1
|
Choline acetate modified ZnO nanostructure as efficient electrochemical sensor for hydrazine detection. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Shaban Y, Alharbi NA. Sunlight-mediated photocatalytic removal of phenanthrene from wastewater using carbon-doped zinc oxide (C-ZnO) nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47818-47831. [PMID: 35190986 DOI: 10.1007/s11356-022-19214-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
In an effort for efficient solar energy harvesting, carbon-doped zinc oxide (C-ZnO) nanoparticles with intriguing properties were synthesized by sonicated sol-gel technique with the aid of activated charcoal. Compared to pure ZnO, the incorporation of carbon has drastically promoted the photocatalytic activity of C-ZnO towards the degradation of phenanthrene under illumination of both UV and sunlight. The characterization of the as-synthesized nanoparticles by scanning electron microscope (SEM), UV-vis spectra, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDS) confirmed the carbon doping of C-ZnO. The highest degradation rate of phenanthrene was obtained at pH 7 and C-ZnO loading of 0.5 g L-1. Finally, the kinetic studies of the photocatalytic degradation of phenanthrene by using C-ZnO were well-fitted with the Langmuir-Hinshelwood model and followed the pseudo-first-order rate expression.
Collapse
Affiliation(s)
- Yasser Shaban
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah, 21589, Saudi Arabia.
- National Institute of Oceanography & Fisheries, Qayet Bay, Alexandria, Egypt.
| | - Nojoud A Alharbi
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
3
|
Rice Straw as Green Waste in a HTiO2@AC/SiO2 Nanocomposite Synthesized as an Adsorbent and Photocatalytic Material for Chlorpyrifos Removal from Aqueous Solution. Catalysts 2022. [DOI: 10.3390/catal12070714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A nano-HTiO2@activated carbon-amorphous silica nanocomposite catalyst (HTiO2@AC/SiO2) is utilized to photo breakdown catalytically and adsorb chlorpyrifos insecticide. SEM, TEM, and X-ray diffraction were used to examine HTiO2@AC/SiO2, synthesized through sol–gel synthesis. With an average size of 7–9 nm, the crystallized form of HTiO2 is the most common form found. At varied pH, catalyst doses, agitation speed, initial pesticide concentrations, contact periods, and temperatures, HTiO2@AC/SiO2 was examined for efficiency under visible light and in darkness. Because of the pseudo-second-order kinetics observed for chlorpyrifos, chemisorption is believed to dominate the adsorption process, as indicated by an estimated activation energy of 182.769 kJ/mol, which indicates that chemisorption dominates the adsorption process in this study. The maximal adsorption capacity of chlorpyrifos is 462.6 mg g−1, according to the Langmuir isotherms, which infer this value. When exposed to visible light, the adsorption capacity of HTiO2@AC/SiO2 increased somewhat as the temperature rose (283 k 323 k 373 k), indicating an exothermic change in Gibbs free energy during the process (−1.8 kJ/mol), enthalpy change (−6.02 kJ/mol), and entropy change (0.014 J/mol K), respectively, at 298.15 K. Negative (ΔS) describes a process with decreased unpredictability and suggests spontaneous adsorption. HTiO2@AC/SiO2 may be a promising material.
Collapse
|
4
|
Removing the Oxamyl from Aqueous Solution by a Green Synthesized HTiO2@AC/SiO2 Nanocomposite: Combined Effects of Adsorption and Photocatalysis. Catalysts 2022. [DOI: 10.3390/catal12020163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The photocatalytic degradation and adsorption of the oxamyl pesticide utilizing a nano-HTiO2@activated carbon-amorphous silica nanocomposite catalyst (HTiO2@AC/SiO2). Sol-gel Synthesis was used to produce HTiO2@AC/SiO2, which was examined using Scanning Electron Microscopy, Transmission Electron Microscopy, and an X-ray diffractometer. The analyses confirmed that HTiO2 is mainly present in its crystalline form at a size of 7–9 nm. The efficiency of HTiO2@AC/SiO2 was assessed at various pHs, catalyst doses, agitating intensities, initial pesticide concentrations, contact times, and temperatures under visible light and in darkness. Oxamyl adsorption kinetics followed a pseudo-second-order kinetic model, suggesting that the adsorption process is dominated by chemisorption, as supported by a calculated activation energy of −182.769 kJ/mol. The oxamyl adsorption is compatible with Langmuir and Freundlich isotherms, suggesting a maximum adsorption capacity of 312.76 mg g−1. The adsorption capacity increased slightly with increasing temperature (283 K < 323 K < 373 K), suggesting an exothermic process with the Gibbs free energy change ΔG, enthalpy change ΔH, and entropy change ΔS°, being –3.17 kJ/mol, −8.85 kJ/mol, and −0.019 J/mol K, respectively, at 310 K for HTiO2@AC/SiO2 under visible light. This indicates spontaneous adsorption, and negative (ΔS) explain a decreased randomness process. HTiO2@AC/SiO2 would be a promising material.
Collapse
|
5
|
Kaur Y, Jasrotia T, Kumar R, Chaudhary GR, Chaudhary S. Adsorptive removal of eriochrome black T (EBT) dye by using surface active low cost zinc oxide nanoparticles: A comparative overview. CHEMOSPHERE 2021; 278:130366. [PMID: 33831687 DOI: 10.1016/j.chemosphere.2021.130366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/13/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
The ecological toxicity imparted by non-biodegradable organic dyes has been considered as a major risk to handle in front of mankind. In this view, the low-cost zinc oxide nanoparticles (ZnO-NPs) were facially synthesized by coating the surface with surfactant (CTAB) and ionic liquid (BMTF) molecules for the effective removal of Eriochrome Black T (EBT) from aqueous media. Various advanced characterization techniques have given insight into the morphological features, crystalline structure and physio-chemical properties of as-synthesized ZnO-NPs. The systematic analysis of the adsorption isotherms and kinetics models specifies that the adsorption of EBT follow Freundlich model and pseudo-second-order kinetics. The intraparticle diffusion model displayed a linear relationship (R2 = 0.98, 0.97 and 0.94 for BMTF@ZnO, CTAB@ZnO and bare ZnO-NPs), which shows that pore diffusion rate is affected by surface modification and effects the overall EBT adsorption process. Furthermore, after the removal of 87% and 84% of EBT dye by BMTF@ZnO-NPs and CTAB@ZnO-NPs, the fabricated nanoadsorbents of ZnO were successfully regenerated and reused after the treatments up to four times. The adsorption aptitude of ZnO-NPs towards EBT dye was systematically explored in real wastewater samples and interference study of inorganic metallic salts was also performed. The toxicity estimations of the treated dye solutions were made using floral and fungal activities, to ascertain their non-toxic nature before releasing into the environment. These outcomes have supported the immense potential of ZnO-NPs towards the removal of EBT in a cost effective manner.
Collapse
Affiliation(s)
- Yesbinder Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Teenu Jasrotia
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India; Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Rajeev Kumar
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Savita Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
6
|
Fallah Z, Zare EN, Ghomi M, Ahmadijokani F, Amini M, Tajbakhsh M, Arjmand M, Sharma G, Ali H, Ahmad A, Makvandi P, Lichtfouse E, Sillanpää M, Varma RS. Toxicity and remediation of pharmaceuticals and pesticides using metal oxides and carbon nanomaterials. CHEMOSPHERE 2021; 275:130055. [PMID: 33984903 PMCID: PMC8588192 DOI: 10.1016/j.chemosphere.2021.130055] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 05/04/2023]
Abstract
The worldwide development of agriculture and industry has resulted in contamination of water bodies by pharmaceuticals, pesticides and other xenobiotics. Even at trace levels of few micrograms per liter in waters, these contaminants induce public health and environmental issues, thus calling for efficient removal methods such as adsorption. Recent adsorption techniques for wastewater treatment involve metal oxide compounds, e.g. Fe2O3, ZnO, Al2O3 and ZnO-MgO, and carbon-based materials such as graphene oxide, activated carbon, carbon nanotubes, and carbon/graphene quantum dots. Here, the small size of metal oxides and the presence various functional groups has allowed higher adsorption efficiencies. Moreover, carbon-based adsorbents exhibit unique properties such as high surface area, high porosity, easy functionalization, low price, and high surface reactivity. Here we review the cytotoxic effects of pharmaceutical drugs and pesticides in terms of human risk and ecotoxicology. We also present remediation techniques involving adsorption on metal oxides and carbon-based materials.
Collapse
Affiliation(s)
- Zari Fallah
- Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| | | | - Matineh Ghomi
- School of Chemistry, Damghan University, Damghan, 36716-41167, Iran
| | - Farhad Ahmadijokani
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Majed Amini
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Mahmood Tajbakhsh
- Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Mohammad Arjmand
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Gaurav Sharma
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab. for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India
| | - Hamna Ali
- Department of Chemistry, The University of Lahore, Lahore, 54590, Pakistan
| | - Awais Ahmad
- Department of Chemistry, The University of Lahore, Lahore, 54590, Pakistan
| | - Pooyan Makvandi
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia (IIT), Viale R. Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Eric Lichtfouse
- Aix-Marseille University, CNRS, IRD, INRA, Coll France, CEREGE, 13100, Aix en Provence, France.
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Rajender S Varma
- Chemical Methods and Treatment Branch, Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U. S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, USA; Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Š lechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
7
|
Singh S, Kaushal S, Kaur J, Kaur G, Mittal SK, Singh PP. CaFu MOF as an efficient adsorbent for simultaneous removal of imidacloprid pesticide and cadmium ions from wastewater. CHEMOSPHERE 2021; 272:129648. [PMID: 33485037 DOI: 10.1016/j.chemosphere.2021.129648] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/30/2020] [Accepted: 01/09/2021] [Indexed: 05/16/2023]
Abstract
Heavy metal ions and pesticides are the noteworthy toxic substances which must be removed from contaminated water for safeguarding public health. The higher levels of these substances in natural water may adversely affect the human health, climate and the eco-framework. The adsorptive removal of hazardous constituents employing metal organic frameworks has drawn considerable attention of researchers during the last decade. From this point of view, single crystal of calcium fumarate [Ca(C4H4O4)1.5 (H2O)(CH3OH)2] has been developed and analyzed by single crystal X-ray crystallography which confirmed the formation of 3-D metal organic frameworks (MOFs). The synthesized MOFs was employed for simultaneous adsorptive removal of imidacloprid, a high consumption pesticide, and highly toxic Cd (II) from aqua ecosystem. The effect of variation in experimental conditions such as solution pH, adsorbent dosage, contact time, initial concentration and temperature on adsorption was systematically evaluated. Both the imidacloprid and Cd(II) exhibited maximum adsorption at pH 6.5 and 7.8, respectively. The equilibrium empirical data was fitted into Langmuir, Freundlich and Temkin isotherms. The adsorption capacity of CaFu MOFs was observed to be 467.23 and 781.2 mg g-1 for imidacloprid and cadmium ions, respectively. The adsorbed pollutants were desorbed from the adsorbent using dilute HCl, and the material was reused for five adsorption-desorption cycles without any appreciable loss of adsorption capacity. Therefore, the 3-D CaFu MOFs could be utilized as a novel material for adsorptive removal of imidacloprid pesticide as well as Cd (II) from wastewater.
Collapse
Affiliation(s)
- Sandeep Singh
- CSIC Department, Post Graduate Institute of Medical Education and Research(PGIMER), Chandigarh, India
| | - Sandeep Kaushal
- Department of Chemistry, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India.
| | - Jasmeen Kaur
- Department of Chemistry, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Gurmeet Kaur
- Department of Chemistry, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Susheel Kumar Mittal
- Department of Chemistry & Biochemistry, Thapar Institute of Engineering and Technology, Patiala, India
| | - Prit Pal Singh
- Department of Chemistry, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India.
| |
Collapse
|
8
|
Erarpat S, Bodur S, Bakırdere S. Nanoparticles Based Extraction Strategies for Accurate and Sensitive Determination of Different Pesticides. Crit Rev Anal Chem 2021; 52:1370-1385. [PMID: 33576246 DOI: 10.1080/10408347.2021.1876552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Sample preparation methods have become indispensable steps in analytical measurements not only to lower the detection limit but also to eliminate the matrix effect although more sophisticated instruments are being commonly used in routine analyses. Solid phase extraction (SPE) is one of the main extraction/preconcentration methods used to extract and purify target analytes along with simple and rapid procedures but some limitations have led to seek for an easy, sensitive and fast extraction methods with analyte-selective sorbents. Nanoparticles with different modifications have been used as spotlight to enhance extraction efficiency of target pesticides from complicated matrices. Carbon-based, metal and metal oxides, silica and polymer-based nanoparticles have been explored as promising sorbents for pesticide extraction. In this review, different types of nanoparticles used in the preconcentration of pesticides in various samples are outlined and examined. Latest studies in the literature are discussed in terms of their instrumental detection, sample matrix and limit of detection values. Novel strategies and future directions of nanoparticles used in the extraction and preconcentration of pesticides are also discussed.
Collapse
Affiliation(s)
- Sezin Erarpat
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, İstanbul, Turkey
| | - Süleyman Bodur
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, İstanbul, Turkey
| | - Sezgin Bakırdere
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, İstanbul, Turkey.,Turkish Academy of Sciences (TÜBA), Ankara, Turkey
| |
Collapse
|
9
|
Nehra M, Dilbaghi N, Marrazza G, Kaushik A, Sonne C, Kim KH, Kumar S. Emerging nanobiotechnology in agriculture for the management of pesticide residues. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123369. [PMID: 32763682 DOI: 10.1016/j.jhazmat.2020.123369] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/12/2020] [Accepted: 06/30/2020] [Indexed: 05/18/2023]
Abstract
Utilization of pesticides is often necessary for meeting commercial requirements for crop quality and yield. However, incessant global pesticide use poses potential risks to human and ecosystem health. This situation increases the urgency of developing nano-biotechnology-assisted pesticide formulations that have high efficacy and low risk of side effects. The risks associated with both conventional and nanopesticides are summarized in this review. Moreover, the management of residual pesticides is still a global challenge. The contamination of soil and water resources with pesticides has adverse impact over agricultural productivity and food security; ultimately posing threats to living organisms. Pesticide residues in the eco-system may be treated via several biological and physicochemical processes, such as microbe-based degradation and advanced oxidation processes. With these issues in mind, we present a review that explores both existing and emerging techniques for management of pesticide residues and environmental risks. These techniques can offer a sustainable solution to revitalize the tarnished water/soil resources. Further, state-of-the-art research approaches to investigate biotechnological alternatives to conventional pesticides are discussed along with future prospects and mitigation techniques are recommended.
Collapse
Affiliation(s)
- Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Arts & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805-8531, United States
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| |
Collapse
|
10
|
Kaur A, Bansal S, Prakash C, Chaudhary GR. Probing molecular interactions between Choline Acetate Ionic Liquid and Alcohols: A comparable thermophysical study of Choline Acetate Ionic Liquid with change in solvent polarities. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Varghese J, Rehaan Chandan M, Shanthakumar S. Fixed bed column study for pesticide removal using silver nanoparticles-embedded polyurethane foam and glass beads. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1647181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Jilu Varghese
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore, India
| | - Mohammed Rehaan Chandan
- Department of Chemical Engineering, School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore, India
| | - S. Shanthakumar
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore, India
| |
Collapse
|
12
|
Kaur A, Bansal S, Chauhan D, Bhasin K, Chaudhary GR. The study of molecular interactions of aqueous solutions of Choline Acetate at different temperatures. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Alhan S, Nehra M, Dilbaghi N, Singhal NK, Kim KH, Kumar S. Potential use of ZnO@activated carbon nanocomposites for the adsorptive removal of Cd 2+ ions in aqueous solutions. ENVIRONMENTAL RESEARCH 2019; 173:411-418. [PMID: 30959244 DOI: 10.1016/j.envres.2019.03.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Nowadays, the pollution in water resources has become a major concern, both environmentally and in perspective of human health. The bioaccumulation of pollutants, especially heavy metal ions through the food chain, poses a hazardous risk to humans and other living organisms. Nanomaterials and their composites have been recognized for their potential to resolve such problems. Herein, ZnO nanoparticles were synthesized and characterized via different microscopic/spectroscopic techniques. ZnO nanoparticles (i.e., 20 to 50 nm) were obtained in high yield via a facile chemical approach. The ratio of ZnO nanoparticles and activated carbon was optimized to achieve enhanced electrostatic interactions for the effective adsorption of cadmium ions (Cd2+). The adsorptive performance of the nanocomposite was further assessed in relation to several key parameters (e.g., contact time, solution pH, and adsorbent/adsorbate dosage). The nanocomposites (1 mg/ml) offered amaximum adsorption capacity of 96.2 mg/g for Cd2+ ions as confirmed through adsorption isotherms for a best interpretation of the adsorption phenomenon. The favourable adsorption capacity of the synthesized ZnO/activated carbon (9:1) nanocomposites supported their use as an efficient sorbent material in practical performance metrics (e.g., partition coefficient of 0.54 mg g-1μM-1) for the adsorption of Cd2+ ions.
Collapse
Affiliation(s)
- Sarita Alhan
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India; Department of Electronics and Communication Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | | | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India; Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| |
Collapse
|
14
|
Chawla P, Kaushik R, Shiva Swaraj V, Kumar N. Organophosphorus pesticides residues in food and their colorimetric detection. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.enmm.2018.07.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Kalhor MM, Rafati AA, Rafati L, Rafati AA. Synthesis, characterization and adsorption studies of amino functionalized silica nano hollow sphere as an efficient adsorbent for removal of imidacloprid pesticide. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Sophia A C, Lima EC. Removal of emerging contaminants from the environment by adsorption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:1-17. [PMID: 29253687 DOI: 10.1016/j.ecoenv.2017.12.026] [Citation(s) in RCA: 334] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/04/2017] [Accepted: 12/09/2017] [Indexed: 05/22/2023]
Abstract
Emerging contaminants (EC's) are pollutants of growing concern. They are mainly organic compounds such as: pesticides, pharmaceuticals and personal care products, hormones, plasticizers, food additives, wood preservatives, laundry detergents, surfactants, disinfectants, flame retardants, and other organic compounds that were found recently in natural wastewater stream generated by human and industrial activities. A majority of ECs does not have standard regulations and could lead to lethal effects on human and aquatic life even at small concentrations. The conventional primary and secondary water treatment plants do not remove or degrade these toxic pollutants efficiently and hence need cost effective tertiary treatment method. Adsorption is a promising method worldwide for EC removal since it is low initial cost for implementation, highly-efficient and has simple operating design. Research has shown that the application of different adsorbents such as, activated carbons(ACs), modified biochars (BCs), nanoadsorbents (carbon nanotubes and graphene), composite adsorbents, and other are being used for EC's removal from water and wastewater. The current review intends to investigate adsorption process as an efficient method for the treatment of ECs. The mechanism of adsorption has also been discussed.
Collapse
Affiliation(s)
- Carmalin Sophia A
- National Environmental Engineering Research Institute(NEERI), Chennai Zonal Laboratory, CSIR Campus, Taramani, Chennai 600113, India
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Goncalves 9500, P.O. Box 15003, 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
17
|
Rawtani D, Khatri N, Tyagi S, Pandey G. Nanotechnology-based recent approaches for sensing and remediation of pesticides. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 206:749-762. [PMID: 29161677 DOI: 10.1016/j.jenvman.2017.11.037] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
Pesticides are meant to control and destroy the pests and weeds. They are classified into different categories on the basis their origin and type of pest they target. Chemical pesticides such as insecticides, herbicides and fungicides are commonly used in agricultural fields. However, the excessive use of these agrochemicals have adverse effects on environment such as reduced population of insect pollinators, threat to endangered species and habitat of birds. Upon consumption; chemical pesticides also cause various health issues such as skin, eye and nervous system related problems and cancer upon prolonged exposure. Various techniques in the past have been developed on the basis of surface adsorption, membrane filtration and biological degradation to reduce the content of pesticides. However, slow response, less specificity and sensitivity are some of the drawbacks of such techniques. In recent times, Nanotechnology has emerged as a helping tool for the sensing and remediation of pesticides. This review focuses on the use of this technology for the detection, degradation and removal of pesticides. Nanomaterials have been classified into nanoparticles, nanotubes and nanocomposites that are commonly used for detection, degradation and removal of pesticides. The review also focuses on the chemistry behind the sensing and remediation of pesticides using nanomaterials. Different types of nanoparticles, viz. metal nanoparticles, bimetallic nanoparticles and metal oxide nanoparticles; nanotubes such as carbon nanotubes and halloysite nanotubes have been used for the detection, degradation and removal of pesticides. Further, various enzyme-based biosensors for detection of pesticides have also been summarized.
Collapse
Affiliation(s)
- Deepak Rawtani
- Gujarat Forensic Sciences University, Sector 9, Near Police Bhawan, Gandhinagar, Gujarat, India.
| | - Nitasha Khatri
- Gujarat Environment Management Institute, Department of Forest and Environment, Sector 10B, Dr. Jivraj Mehta Bhawan, Gandhinagar, Gujarat, India
| | - Sanjiv Tyagi
- Gujarat Environment Management Institute, Department of Forest and Environment, Sector 10B, Dr. Jivraj Mehta Bhawan, Gandhinagar, Gujarat, India
| | - Gaurav Pandey
- Gujarat Environment Management Institute, Department of Forest and Environment, Sector 10B, Dr. Jivraj Mehta Bhawan, Gandhinagar, Gujarat, India
| |
Collapse
|