1
|
Hong SE, Lee JS, Lee HG. α-Tocopherol-loaded multi-layer nanoemulsion using chitosan, and dextran sulfate: Cellular uptake, antioxidant activity, and in vitro bioaccessibility. Int J Biol Macromol 2024; 254:127819. [PMID: 37918612 DOI: 10.1016/j.ijbiomac.2023.127819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/12/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
The potential of multi-layer nanoemulsions (NEs) for improving the cellular uptake, antioxidant activity, and in vitro bioaccessibility of α-tocopherol (ToC) was examined. ToC-loaded multi-layer NEs were prepared using lecithin (primary-NEs, P-NEs), chitosan (secondary-NEs, S-NEs), and dextran sulfate (tertiary-NEs, T-NEs) as wall materials. The bioadhesion, cellular permeability, and uptake of the multi-layer NEs were significantly higher than that of the free coumarin 6 (C6). As a result of cellular uptake, the mean fluorescence intensity of T-NEs was the highest among the three types of multi-layer NEs and was 9.8-fold higher than that of free C6. The cellular antioxidant abilities of P-NEs, S-NEs, and T-NEs were 40, 45, and 50 %, respectively. Multi-layer nanoencapsulation sustains free fatty acid release after digestion. Moreover, the bioavailability of T-NEs exhibited a two-fold increase compared with that of the free ToC. These findings indicate that by multi-layer NEs using a layer-by-layer method, the cellular uptake, in vitro bioaccessibility, and antioxidant activity of ToC can be improved. Furthermore, T-NEs using chitosan and dextran sulfate can potentially enhance the cellular uptake, in vitro bioaccessibility, and antioxidant activity of ToC. These findings would facilitate the application of multi-layer NEs for lipophilic bioactive compounds using biopolymers.
Collapse
Affiliation(s)
- Seong Eun Hong
- Department of Food and Nutrition, Hanyang University, 222, Wangsimni-ro, Seoungdong-gu, Seoul 04763, Republic of Korea
| | - Ji-Soo Lee
- Department of Food and Nutrition, Hanyang University, 222, Wangsimni-ro, Seoungdong-gu, Seoul 04763, Republic of Korea; Medicine Park, Co., Ltd, A-609, 406 Teheran-ro, Gangnam-gu, Seoul 06192, Republic of Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, 222, Wangsimni-ro, Seoungdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
2
|
Effect of α-tocopherol on the oxidative stability of horse oil-in-water emulsion during storage. Food Sci Biotechnol 2022; 32:639-645. [PMID: 37009037 PMCID: PMC10050615 DOI: 10.1007/s10068-022-01216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Horse oil-in-water (O/W) emulsions were prepared and α-tocopherol was added at 0, 100, 200, and 500 ppm (α-T0, α-T100, α-T200, α-T500) to enhance its oxidative stability. Mean particle diameters of the O/W emulsions were 243-299 nm. Zeta potential values increased with the addition of α-tocopherol; however, they decreased during storage at 40 °C for 30 days. Particle size distribution of the O/W emulsion with α-tocopherol remained the same as that of α-T0. For lipid oxidation, the peroxide values of α-T0 and α-T500 were greatly increased from 2.96 and 2.89 to 13.76 and 12.46 mmol/kg oil, respectively, after 30 days. The α-T100 and α-T200 maintained lower peroxide values than other emulsions. Thiobarbituric acid-reactive substance values of α-T0 and α-T500 were higher than those of α-T100 and α-T200. These results indicate that the addition of α-tocopherol from 100 to 200 ppm to the horse oil-in-water emulsion effectively improves its oxidative stability during storage.
Collapse
|
3
|
Kanike S, Sarolia J, Toor J, Ray D, Aswal VK, Tiwari S. Loading of alpha-tocopherol in a nonionic microemulsion: phase behaviour and structural characteristics. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Development of Olive Oil and α-Tocopherol Containing Emulsions Stabilized by FucoPol: Rheological and Textural Analyses. Polymers (Basel) 2022; 14:polym14122349. [PMID: 35745925 PMCID: PMC9227800 DOI: 10.3390/polym14122349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
Biobased raw materials like natural polysaccharides are increasingly sought by the cosmetic industry for their valuable properties. Such biodegradable and usually non-cytotoxic biopolymers are commonly used in skin-care products as rheological modifiers, bioemulsifiers and/or bioactive ingredients. FucoPol is a natural polysaccharide with reported biocompatibility, emulsion-forming and stabilizing capacity, shear-thinning behavior and bioactivity (e.g., antioxidant capacity, wound healing ability) that potentiate its utilization in skin-care products. In this study, olive oil and α-tocopherol containing emulsions were stabilized with FucoPol. Although the presence of α-tocopherol negatively impacted the emulsions’ stability, it increased their emulsification index (EI). Moreover, FucoPol outperformed the commercial emulsifier Sepigel® 305, under the tested conditions, with higher EI and higher stability under storage for 30 days. The formulation of FucoPol-based emulsions with olive oil and α-tocopherol was studied by Response Surface Methodology (RSM) that allowed the definition of the ingredients’ content to attain high emulsification. The RSM model established that α-tocopherol concentration had no significant impact on the EI within the tested ranges, with optimal emulsification for FucoPol concentration in the range 0.7–1.2 wt.% and olive oil contents of 20–30 wt.%. Formulations with 25 wt.% olive oil and either 0.5 or 2.0 wt.% α-tocopherol were emulsified with 1.0 wt.% or 0.7 wt.% FucoPol, respectively, resulting in oil-in-water (O/W) emulsions. The emulsions had similar shear-thinning behavior, but the formulation with higher FucoPol content displayed higher apparent viscosity, higher consistency, as well as higher firmness, adhesiveness and cohesiveness, but lower spreadability. These findings show FucoPol’s high performance as an emulsifier for olive oil/α-tocopherol, which are supported by an effective impact on the physicochemical and structural characteristics of the emulsions. Hence, this natural polysaccharide is a potential alternative to other emulsifiers.
Collapse
|
5
|
Teychené J, Didacus-Prins D, Chouini-Lalanne N, Déjugnat C, Sartor V. Formulation induces direct DNA UV-A photooxidation. Part II. Pro-oxidant effect of formulated Vitamin E via generation of singlet oxygen. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Use of Safe Substances as Additives for PVC Films and Their Effect on Enzymatic Browning of Gala Apples. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02474-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Praça FG, Viegas JSR, Peh HY, Garbin TN, Medina WSG, Bentley MVLB. Microemulsion co-delivering vitamin A and vitamin E as a new platform for topical treatment of acute skin inflammation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110639. [PMID: 32204073 DOI: 10.1016/j.msec.2020.110639] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/06/2019] [Accepted: 01/03/2020] [Indexed: 11/19/2022]
Abstract
In this study, we developed a water-in-oil microemulsion containing vitamin A (retinol) and vitamin E (α-tocopherol), which serves as a multifunctional nanosystem that co-delivers antioxidants and displayed additive effect against acute skin inflammation. Microemulsion (ME) was prepared by mixing a surfactant blend (Tween 80 and propylene glycol, 5:1) with isopropyl myristate and water (ratio of 50:40:10, respectively). Vitamin A (0.05% w/w concentration) and/or vitamin E (0.1% w/w concentration) were incorporated into the surfactant mixture of ME by stirring with a magnetic stirrer for 30 min. This multifunctional ME displayed physical stability, with low cytotoxicity in 3T3 cell line, as well as cellular internalization into the cytosol. In vivo treatments using ME delivering α-tocopherol reduced dermal expression of TNF-α by 1.3-fold (p < 0.01), when compared to unloaded ME treatment group. When retinol was added into the ME containing α-tocopherol, it further reduced TNF-α expression by 2-fold (p < 0.001), suggesting the additive effect of vitamin E and vitamin A in the treatment against skin inflammation. In conclusion, we successfully developed the use of water-in-oil ME to pack both vitamin E and vitamin A, and demonstrated for the first time its anti-inflammatory potential when applied topically to TPA-induced inflamed skin.
Collapse
Affiliation(s)
- Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana Santos Rosa Viegas
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Hong Yong Peh
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Maria Vitoria Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
8
|
Effect of tocopherol on the properties of Pluronic F127 microemulsions: Physico-chemical characterization and in vivo toxicity. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.074] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Egorova KS, Ananikov VP. Fundamental importance of ionic interactions in the liquid phase: A review of recent studies of ionic liquids in biomedical and pharmaceutical applications. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Aboudzadeh MA, Mehravar E, Fernandez M, Lezama L, Tomovska R. Low-Energy Encapsulation of α-Tocopherol Using Fully Food Grade Oil-in-Water Microemulsions. ACS OMEGA 2018; 3:10999-11008. [PMID: 31459210 PMCID: PMC6645536 DOI: 10.1021/acsomega.8b01272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/07/2018] [Indexed: 06/10/2023]
Abstract
Encapsulation of active agents, such as vitamins and antioxidants, is one of the possibilities that allow their incorporation in beverages, food, or in pharmaceutical products. Simultaneously, encapsulation protects these active agents from oxidation, producing more stable active compounds. Formation of nanodroplets by spontaneously formed microemulsion (ME) offers, on one hand, a low-energy technology of encapsulation and, on the other hand, because of a small size of the droplets, it assures long-term stability even in harsher environments. In this study, oil-in-water MEs allowed the low-energy encapsulation of α-tocopherol (αToc) into an aqueous medium with the aid of fully food-grade ingredients, using isoamyl acetate as the dispersed oil phase, which was selected between three different types of oils. Both cosurfactant-free and cosurfactant-holder ME systems were formulated, in which Tween 20 and glycerol were employed as the surfactant and the cosurfactant, respectively. The ME monophasic area was determined through the construction of pseudoternary phase diagrams. The encapsulated αToc within 10-20 nm nanocapsules showed radical scavenging activity dependent on the encapsulated amount of αToc, as it was demonstrated by electron paramagnetic resonance spectroscopy. The radical scavenging activity slightly increased within the time investigated, indicating a slow release of the active compound from the nanodroplets, which is a promising result for their application, especially in pharmaceuticals.
Collapse
Affiliation(s)
- M. Ali Aboudzadeh
- POLYMAT,
University of the Basque Country, UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Ehsan Mehravar
- POLYMAT,
University of the Basque Country, UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Mercedes Fernandez
- POLYMAT,
University of the Basque Country, UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Luis Lezama
- Departamento
de Química Inorgánica, Universidad
del País Vasco UPV/EHU, B° Sarriena, 48970 Leioa, Spain
- BC Materials,
Basque Center for Materials, Applications & Nanostructures, UPV/EHU Science Park, B° Sarriena, 48970 Leioa, Spain
| | - Radmila Tomovska
- POLYMAT,
University of the Basque Country, UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
11
|
The phase behavior and solubilization of isopropyl myristate in microemulsions containing hexadecyl trimethyl ammonium bromide and sodium dodecyl sulfate. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|