyes, and Sonogashira-Hagihara reactions. Using the Au@Fe-MOF-IL catalyst, reduction of nitrophenol isomers, as well as the reductive degradation of dyes, e.g., methylene blue (MB), methyl orange (MO), and methyl red (MR) were performed efficiently in water. On the other hand, Pd@Fe-MOF-IL was used as an effective catalyst in the Sonogashira-Hagihara coupling reaction of aryl iodides and bromides using very low amounts of Pd. These catalysts were recycled and reused for several runs without deteriorating remarkably in catalytic performance.
Collapse
Affiliation(s)
- Shirin Karimi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) P. O. Box 45195-1159, Gavazang Zanjan 45137-66731 Iran
| | - Mohammad Gholinejad
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) P. O. Box 45195-1159, Gavazang Zanjan 45137-66731 Iran .,Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Rahimeh Khezri
- Department of Chemistry, Faculty of Sciences, Persian Gulf University Bushehr 75169 Iran
| | - José M Sansano
- Departamento de Química Orgánica, Instituto de Síntesis Orgánica, Universidad de Alicante Apdo. 99 03690-Alicante Spain.,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante Apdo. 99 03690-Alicante Spain
| | - Carmen Nájera
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante Apdo. 99 03690-Alicante Spain
| | - Miguel Yus
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante Apdo. 99 03690-Alicante Spain
| |
Collapse
|
8
|
Alharthi AF, Gouda M, Khalaf MM, Elmushyakhi A, Abou Taleb MF, Abd El-Lateef HM. Cellulose-Acetate-Based Films Modified with Ag 2O and ZnS as Nanocomposites for Highly Controlling Biological Behavior for Wound Healing Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:777. [PMID: 36676514 PMCID: PMC9867364 DOI: 10.3390/ma16020777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
For wound healing, functional films with certain physicochemical and biological properties are needed. Thus, the current work aimed to fabricate multifunctional materials comprising metal oxide nanoparticles loaded with an efficient polymer to be used as dressing material. A composite containing polymeric phases of cellulose acetate (CA) blended with zinc sulfide (ZnS), silver oxide (Ag2O), and graphene oxide (GO) was successfully synthesized. The prepared composite crystallinity was studied using the X-ray diffraction technique (XRD). Further, the functional groups and the elemental analysis were investigated using Fourier-transform infrared spectroscopy (FTIR) and energy-dispersive X-ray spectroscopy (EDX). Furthermore, the surface morphology was studied using scanning electron microscopy (SEM) to obtain the shape and size of particles. SEM showed that the particles were formed in wide distribution in the range of 18-915 nm with an average size of 235 nm for Ag2O/ZnS/GO/CA. The particle size of Ag2O in the CA film was in the range between 19 and 648 nm with an average size of 216 nm, while the particle size of ZnS in CA was in the range of 12-991 nm with an average age particle size of 158 mm. In addition, EDX, based on SEM investigation, detected high carbon and oxygen quantities at around 94.21% of the composite. The contact angle decreased and reached 26.28° ± 2.12° in Ag2O/ZnS/CA. Furthermore, thermogravimetric analysis (TGA) was used to investigate the thermal stability, and the composition was thermally stable until 300 °C. Moreover, the cell viability of "normal lung cells" reached 102.66% in vitro at a concentration of 1250 µg/mL. The antibacterial activity of Ag2O/ZnS/GO/CA was also detected against E. coli with a zone of inhibition reaching 17.7 ± 0.5 mm. Therefore, the composite can be used in biomedical applications due to its biocompatibility and antibacterial activity.
Collapse
Affiliation(s)
- Amjad F. Alharthi
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Abraham Elmushyakhi
- Department of Mechanical Engineering, College of Engineering, Northern Border University, Arar 91431, Saudi Arabia
| | - Manal F. Abou Taleb
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Polymer Chemistry, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, Cairo 11762, Egypt
| | - Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
9
|
Gudkov SV, Li R, Serov DA, Burmistrov DE, Baimler IV, Baryshev AS, Simakin AV, Uvarov OV, Astashev ME, Nefedova NB, Smolentsev SY, Onegov AV, Sevostyanov MA, Kolmakov AG, Kaplan MA, Drozdov A, Tolordava ER, Semenova AA, Lisitsyn AB, Lednev VN. Fluoroplast Doped by Ag 2O Nanoparticles as New Repairing Non-Cytotoxic Antibacterial Coating for Meat Industry. Int J Mol Sci 2023; 24:ijms24010869. [PMID: 36614309 PMCID: PMC9821803 DOI: 10.3390/ijms24010869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Foodborne infections are an important global health problem due to their high prevalence and potential for severe complications. Bacterial contamination of meat during processing at the enterprise can be a source of foodborne infections. Polymeric coatings with antibacterial properties can be applied to prevent bacterial contamination. A composite coating based on fluoroplast and Ag2O NPs can serve as such a coating. In present study, we, for the first time, created a composite coating based on fluoroplast and Ag2O NPs. Using laser ablation in water, we obtained spherical Ag2O NPs with an average size of 45 nm and a ζ-potential of -32 mV. The resulting Ag2O NPs at concentrations of 0.001-0.1% were transferred into acetone and mixed with a fluoroplast-based varnish. The developed coating made it possible to completely eliminate damage to a Teflon cutting board. The fluoroplast/Ag2O NP coating was free of defects and inhomogeneities at the nano level. The fluoroplast/Ag2O NP composite increased the production of ROS (H2O2, OH radical), 8-oxogualnine in DNA in vitro, and long-lived active forms of proteins. The effect depended on the mass fraction of the added Ag2O NPs. The 0.01-0.1% fluoroplast/NP Ag2O coating exhibited excellent bacteriostatic and bactericidal properties against both Gram-positive and Gram-negative bacteria but did not affect the viability of eukaryotic cells. The developed PTFE/NP Ag2O 0.01-0.1% coating can be used to protect cutting boards from bacterial contamination in the meat processing industry.
Collapse
Affiliation(s)
- Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- All-Russia Research Institute of Phytopathology of the Russian Academy of Sciences, Institute St., 5, Big Vyazyomy, 143050 Moscow, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhny Novgorod, Russia
| | - Ruibin Li
- School for Radiologic and Interdisciplinary Science, Soochow University, Suzhou 215123, China
| | - Dmitriy A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia
| | - Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Ilya V. Baimler
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Alexey S. Baryshev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Alexander V. Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Oleg V. Uvarov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Maxim E. Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia
| | - Natalia B. Nefedova
- Institute of Cell Biophysics, Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia
- Federal State Budget Educational Institution of Higher Education Pushchino State Institute of Natural Science, Science Av. 3, 142290 Pushchino, Russia
| | | | - Andrey V. Onegov
- Mari State University, pl. Lenina, 1, 424001 Yoshkar-Ola, Russia
| | - Mikhail A. Sevostyanov
- All-Russia Research Institute of Phytopathology of the Russian Academy of Sciences, Institute St., 5, Big Vyazyomy, 143050 Moscow, Russia
- A.A. Baikov Institute of Metallurgy and Materials Science (IMET RAS) of the Russian Academy of Sciences, Leninsky Prospect, 49, 119334 Moscow, Russia
| | - Alexey G. Kolmakov
- A.A. Baikov Institute of Metallurgy and Materials Science (IMET RAS) of the Russian Academy of Sciences, Leninsky Prospect, 49, 119334 Moscow, Russia
| | - Mikhail A. Kaplan
- A.A. Baikov Institute of Metallurgy and Materials Science (IMET RAS) of the Russian Academy of Sciences, Leninsky Prospect, 49, 119334 Moscow, Russia
| | - Andrey Drozdov
- Institute for Analytical Instrumentation of the Russian Academy of Sciences, Ulitsa Ivana Chernykh, 31–33, lit. A, 198095 St. Petersburg, Russia
| | - Eteri R. Tolordava
- V. M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, Talalikhina St., 26, 109316 Moscow, Russia
| | - Anastasia A. Semenova
- V. M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, Talalikhina St., 26, 109316 Moscow, Russia
| | - Andrey B. Lisitsyn
- V. M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, Talalikhina St., 26, 109316 Moscow, Russia
| | - Vasily N. Lednev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
10
|
Lv Z, Xue P, Xie T, Zhao J, Tian S, Liu H, Qi Y, Sun S, Lv X. High-performing PVDF membranes modified by Na+ MMT/ionic liquids (ILs) with different chain lengths: dye adsorption and separation from O/W emulsion. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Akhtar K, Bahadar Khan S, Bakhsh EM, Asiri AM. A nanocomposite of nickel oxide-tin oxide and carboxymethylcellulose coated cotton fibres for catalytic reduction of water pollutants. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Rehan ZA, Zahid M, Kanwal S, Nadeem N, Hafeez A, Jamil A, Zubair Z. Optimization of carboxylated graphene oxide (C-GO) content in polymer matrix: Synthesis, characterization, and application study. CHEMOSPHERE 2023; 310:136900. [PMID: 36265713 DOI: 10.1016/j.chemosphere.2022.136900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/23/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Carboxylated graphene oxide (C-GO) embedded in polysulfone (PSF) membrane composites were prepared with different wt. % (i.e., 0.2% M - 1, 0.3% M - 2, 0.4% M - 3, and 0.5% M - 4) using non-solvent induced phase separation (NIPS) method and ultrafiltration assembly was applied for the removal of dye effluents. The optimization of C-GO content into polymer matrix was found influencing factor in determining the composite membranes efficiency and application in various research fields. The membranes were characterized in terms of surface morphology (SEM), crystallinity (XRD), and functional groups identification (FTIR). The water permeability of the developed membranes was analyzed, and it is observed that increasing the content of C-GO in PSF membranes imposed a positive impact on permeation performance. M - 3 was found to be a potential candidate among all the membranes with a maximum water flux of about 183 LMH which is considerably higher as compared to the pristine PSF membrane's water flux (i.e., 27 LMH). Moreover, contact angle measurements of membranes were also checked to assess the hydrophilicity of PSF membranes. The results of contact angle also support the water permeability and efficient correlation was observed as contact angle decreases with increasing the content of C-GO. The minimum contact angle with excellent hydrophilicity was shown by the M - 3 membrane and it was found of about ±58.19° and this value is close to the M - 4 membrane having maximum C-GO content. The photocatalytic performance of the M - 3 membrane was checked under UV-254 nm using methylene blue dye and 97% dye removal was achieved within 220 min of reaction time under neutral pH conditions. The M - 3 membrane having C-GO content of 0.4% was found to be the best membrane with high pure water flux (183 LMH) and efficient dye rejection (82%) capability.
Collapse
Affiliation(s)
| | - Muhammad Zahid
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Sidra Kanwal
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Nimra Nadeem
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad, Pakistan
| | - Asif Hafeez
- Department of Materials, National Textile University, Faisalabad, Pakistan
| | - Asif Jamil
- Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, Lahore (New Campus), Pakistan
| | - Zakariya Zubair
- Department of Materials, National Textile University, Faisalabad, Pakistan.
| |
Collapse
|
13
|
Abriyanto H, Susanto H, Maharani T, Filardli AMI, Desiriani R, Aryanti N. Synergistic Effect of Chitosan and Metal Oxide Additives on Improving the Organic and Biofouling Resistance of Polyethersulfone Ultrafiltration Membranes. ACS OMEGA 2022; 7:46066-46078. [PMID: 36570250 PMCID: PMC9773804 DOI: 10.1021/acsomega.2c03685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The combination of chitosan and metal oxides was utilized as an addition to improve the fouling resistance of polyethersulfone (PES) ultrafiltration membranes. Pure water flux, membrane hydrophilicity by the contact angle, scanning electron micrographs, and Fourier-transform infrared spectra were used to characterize the membranes. With the addition of metal oxides, the modified membrane's water flux increased. The PES membrane with 0.25% wt chitosan and 2.0% wt AgNO3 had the highest flux and antibacterial activity among the membranes tested. Because of its potential to improve membrane hydrophilicity, the water flux increased with the addition of chitosan and AgNO3. Because of the improved hydrophilicity, the contact angle reduced as chitosan and Ag loading was increased. The PES-chitosan-Ag2O (from AgNO3 2.0% wt) membrane had high antibacterial activity against Escherichia coli and Staphylococcus aureus, whereas the PES-2.0% wt Ag membrane did not show the same result. Finally, the addition of chitosan in the PES-Ag membrane increased the membrane's antibacterial activity substantially.
Collapse
Affiliation(s)
- Herlambang Abriyanto
- Department
of Chemical Engineering, Faculty of Engineering, Diponegoro University, No. 1 Prof Soedarto, SH Road, Tembalang-Semarang50275, Indonesia
- Membrane
Research Center (Mer-C), PUI Membrane Central Laboratory for Research
and Service, Diponegoro University, Semarang50275, Indonesia
| | - Heru Susanto
- Department
of Chemical Engineering, Faculty of Engineering, Diponegoro University, No. 1 Prof Soedarto, SH Road, Tembalang-Semarang50275, Indonesia
- Membrane
Research Center (Mer-C), PUI Membrane Central Laboratory for Research
and Service, Diponegoro University, Semarang50275, Indonesia
| | - Talita Maharani
- Department
of Chemical Engineering, Faculty of Engineering, Diponegoro University, No. 1 Prof Soedarto, SH Road, Tembalang-Semarang50275, Indonesia
| | - Abdullah M. I. Filardli
- Department
of Chemical Engineering, Faculty of Engineering, Diponegoro University, No. 1 Prof Soedarto, SH Road, Tembalang-Semarang50275, Indonesia
- Membrane
Research Center (Mer-C), PUI Membrane Central Laboratory for Research
and Service, Diponegoro University, Semarang50275, Indonesia
| | - Ria Desiriani
- Department
of Chemical Engineering, Faculty of Engineering, Diponegoro University, No. 1 Prof Soedarto, SH Road, Tembalang-Semarang50275, Indonesia
- Membrane
Research Center (Mer-C), PUI Membrane Central Laboratory for Research
and Service, Diponegoro University, Semarang50275, Indonesia
| | - Nita Aryanti
- Department
of Chemical Engineering, Faculty of Engineering, Diponegoro University, No. 1 Prof Soedarto, SH Road, Tembalang-Semarang50275, Indonesia
- Membrane
Research Center (Mer-C), PUI Membrane Central Laboratory for Research
and Service, Diponegoro University, Semarang50275, Indonesia
| |
Collapse
|
14
|
Low cost production of bacterial cellulose through statistical optimization and developing its composites for multipurpose applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Vatanpour V, Kose-Mutlu B, Mutlu-Salmanli O, Ilyasoglu G, Asadzadeh-Khaneghah S, Habibi-Yangjeh A, Koyuncu I. Bi4O5I2 nanosheets as a novel nanofiller for fabrication of antifouling polyethersulfone nanocomposite membranes. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Thakur AK, Mahbub H, Nowrin FH, Malmali M. Highly Robust Laser-Induced Graphene (LIG) Ultrafiltration Membrane with a Stable Microporous Structure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46884-46895. [PMID: 36200611 DOI: 10.1021/acsami.2c09563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Laser-induced graphene (LIG) materials have great potential in water treatment applications. Herein, we report the fabrication of a mechanically robust electroconductive LIG membrane with tailored separation properties for ultrafiltration (UF) applications. These LIG membranes are facilely fabricated by directly lasing poly(ether sulfone) (PES) membrane support. Control PES membranes were fabricated through a nonsolvent-induced phase separation (NIPS) technique. A major finding was that when PES UF membranes were treated with glycerol, the membrane porous structure remained almost unchanged upon drying, which also assisted with protecting the membrane's nanoscale features after lasing. Compared to the control PES membrane, the membrane fabricated with 8% laser power on the bottom layer of PES (PES (B)-LIG-HP) demonstrated 4 times higher flux (865 LMH) and 90.9% bovine serum albumin (BSA) rejection. Moreover, LIG membranes were found to be highly hydrophilic and exhibited excellent mechanical and chemical stability. Owing to their excellent permeance and separation efficiency, these highly robust electroconductive LIG membranes have a great potential to be used for designing functional membranes.
Collapse
Affiliation(s)
- Amit K Thakur
- Department of Chemical Engineering, Texas Tech University, 807 Canton Avenue, Lubbock, Texas79409, United States
| | - Hasib Mahbub
- Department of Chemical Engineering, Texas Tech University, 807 Canton Avenue, Lubbock, Texas79409, United States
| | - Fouzia Hasan Nowrin
- Department of Chemical Engineering, Texas Tech University, 807 Canton Avenue, Lubbock, Texas79409, United States
| | - Mahdi Malmali
- Department of Chemical Engineering, Texas Tech University, 807 Canton Avenue, Lubbock, Texas79409, United States
| |
Collapse
|
17
|
Gudkov SV, Serov DA, Astashev ME, Semenova AA, Lisitsyn AB. Ag 2O Nanoparticles as a Candidate for Antimicrobial Compounds of the New Generation. Pharmaceuticals (Basel) 2022; 15:ph15080968. [PMID: 36015116 PMCID: PMC9415021 DOI: 10.3390/ph15080968] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 12/16/2022] Open
Abstract
Antibiotic resistance in microorganisms is an important problem of modern medicine which can be solved by searching for antimicrobial preparations of the new generation. Nanoparticles (NPs) of metals and their oxides are the most promising candidates for the role of such preparations. In the last few years, the number of studies devoted to the antimicrobial properties of silver oxide NPs have been actively growing. Although the total number of such studies is still not very high, it is quickly increasing. Advantages of silver oxide NPs are the relative easiness of production, low cost, high antibacterial and antifungal activities and low cytotoxicity to eukaryotic cells. This review intends to provide readers with the latest information about the antimicrobial properties of silver oxide NPs: sensitive organisms, mechanisms of action on microorganisms and further prospects for improving the antimicrobial properties.
Collapse
Affiliation(s)
- Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence:
| | - Dmitriy A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maxim E. Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia A. Semenova
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia
| | - Andrey B. Lisitsyn
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia
| |
Collapse
|
18
|
Vatanpour V, Pasaoglu ME, Barzegar H, Teber OO, Kaya R, Bastug M, Khataee A, Koyuncu I. Cellulose acetate in fabrication of polymeric membranes: A review. CHEMOSPHERE 2022; 295:133914. [PMID: 35149008 DOI: 10.1016/j.chemosphere.2022.133914] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/25/2022] [Accepted: 02/05/2022] [Indexed: 05/22/2023]
Abstract
Developing biodegradable polymers to fabricate filtration membranes is one of the main challenges of membrane science and technology. Cellulose acetate (CA) membranes, due to their excellent film-forming property, high chemical and mechanical stability, high hydrophilicity, eco-friendly, and suitable cost, are extensively used in water and wastewater treatment, gas separation, and energy generation purposes. The CA is one of the first materials used to fabricate filtration membranes. However, in the last decade, the possibility of modification of CA to improve permeability and stability has attracted the researcher's attention again. This review is focused on the properties of cellulose derivatives and especially CA membranes in the fabrication of polymeric separation membranes in various applications such as filtration, gas separation, adsorption, and ion exchange membranes. Firstly, a brief introduction of CA properties and used molecular weights in the fabrication of membranes will be presented. After that, different configurations of CA membranes will be outlined, and the performance of CA membranes in several applications and configurations as the main polymer and as an additive in the fabrication of other polymer-based membranes will be discussed.
Collapse
Affiliation(s)
- Vahid Vatanpour
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| | - Mehmet Emin Pasaoglu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Hossein Barzegar
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran
| | - Oğuz Orhun Teber
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Recep Kaya
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Muhammed Bastug
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| |
Collapse
|
19
|
MXene (Ti3C2Tx)/Cellulose Acetate Mixed-Matrix Membrane Enhances Fouling Resistance and Rejection in the Crossflow Filtration Process. MEMBRANES 2022; 12:membranes12040406. [PMID: 35448377 PMCID: PMC9027356 DOI: 10.3390/membranes12040406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 01/04/2023]
Abstract
Obstacles in the membrane-based separation field are mainly related to membrane fouling. This study involved the synthesis and utilization of covalently crosslinked MXene/cellulose acetate mixed matrix membranes with MXene at different concentrations (CCAM-0% to CCAM-12%) for water purification applications. The membranes’ water flux, dye, and protein rejection performances were compared using dead-end (DE) and crossflow (CF) filtration. The fabricated membranes, especially CCAM-10%, exhibited high hydrophilicity, good surface roughness, significantly high water flux, high water uptake, and high porosity. A significantly higher flux was observed in CF filtration relative to DE filtration. Moreover, in CF filtration, the CCAM-10% membrane exhibited 96.60% and 99.49% rejection of methyl green (MG) and bovine serum albumin (BSA), respectively, while maintaining a flux recovery ratio of 67.30% and an irreversible fouling ratio at (Rir) of 32.70, indicating good antifouling performance. Hence, this study suggests that covalent modification of cellulose acetate membranes with MXene significantly improves the performance and fouling resistance of membranes for water filtration in CF mode relative to DE mode.
Collapse
|
20
|
Nanoarchitectured Cu based catalysts supported on alginate/glycyl leucine hybrid beads for tainted water treatment. Int J Biol Macromol 2022; 208:56-69. [PMID: 35278516 DOI: 10.1016/j.ijbiomac.2022.03.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
Abstract
Water pollution reached worrying point due to different dye pollutants which demands an instant solution. One of the best ways to manage water pollutants is their reduction and decolorization to less-toxic and useful compounds. However, reduction process requires an effective, stable, and recyclable catalyst to reduce such pollutants more effectively. Metal nanoparticles (M0) are highly effective catalysts but separation of nanoparticles after reaction is difficult and requires a high-speed centrifugation. If loaded on polymer-beads, they can be easily separated from the reaction-mixture. Hearin, alginate/glycyl leucine (AGL) hybrid-beads were prepared, and copper nanoparticles (Cu0) were grown on it by simple process. M0/AGL bead catalysts were tested toward reducing various toxic compounds. Among all developed composite-beads, the catalytic performance of Cu0/AGL was highest in terms of reduction kinetics. After initial screening for different pollutants, Cu0/AGL was much more effective for MO reduction, thus, all optimized different parameters i.e., catalyst dosage, stability, amount of reducing-agent and recyclability were experimentally determined. The Cu0/AGL showed high-rate constants (kapp) of 0.7566 and 2.9506 min-1 depending on beads content. The reusability of the Cu0/AGL catalysts up to the 7th cycle has been checked. With the use of AGL as support for the Cu nanoparticles, not only the catalytic activity was retained for longer times during reusability, but it helped in their easy separation.
Collapse
|
21
|
Khan SB, Bakhsh EM, Akhtar K, Kamal T, Shen Y, Asiri AM. Copper Oxide-Antimony Oxide Entrapped Alginate Hydrogel as Efficient Catalyst for Selective Reduction of 2-Nitrophenol. Polymers (Basel) 2022; 14:polym14030458. [PMID: 35160448 PMCID: PMC8839609 DOI: 10.3390/polym14030458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 12/04/2022] Open
Abstract
Copper oxide-antimony oxide (Cu2O-Sb2O3) was prepared and entrapped inside Na-alginate hydrogel (Alg@Cu2O-Sb2O3). The developed Alg@Cu2O-Sb2O3 was used as catalytic reactor for the reduction of 4-nitrophenol (4-NP), 2-nitrophenol (2-NP), 2,6-dinitrophenol (2,6-DNP), methyl orange (MO), congo red (CR), acridine orange (AO), methylene blue (MB) and potassium ferricyanide (K3[Fe(CN)6]). Alg@Cu2O-Sb2O3 was found to be selective and more efficient for the reduction of 2-NP among all the pollutants. Therefore, 2-NP was selected for a detailed study to optimize various parameters, e.g., the catalyst amount, reducing agent concentration, 2-NP concentration and recyclability. Alg@Cu2O-Sb2O3 was found to be very stable and easily recyclable for the reduction of 2-NP. The Alg@Cu2O-Sb2O3 nanocatalyst reduced 2-NP in 1.0 min, having a rate constant of 3.8187 min−1.
Collapse
Affiliation(s)
- Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.M.B.); (K.A.); (T.K.); (A.M.A.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence:
| | - Esraa M. Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.M.B.); (K.A.); (T.K.); (A.M.A.)
| | - Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.M.B.); (K.A.); (T.K.); (A.M.A.)
| | - Tahseen Kamal
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.M.B.); (K.A.); (T.K.); (A.M.A.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Yan Shen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China;
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.M.B.); (K.A.); (T.K.); (A.M.A.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
22
|
Chausov DN, Smirnova VV, Burmistrov DE, Sarimov RM, Kurilov AD, Astashev ME, Uvarov OV, Dubinin MV, Kozlov VA, Vedunova MV, Rebezov MB, Semenova AA, Lisitsyn AB, Gudkov SV. Synthesis of a Novel, Biocompatible and Bacteriostatic Borosiloxane Composition with Silver Oxide Nanoparticles. MATERIALS 2022; 15:ma15020527. [PMID: 35057245 PMCID: PMC8780406 DOI: 10.3390/ma15020527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 01/16/2023]
Abstract
Microbial antibiotic resistance is an important global world health problem. Recently, an interest in nanoparticles (NPs) of silver oxides as compounds with antibacterial potential has significantly increased. From a practical point of view, composites of silver oxide NPs and biocompatible material are of interest. A borosiloxane (BS) can be used as one such material. A composite material combining BS and silver oxide NPs has been synthesized. Composites containing BS have adjustable viscoelastic properties. The silver oxide NPs synthesized by laser ablation have a size of ~65 nm (half-width 60 nm) and an elemental composition of Ag2O. The synthesized material exhibits strong bacteriostatic properties against E. coli at a concentration of nanoparticles of silver oxide more than 0.01%. The bacteriostatic effect depends on the silver oxide NPs concentration in the matrix. The BS/silver oxide NPs have no cytotoxic effect on a eukaryotic cell culture when the concentration of nanoparticles of silver oxide is less than 0.1%. The use of the resulting composite based on BS and silver oxide NPs as a reusable dry disinfectant is due to its low toxicity and bacteriostatic activity and its characteristics are not inferior to the medical alloy nitinol.
Collapse
Affiliation(s)
- Denis N. Chausov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | - Veronika V. Smirnova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | - Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | - Ruslan M. Sarimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | - Alexander D. Kurilov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | - Maxim E. Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | - Oleg V. Uvarov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | | | - Valery A. Kozlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
- Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Maria V. Vedunova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhny Novgorod, Russia
| | - Maksim B. Rebezov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Anastasia A. Semenova
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Andrey B. Lisitsyn
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhny Novgorod, Russia
- Correspondence:
| |
Collapse
|
23
|
Fagieh TM, Bakhsh EM, Khan SB, Akhtar K, Asiri AM. Alginate/Banana Waste Beads Supported Metal Nanoparticles for Efficient Water Remediation. Polymers (Basel) 2021; 13:polym13234054. [PMID: 34883558 PMCID: PMC8659063 DOI: 10.3390/polym13234054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/30/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
Water pollution is considered a perilous issue that requires an immediate solution. This is largely because of the strong correlation between the global population increase and the amount of waste produced (most notably food waste). This project prompts the conversion of food waste into useful materials that can be used with sodium alginate as a catalytic support for metal nanoparticles. Sodium alginate/banana peel (Alg/BP) beads were prepared simply using an eco-friendly method. The prepared materials were modified using nanostructured materials to enhance their characteristics. Alg/BP beads were employed as adsorbents for metals that were then treated with sodium borohydride to produce MNPs@Alg/BP. Different MNPs@Alg/BP (MNPs = Ag, Ni, Co, Fe, and Cu) were used as catalysts for reducing 4-nitrophenol (4-NP) by NaBH4 to evaluate each catalyst performance in a model reaction. The results exhibited that Cu@Alg/BP was most efficient toward complete transformation of 4-NP. Therefore, Cu@Alg/BP was also used as a catalyst for the reduction of potassium ferricyanide, congo red, methyl orange (MO), and methylene blue. It was found that Cu@Alg/BP beads catalytically reduced up to 95–99% of above pollutants within a few minutes. Cu@Alg/BP beads were more selective in reducing MO among the pollutants. The catalytic activity of Cu@Alg/BP was examined by evaluating the impact of numerous parameters on MO reduction. The results are expected to provide a new strategy for the removal of inorganic and organic water contaminants based on efficient and low-cost catalysts.
Collapse
Affiliation(s)
- Taghreed M Fagieh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Esraa M Bakhsh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Advanced Materials, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kalsoom Akhtar
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah M Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Advanced Materials, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
24
|
Smirnova VV, Chausov DN, Serov DA, Kozlov VA, Ivashkin PI, Pishchalnikov RY, Uvarov OV, Vedunova MV, Semenova AA, Lisitsyn AB, Simakin AV. A Novel Biodegradable Composite Polymer Material Based on PLGA and Silver Oxide Nanoparticles with Unique Physicochemical Properties and Biocompatibility with Mammalian Cells. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6915. [PMID: 34832317 PMCID: PMC8620072 DOI: 10.3390/ma14226915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
A method for obtaining a stable colloidal solution of silver oxide nanoparticles has been developed using laser ablation. The method allows one to obtain nanoparticles with a monomodal size distribution and a concentration of more than 108 nanoparticles per mL. On the basis of the obtained nanoparticles and the PLGA polymer, a nanocomposite material was manufactured. The manufacturing technology allows one to obtain a nanocomposite material without significant defects. Nanoparticles are not evenly distributed in the material and form domains in the composite. Reactive oxygen species (hydrogen peroxide and hydroxyl radical) are intensively generated on the surfaces of the nanocomposite. Additionally, on the surface of the composite material, an intensive formation of protein long-lived active forms is observed. The ELISA method was used to demonstrate the generation of 8-oxoguanine in DNA on the developed nanocomposite material. It was found that the multiplication of microorganisms on the developed nanocomposite material is significantly decreased. At the same time, the nanocomposite does not inhibit proliferation of mammalian cells. The developed nanocomposite material can be used as an affordable and non-toxic nanomaterial to create bacteriostatic coatings that are safe for humans.
Collapse
Affiliation(s)
- Veronika V. Smirnova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Denis N. Chausov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Dmitriy A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Valery A. Kozlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
- Department of Fundamental Science, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, 105005 Moscow, Russia
| | - Petr I. Ivashkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Roman Y. Pishchalnikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Oleg V. Uvarov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Maria V. Vedunova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
- Institute of Biology and Biomedicine, Lobachevsky State, University of Nizhni Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Anastasia A. Semenova
- V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Andrey B. Lisitsyn
- V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Alexander V. Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| |
Collapse
|
25
|
Fabrication and Characterization of Sulfonated Graphene Oxide (SGO) Doped PVDF Nanocomposite Membranes with Improved Anti-Biofouling Performance. MEMBRANES 2021; 11:membranes11100749. [PMID: 34677515 PMCID: PMC8540047 DOI: 10.3390/membranes11100749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/25/2021] [Accepted: 09/25/2021] [Indexed: 11/24/2022]
Abstract
Emergence of membrane technology for effective performance is qualified due to its low energy consumption, no use of chemicals, high removal capacity and easy accessibility of membrane material. The hydrophobic nature of polymeric membranes limits their applications due to biofouling (assemblage of microorganisms on surface of membrane). Polymeric nanocomposite membranes emerge to alleviate this issue. The current research work was concerned with the fabrication of sulfonated graphene oxide doped polyvinylidene fluoride (PVDF) membrane and investigation of its anti-biofouling and anti-bacterial behavior. The membrane was fabricated through phase inversion method, and its structure and morphology were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-rays diffraction (XRD) and thermo gravimetric analysis (TGA) techniques. Performance of the membrane was evaluated via pure water flux; anti-biofouling behavior was determined through Bovine Serum albumin (BSA) rejection. Our results revealed that the highest water flux was shown by M7 membrane about 308.7 Lm−2h−1/bar having (0.5%) concentration of SGO with improved BSA rejection. Furthermore, these fabricated membranes showed high antibacterial activity, more hydrophilicity and mechanical strength as compared to pristine PVDF membranes. It was concluded that SGO addition within PVDF polymer matrix enhanced the properties and performance of membranes. Therefore, SGO was found to be a promising material for the fabrication of nanocomposite membranes.
Collapse
|
26
|
Copper oxide doped composite nanospheres decorated graphite pencil toward efficient hydrogen evolution electrocatalysis. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Fetanat M, Keshtiara M, Low ZX, Keyikoglu R, Khataee A, Orooji Y, Chen V, Leslie G, Razmjou A. Machine Learning for Advanced Design of Nanocomposite Ultrafiltration Membranes. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05446] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masoud Fetanat
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- Graduate School of Biomedical Engineering, UNSW, Sydney, New South Wales 2052, Australia
| | - Mohammadali Keshtiara
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ze-Xian Low
- Department of Chemical Engineering, Monash University, Clayton Victoria 3800, Australia
| | - Ramazan Keyikoglu
- Department of Environmental Engineering, Gebze Technical University, Gebze 41400, Turkey
- Department of Environmental Engineering, Bursa Technical Unviersity, 16310 Bursa, Turkey
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, Gebze 41400, Turkey
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Vicki Chen
- School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072 Australia
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Gregory Leslie
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Amir Razmjou
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
28
|
Nawaz H, Umar M, Ullah A, Razzaq H, Zia KM, Liu X. Polyvinylidene fluoride nanocomposite super hydrophilic membrane integrated with Polyaniline-Graphene oxide nano fillers for treatment of textile effluents. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123587. [PMID: 32791478 DOI: 10.1016/j.jhazmat.2020.123587] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/13/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Water pollution from the fashion industries containing dyes has become a major source of water pollution. These anthropogenic contaminated waters directly enter irrigation and drinking water systems, causing irreversible environmental damage to human health. Nanomembrane technology has attracted extensive attention to remove these toxic chemicals but new approaches are still required for improving removal efficiency and control the channel size. The work deals with the fabrication of a novel hybrid polyvinylidene fluoride (PVDF)-polyaniline (PANI) membrane with graphene oxide (GO). Incorporation of PANI-GO as a nanofiller has significantly improved antifouling properties and a solvent content of the fabricated membrane. Besides, pure water flux also increases from 112 to 454 L m-2 h-1 indicating the hydrophilic nature of the nanocomposite membrane. Among various compositions, the nanocomposites membrane with 0.1 %w/v GO demonstrated a maximum of 98 % dye rejection at 0.1 MPa operating pressure. After multiple testing of the membrane, the flux recovery ratio reached about 94 % and dyes rejection improved with the addition of PANI-GO. The removal efficiency of the composite membrane for Allura red is 98 % and for methyl orange is 95 %. Based on the above results the PVDF/PANI/GO membranes are recommended for practical use in wastewater treatment, particularly for anionic dyes removal from textile effluents.
Collapse
Affiliation(s)
- Hifza Nawaz
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Muhammad Umar
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Azeem Ullah
- Nano Fusion Technology Research Lab, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Matsumoto, Nagano 390-8621, Japan.
| | - Humaira Razzaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Khalid Mahmood Zia
- Department of Applied Chemistry, Government College University, Faisalabad, 38030, Pakistan.
| | - Xuqing Liu
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
29
|
García A, Rodríguez B, Giraldo H, Quintero Y, Quezada R, Hassan N, Estay H. Copper-Modified Polymeric Membranes for Water Treatment: A Comprehensive Review. MEMBRANES 2021; 11:93. [PMID: 33525631 PMCID: PMC7911616 DOI: 10.3390/membranes11020093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 11/23/2022]
Abstract
In the last decades, the incorporation of copper in polymeric membranes for water treatment has received greater attention, as an innovative potential solution against biofouling formation on membranes, as well as, by its ability to improve other relevant membrane properties. Copper has attractive characteristics: excellent antimicrobial activity, high natural abundance, low cost and the existence of multiple cost-effective synthesis routes for obtaining copper-based materials with tunable characteristics, which favor their incorporation into polymeric membranes. This study presents a comprehensive analysis of the progress made in the area regarding modified membranes for water treatment when incorporating copper. The notable use of copper materials (metallic and oxide nanoparticles, salts, composites, metal-polymer complexes, coordination polymers) for modifying microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), forward osmosis (FO) and reverse osmosis (RO) membranes have been identified. Antibacterial and anti-fouling effect, hydrophilicity increase, improvements of the water flux, the rejection of compounds capacity and structural membrane parameters and the reduction of concentration polarization phenomena are some outstanding properties that improved. Moreover, the study acknowledges different membrane modification approaches to incorporate copper, such as, the incorporation during the membrane synthesis process (immobilization in polymer and phase inversion) or its surface modification using physical (coating, layer by layer assembly and electrospinning) and chemical (grafting, one-pot chelating, co-deposition and mussel-inspired PDA) surface modification techniques. Thus, the advantages and limitations of these modifications and their methods with insights towards a possible industrial applicability are presented. Furthermore, when copper was incorporated into membrane matrices, the study identified relevant detrimental consequences with potential to be solved, such as formation of defects, pore block, and nanoparticles agglomeration during their fabrication. Among others, the low modification stability, the uncontrolled copper ion releasing or leaching of incorporated copper material are also identified concerns. Thus, this article offers modification strategies that allow an effective copper incorporation on these polymeric membranes and solve these hinders. The article finishes with some claims about scaling up the implementation process, including long-term performance under real conditions, feasibility of production at large scale, and assessment of environmental impact.
Collapse
Affiliation(s)
- Andreina García
- Mining Engineering Department, FCFM, Universidad de Chile, Santiago 8370451, Chile
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Bárbara Rodríguez
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Hugo Giraldo
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Yurieth Quintero
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Rodrigo Quezada
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Natalia Hassan
- Programa Institucional de Fomento a la I+D+i, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile;
| | - Humberto Estay
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| |
Collapse
|
30
|
Vatanpour V, Faghani S, Keyikoglu R, Khataee A. Enhancing the permeability and antifouling properties of cellulose acetate ultrafiltration membrane by incorporation of ZnO@graphitic carbon nitride nanocomposite. Carbohydr Polym 2020; 256:117413. [PMID: 33483008 DOI: 10.1016/j.carbpol.2020.117413] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/23/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
This study reports the modification of cellulose acetate (CA) membrane with zinc oxide (ZnO)@graphitic carbon nitride (g-C3N4) nanocomposite to improve the antifouling and separation performance. Different combinations of the CA-based membranes such as CA/g-C3N4, CA/ZnO, and CA/ZnO@g-C3N4 were fabricated using the non-solvent induced phase separation (NIPS) method. Membranes were analyzed for their morphology (SEM), porosity, pore size, contact angle, permeability, rejection, and antifouling properties. According to the SEM images of CA/ZnO@g-C3N4, the formation of pear-shaped macro voids and finger-like canals originating from the top layer was evident. Nanocomposite blended membrane with 0.25 wt.% ZnO@g-C3N4 achieved the largest pore radius (3.05 nm) and the lowest contact angle (67.7°). With these characteristics, 0.25 wt.% ZnO@g-C3N4 membrane obtained a pure water flux of 51.3 LMH, which is 2.1 times greater than the bare CA and high BSA and dye rejections with 97.20% and 93.7% respectively. Finally, the antifouling resistance of the CA membrane was greatly improved with FRR increasing from 73.7% to 94.8%, which was accompanied by a significant decrease in the fouling resistance parameters.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, P.O. Box 15719‑14911, Tehran, Iran.
| | - Somayeh Faghani
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, P.O. Box 15719‑14911, Tehran, Iran
| | - Ramazan Keyikoglu
- Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey; Department of Environmental Engineering, Bursa Technical University, 16310 Bursa, Turkey
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran.
| |
Collapse
|
31
|
Pishnamazi M, Koushkbaghi S, Hosseini SS, Darabi M, Yousefi A, Irani M. Metal organic framework nanoparticles loaded- PVDF/chitosan nanofibrous ultrafiltration membranes for the removal of BSA protein and Cr(VI) ions. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113934] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Doan VD, Phung MT, Nguyen TLH, Mai TC, Nguyen TD. Noble metallic nanoparticles from waste Nypa fruticans fruit husk: Biosynthesis, characterization, antibacterial activity and recyclable catalysis. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
33
|
Rani S, Dilbaghi N, Kumar S, Varma RS, Malhotra R. Rapid redox sensing of p-nitrotoluene in real water samples using silver nanoparticles. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Ali S, Ali H, Siddique M, Gulab H, Haleem MA, Ali J. Exploring the biosynthesized gold nanoparticles for their antibacterial potential and photocatalytic degradation of the toxic water wastes under solar light illumination. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Metal nanoparticles containing chitosan wrapped cellulose nanocomposites for catalytic hydrogen production and reduction of environmental pollutants. Carbohydr Polym 2020; 242:116286. [DOI: 10.1016/j.carbpol.2020.116286] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
|
36
|
Ali HSM, Khan SA. Stabilization of Various Zero-Valent Metal Nanoparticles on a Superabsorbent Polymer for the Removal of Dyes, Nitrophenol, and Pathogenic Bacteria. ACS OMEGA 2020; 5:7379-7391. [PMID: 32280879 PMCID: PMC7144176 DOI: 10.1021/acsomega.9b04410] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/11/2020] [Indexed: 05/04/2023]
Abstract
In this work, a superabsorbent polymer, sodium polyacrylate, also known as water ball (WB), loaded with Ni, Cu, and Ag zero-valent metal nanoparticles (MNPs) was applied for environmental remediation. WBs loaded with Ni, Cu, and Ag NPs were evaluated for their catalytic performance against the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) and decolorization of methyl orange (MO), Congo red (CR), and methylene blue (MB) dyes. The apparent rate constants (K app) for the reduction of 4-NP to 4-AP in the presence of Ni, Cu, and Ag NPs were 2.1 × 10-1, 2.9 × 10-1, and 4.6 × 10-1 min-1, respectively, indicating the strongest activity of WB loaded with Ag NPs as compared to the other two catalysts. Similarly, WB loaded with Ag NPs showed the highest K app values compared to the other two catalysts. Among all of the bacteria studied, except Providencia stuartii and Streptococcus mutans, the zone of inhibition of Ag was higher as compared to that of the Ni and Cu NPs, however, slightly low from that of the reference standard tetracycline TE30. Furthermore, the synthesized catalysts were extensively characterized through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS) analyses.
Collapse
Affiliation(s)
- Hani S.
H. Mohammed Ali
- Department
of Biological Sciences, Faculty of Science, King Abdulaziz University, KSA, Jeddah 21589, Saudi Arabia
| | - Shahid Ali Khan
- Department
of Chemistry, University of Swabi, Swabi Anbar23561, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
37
|
Mahmoud ME, Amira MF, Abouelanwar ME, Seleim SM. Catalytic reduction of nitrophenols by a novel assembled nanocatalyst based on zerovalent copper-nanopolyaniline-nanozirconium silicate. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112192] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Wan H, Islam MS, Briot NJ, Schnobrich M, Pacholik L, Ormsbee L, Bhattacharyya D. Pd/Fe nanoparticle integrated PMAA-PVDF membranes for chloro-organic remediation from synthetic and site groundwater. J Memb Sci 2020; 594:117454. [PMID: 31929677 PMCID: PMC6953629 DOI: 10.1016/j.memsci.2019.117454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The poly(methacrylic acid) (PMAA) was synthesized in the pores of commercial microfiltration PVDF membranes to allow incorporation of catalytic palladium/iron (Pd/Fe) nanoparticles for groundwater remediation. Particles of 17.1 ± 4.9 nm size were observed throughout the pores of membranes using a focused ion beam. To understand the role of Pd fractions and particle compositions, 2-chlorobiphenyl was used as a model compound in solution phase studies. Results show H2 production (Fe0 corrosion in water) is a function of Pd coverage on the Fe. Insufficient H2 production caused by higher coverage (> 10.4% for 5.5 wt%) hindered dechlorination rate. With 0.5 wt% Pd, palladized-Fe reaction rate (surface area normalized reaction rate, ksa = 0.12 L/(m2-h) was considerably higher than isolated Pd and Fe particles. For groundwater, in a single pass of Pd/Fe-PMAA-PVDF membranes (0.5 wt% Pd), chlorinated organics, such as trichloroethylene (177 ppb) and carbon tetrachloride (35 ppb), were degraded to 16 and 0.3 ppb, respectively, at 2.2 seconds of residence time. The degradation rate (observed ksa) followed the order of carbon tetrachloride > trichloroethylene > tetrachloroethylene > chloroform. A 36 h continuous flow study with organic mixture and the regeneration process show the potential for on-site remediation.
Collapse
Affiliation(s)
- Hongyi Wan
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506-0046, USA
| | - Md Saiful Islam
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506-0046, USA
| | - Nicolas J Briot
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506-0046, USA
| | | | - Lucy Pacholik
- Department of Civil Engineering University of Kentucky, Lexington, KY, 40506-0046, USA
| | - Lindell Ormsbee
- Department of Civil Engineering University of Kentucky, Lexington, KY, 40506-0046, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506-0046, USA
| |
Collapse
|
39
|
da Costa Cunha G, Pinho NC, Alves Silva IA, Santos Silva L, Santana Costa JA, da Silva CMP, Romão LPC. Removal of heavy crude oil from water surfaces using a magnetic inorganic-organic hybrid powder and membrane system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 247:9-18. [PMID: 31229787 DOI: 10.1016/j.jenvman.2019.06.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 04/01/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Oil spills are among the most significant threats to aquatic ecosystems. The present work describes the synthesis of different organic-inorganic hybrid matrices with magnetic properties, obtained in the forms of powders and membranes. The powders were synthesized using the following biomass wastes to form the organic phase: coconut mesocarp, sugarcane bagasse, sawdust, and water hyacinth. The resulting powders were denoted HMG-CO, HMG-CN, HMG-SE, and HMG-AP, respectively. Membranes (denoted MHMG-PES) were prepared using polyethersulfone polymer. In both cases, the inorganic phase was cobalt ferrite. The materials were evaluated in terms of their efficiencies in removing crude oil from water surfaces. The presence of organic matter, polyethersulfone, and cobalt ferrite in the structures of the materials was confirmed by XRD and FTIR analyses. The efficiencies of the materials were determined using the Standard Test Method for Sorbent Performance of Adsorbents (ASTM F726-99). Among the hybrids in powder form, the HMG-CN material presented the highest oil removal efficiency (85%, adsorptive capacity of 17 g g-1), which could be attributed to the fibrous nature of the sugarcane bagasse. The MHMG-PES membrane was able to remove 35 times its own mass of oil (adsorptive capacity of 35 g g-1). In addition to this high removal efficiency, an important advantage of MHMG-PES, compared to the HMG-CN hybrid powder, was that the oil could be mechanically removed from the membrane surface, eliminating the need for subsequent time-consuming extraction steps requiring large volumes of organic solvents and additional energy expenditure. When the two materials were used simultaneously, it was possible to remove 45 times their own mass of oil (adsorptive capacity of 45 g g-1), with the adsorptive capacity of HMG-CN increasing by 23%. This high adsorptive capacity was due to the retaining barrier formed by the HMG-CN hybrid powder, which prevented the oil patch from spreading and enabled its homogeneous removal, which was not possible using MHMG-PES alone. It could be concluded that use of the magnetic hybrids synthesized using biomass wastes, together with the hybrid magnetic membrane, provided an effective and inexpensive technological alternative for the removal of oil from water surfaces.
Collapse
Affiliation(s)
| | - Nalbert C Pinho
- Chemistry Department, Federal University of Sergipe (UFS), 49100-000, Aracaju, SE, Brazil
| | | | - Luana Santos Silva
- Chemistry Department, Federal University of Sergipe (UFS), 49100-000, Aracaju, SE, Brazil
| | | | - Caio M P da Silva
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Luciane P C Romão
- Chemistry Department, Federal University of Sergipe (UFS), 49100-000, Aracaju, SE, Brazil
| |
Collapse
|
40
|
Khan SA, Rasool S, Rahman KU, Hussain S, Khan I, Ismail M, Farooq A, Khan S, Raza MA, Asiri AM, Khan SB. A Simple but Efficient Catalytic Approach for the Degradation of Pollutants in Aqueous Media through Cicer arietinum Supported Ni Nanoparticles. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2018-1297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Plant based materials are considered to have broad applications in the remediation of toxic materials. In this report, we present an environmental friendly and economic Cicer arietinum, named as (CP) supported for the synthesis of Ni nanoparticles (NPs) designated as Ni@CP. The in situ Ni@CP NPs were obtained using aqueous medium in the presence of sodium borohydride (NaBH4) as a reducing agent. The prepared catalysts were applied for the hydrogenation/degradation of p-nitrophenol (PNP), o-nitrophenol (ONP), and 2,4-dinitrophenol (DNP), as well as congo red (CR), methyl orange (MO), methylene blue (MB) and rhodamine B (RB) dyes. The amount of total metal ions adsorbed onto the CP was evaluated by flame atomic absorption spectroscopy. The Ni@CP catalyst was characterized through PXRD, FTIR, FESEM and EDX analyses.
Collapse
Affiliation(s)
- Shahid Ali Khan
- Department of Chemistry , University of Swabi , Anbar-23561, Khyber Pakhtunkhwa , Pakistan
- Center of Excellence for Advanced Materials Research (CEAMR) , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
- Department of Chemistry , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
| | - Shagufta Rasool
- Department of Chemistry , Sarhad University of Science and Technology , Peshawar , Pakistan
| | - Khaliq Ur Rahman
- Department of Chemistry , University of Swabi , Anbar-23561, Khyber Pakhtunkhwa , Pakistan
| | - Shah Hussain
- Department of Chemistry , Govt. Postgraduate College , Nowshera-24100, Khyber-Pakhtunkhwa , Pakistan
- Department of Chemistry , Abdul Wali Khan University , Mardan 23200 , Pakistan
| | - Inamullah Khan
- Department of Chemistry , University of Swabi , Anbar-23561, Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Ismail
- Department of Chemistry , Kohat University of Science and Technology , Kohat , Pakistan
| | - Aliya Farooq
- Department of Chemistry , Shaheed Benazir Bhutto Women University , Peshawar , Pakistan
| | - Sarzamin Khan
- Department of Chemistry , University of Swabi , Anbar-23561, Khyber Pakhtunkhwa , Pakistan
| | - Mian Ahmad Raza
- Department of Agriculture (Plant Breeding and Genetics) , University of Swabi , Swabi , Khyber Pakhtunkhwa
| | - Abdullah Muhammad Asiri
- Center of Excellence for Advanced Materials Research (CEAMR) , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
- Department of Chemistry , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
| | - Sher Bahadar Khan
- Center of Excellence for Advanced Materials Research (CEAMR) , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
- Department of Chemistry , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
| |
Collapse
|
41
|
Albukhari SM, Ismail M, Akhtar K, Danish EY. Catalytic reduction of nitrophenols and dyes using silver nanoparticles @ cellulose polymer paper for the resolution of waste water treatment challenges. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.058] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Khan SA, Khan SB, Farooq A, Asiri AM. A facile synthesis of CuAg nanoparticles on highly porous ZnO/carbon black-cellulose acetate sheets for nitroarene and azo dyes reduction/degradation. Int J Biol Macromol 2019; 130:288-299. [DOI: 10.1016/j.ijbiomac.2019.02.114] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/19/2019] [Indexed: 11/16/2022]
|
43
|
Ismail M, Khan M, Khan MA, Akhtar K, Asiri AM, Khan SB. Plant‐supported silver nanoparticles: Efficient, economically viable and easily recoverable catalyst for the reduction of organic pollutants. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4971] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Muhammad Ismail
- Department of ChemistryKohat University of Science & Technology Kohat 26000 Khyber Pakhtunkhwa Pakistan
| | - M.I. Khan
- Department of ChemistryKohat University of Science & Technology Kohat 26000 Khyber Pakhtunkhwa Pakistan
| | - Murad Ali Khan
- Department of ChemistryKohat University of Science & Technology Kohat 26000 Khyber Pakhtunkhwa Pakistan
| | - Kalsoom Akhtar
- Department of ChemistryKing Abdulaziz University PO Box 80203 Jeddah 21589 Saudi Arabia
| | - Abdullah M. Asiri
- Department of ChemistryKing Abdulaziz University PO Box 80203 Jeddah 21589 Saudi Arabia
- Center of Excellence for Advanced Materials ResearchKing Abdulaziz University PO Box 80203 Jeddah 21589 Saudi Arabia
| | - Sher Bahadar Khan
- Department of ChemistryKing Abdulaziz University PO Box 80203 Jeddah 21589 Saudi Arabia
- Center of Excellence for Advanced Materials ResearchKing Abdulaziz University PO Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
44
|
Biosynthesized silver supported catalysts for disinfection of Escherichia coli and organic pollutant from drinking water. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.087] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Wang Z, Tang Y, Wang T, Liang K. Nano CuAl 2O 4 spinel mineral as a novel antibacterial agent for PVDF membrane modification with minimized copper leachability. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:421-428. [PMID: 30708343 DOI: 10.1016/j.jhazmat.2019.01.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/03/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
The employment of copper-containing antibacterial agents for membrane modification can constrain undesirable bacterial adhesion and growth in an effective and economical way. However, copper ion may be leached out and cause further toxicity after applying those materials for membrane processes. Therefore, in this study, nano CuAl2O4 spinel was synthesized as a novel copper-containing material which was expected to have good antibacterial activity and simultaneously stabilize copper ions by its intrinsic structure. The obtained nano spinel was applied for membrane modification via both doping and coating methods. Results show that the addition of nano CuAl2O4 spinel during doping process can change polyvinylidene fluoride (PVDF) membrane properties (crystallization, tensile strength, porosity, pore size distribution, permeate flux and bovine serum albumin (BSA) rejection) obviously, but no obvious change was observed for the coated membrane except increased hydrophilicity and permeate flux. Most importantly, the amount of bacteria attachment was found to reduce significantly (˜68%) on the membrane coated with nano spinel, which indicates the successful application of nano CuAl2O4 spinel as a novel antibacterial agent for membrane modification without extra concern of copper toxicity.
Collapse
Affiliation(s)
- Ziyi Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuanyuan Tang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Tao Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kun Liang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
46
|
Denrah S, Sarkar M. Design of experiment for optimization of nitrophenol reduction by green synthesized silver nanocatalyst. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
47
|
The Application of Halloysite Nanotubes/Fe3O4 Composites Nanoparticles in Polyvinylidene Fluoride Membranes for Dye Solution Removal. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01125-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Aazza M, Ahlafi H, Moussout H, Maghat H. Adsorption of metha-nitrophenol onto alumina and HDTMA modified alumina: Kinetic, isotherm and mechanism investigations. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
Janus graphene oxide nanosheet: A promising additive for enhancement of polymeric membranes performance prepared via phase inversion. J Colloid Interface Sci 2018; 527:10-24. [DOI: 10.1016/j.jcis.2018.05.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/05/2018] [Accepted: 05/07/2018] [Indexed: 01/23/2023]
|
50
|
Ismail M, Khan M, Khan SB, Akhtar K, Khan MA, Asiri AM. Catalytic reduction of picric acid, nitrophenols and organic azo dyes via green synthesized plant supported Ag nanoparticles. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.030] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|