1
|
Bansal S, Singh A, Poddar D, Thakur S, Jain P. A review on green approaches utilizing phytochemicals in the synthesis of vanadium nano particles and their applications. Prep Biochem Biotechnol 2024; 54:127-149. [PMID: 37530797 DOI: 10.1080/10826068.2023.2214916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
In the modern era, inorganic nanoparticles have received profound attention as they possess boundless applications in various fields. Among these, vanadium-based nanoparticles (VNPs) are highly remarkable due to their inherent physiological and biological properties with many therapeutic and other applications, such as drug delivery systems for diseases like cancer, environmental remediation, energy storage, energy conversion, and photocatalysis. Moreover, physically, and chemically synthesized VNPs are very versatile, however, these synthesis routes cause concern to health and the environment due to the highly savage reaction conditions, using highly toxic and harsh chemicals, which compel the researchers to develop an eco-friendly, greener, and sustainable route for synthesis. In this outlook, to avoid the innumerable limitations, a bio approach is used over chemical and physical methods. This present review emphasis on the role of various biological components in the synthesis, especially Phyto-molecules that acts as capping and reducing agent, and solvent system for the nanoparticles synthesis. Furthermore, the influence of various factors on the biogenic synthesized nanoparticles has also been discussed. Finally, potential applications of as-synthesized VNPs, principally as an antimicrobial agent and their role as a nanomedicine, energy applications as a supercapacitor, and photocatalytic agents, have been discussed.
Collapse
Affiliation(s)
- Smriti Bansal
- Department of Chemistry, Netaji Subhas University of Technology (N.S.U.T), Dwarka, New Delhi, India
| | - Ankita Singh
- Department of Chemistry, Netaji Subhas University of Technology (N.S.U.T), Dwarka, New Delhi, India
| | - Deepak Poddar
- Department of Chemistry, Netaji Subhas University of Technology (N.S.U.T), Dwarka, New Delhi, India
| | - Sanjeeve Thakur
- Department of Chemistry, Netaji Subhas University of Technology (N.S.U.T), Dwarka, New Delhi, India
| | - Purnima Jain
- Department of Chemistry, Netaji Subhas University of Technology (N.S.U.T), Dwarka, New Delhi, India
| |
Collapse
|
2
|
Han B, Guan H, Song Y, Liu Y. Radix Pueraria Flavonoids Assisted Green Synthesis of Reduced Gold Nanoparticles: Application for Electrochemical Nonenzymatic Detection of Cholesterol in Food Samples. ACS OMEGA 2022; 7:43045-43054. [PMID: 36467921 PMCID: PMC9713785 DOI: 10.1021/acsomega.2c05358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Using radix pueraria flavonoids (RPFs) as a reducing and stabilizing agent, we report a simple, cost-effective, and ecologically friendly green synthesis technique for gold nanoparticles (AuNPs) in the present study. Ultraviolet-visible (UV) spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared (FTIR), and X-ray diffraction (XRD) investigations were used to characterize the AuNPs. The results demonstrated that the produced AuNPs were nearly spherical and that their particle sizes had a mean diameter of 4.85 ± 0.75 nm. The "Green" AuNPs, exhibiting remarkable peroxidase-like activity and Michaelis-Menten kinetics with high affinity for H2O2 and 3,3',5,5'-tetramethylbenzidine (TMB), were effectively applied to the fabrication of a sensitive nonenzymatic enhanced electrochemical sensor for the detection of cholesterol (Cho). Under optimum circumstances, it was possible to establish two linear ranges of 1-100 and 250-5000 μmol/L with a detection limit of 0.259 μmol/L (signal/noise ratio (S/N) = 3). The suggested sensor was utilized with satisfactory findings to determine the amount of Cho in food samples.
Collapse
Affiliation(s)
- Bolin Han
- College of Food
Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Huanan Guan
- College of Food
Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Yan Song
- College of Food
Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Ying Liu
- College of Food
Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
3
|
Irfan M, Moniruzzaman M, Ahmad T, Samsudin MFR, Bashir F, Butt MT, Ashraf H. Identifying the role of process conditions for synthesis of stable gold nanoparticles and insight detail of reaction mechanism. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1897614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Muhammad Irfan
- Centre for Environmental Protection Studies, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Lahore, Pakistan
| | - Muhammad Moniruzzaman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia
- Centre of Researches in Ionic liquids, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia
| | - Tausif Ahmad
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia
| | | | - Farzana Bashir
- Centre for Environmental Protection Studies, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Lahore, Pakistan
| | - Muhammad Tahir Butt
- Centre for Environmental Protection Studies, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Lahore, Pakistan
| | - Hafsa Ashraf
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore, Pakistan
| |
Collapse
|
4
|
Facile Electro-Assisted Green Synthesis of Size-Tunable Silver Nanoparticles and Its Photodegradation Activity. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02028-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Rapid synthesis of gold nanoparticles for photocatalytic reduction of 4-nitrophenol. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04254-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Kamarudin N, Jusoh R, Sukor N, Jalil A, Setiabudi H. Intensified photocatalytic degradation of 2, 4–dicholorophenoxyacetic acid using size-controlled silver nanoparticles: Effect of pre-synthesis extraction. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
7
|
Kamarudin N, Jusoh R, Jalil A, Setiabudi H, Sukor N. Synthesis of silver nanoparticles in green binary solvent for degradation of 2,4-D herbicide: Optimization and kinetic studies. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.03.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Rana S, Mishra P, Wahid ZA, Thakur S, Pant D, Singh L. Microbe-mediated sustainable bio-recovery of gold from low-grade precious solid waste: A microbiological overview. J Environ Sci (China) 2020; 89:47-64. [PMID: 31892401 DOI: 10.1016/j.jes.2019.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
In an era of electronics, recovering the precious metal such as gold from ever increasing piles of electronic-wastes and metal-ion infested soil has become one of the prime concerns for researchers worldwide. Biological mining is an attractive, economical and non-hazardous to recover gold from the low-grade auriferous ore containing waste or soil. This review represents the recent major biological gold retrieval methods used to bio-mine gold. The biomining methods discussed in this review include, bioleaching, bio-oxidation, bio-precipitation, bio-flotation, bio-flocculation, bio-sorption, bio-reduction, bio-electrometallurgical technologies and bioaccumulation. The mechanism of gold biorecovery by microbes is explained in detail to explore its intracellular mechanistic, which help it withstand high concentrations of gold without causing any fatal consequences. Major challenges and future opportunities associated with each method and how they will dictate the fate of gold bio-metallurgy from metal wastes or metal infested soil bioremediation in the coming future are also discussed. With the help of concurrent advancements in high-throughput technologies, the gold bio-exploratory methods will speed up our ways to ensure maximum gold retrieval out of such low-grade ores containing sources, while keeping the gold mining clean and more sustainable.
Collapse
Affiliation(s)
- Supriyanka Rana
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Puranjan Mishra
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Zularisam Ab Wahid
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia; Earth Resources and Sustainability Center (EARS), Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia.
| | - Sveta Thakur
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Deepak Pant
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Lakhveer Singh
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia; Earth Resources and Sustainability Center (EARS), Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia.
| |
Collapse
|
9
|
Irfan M, Moniruzzaman M, Ahmad T, Mandal PC, Abdullah B, Bhattacharjee S. Growth kinetic study of ionic liquid mediated synthesis of gold nanoparticles using Elaeis guineensis (oil palm) kernels extract under microwave irradiation. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
10
|
Oueslati MH, Tahar LB, Harrath AH. Catalytic, antioxidant and anticancer activities of gold nanoparticles synthesized by kaempferol glucoside from Lotus leguminosae. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.09.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
11
|
Ullah H, Wilfred CD, Shaharun MS. Green synthesis of copper nanoparticle using ionic liquid-based extraction from Polygonum minus and their applications. ENVIRONMENTAL TECHNOLOGY 2019; 40:3705-3712. [PMID: 29873603 DOI: 10.1080/09593330.2018.1485751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
The present work reports the extraction of phenolic compounds from Polygonum minus using ionic liquid as extracting solvent. In this work, 1-Butyl-3-methylimidazolium hydrogen sulfate [BMIM][HSO4] was used for the extraction of bioactive compounds. Accordingly, ionic liquids based microwave-assisted extraction treatment for separating of bioactive compounds from polygonum minus was first performed in the present study. The results obtained in this work have high extraction yield in comparison with conventional solvent. UV/Vis results showed that microwave synthesis was fast, well dispersed and nanosized copper nanoparticle (CuNPs) in comparison with conventional synthesis. CuNPs was characterised by X-Rays diffractometer (XRD), Fourier transform infrared (FTIR), dynamic light scattering (DLS), field emission scanning electron microscopy combined with energy dispersive x-rays (FESEM-EDX), and thermogravimetric analysis (TGA). All the instrumental analyses confirmed the particles were nanosized. Furthermore, the antibacterial activity of as-synthesised CuNPs showed effective inhibitory zone against three different bacteria. The photocatalytic degradation of copper nanoparticles was studied using methylene blue (MB) and methyl orange (MO) dyes under UV light and degraded 99.9% within short time 8 and 7 min.
Collapse
Affiliation(s)
- Habib Ullah
- Center of Research in Ionic Liquids, Universiti Teknologi PETRONAS, Tronoh, Malaysia
| | - Cecilia Devi Wilfred
- Center of Research in Ionic Liquids, Universiti Teknologi PETRONAS, Tronoh, Malaysia
| | | |
Collapse
|
12
|
Fan Y, Cai D, Yang L, Chen X, Zhang L. Extraction behavior of nicotinic acid and nicotinamide in ionic liquids. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Liu ZW, Yue Z, Zeng XA, Cheng JH, Aadil RM. Ionic liquid as an effective solvent for cell wall deconstructing through astaxanthin extraction from Haematococcus pluvialis. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zhi-Wei Liu
- College of Food Science and Technology; Hunan Agricultural University; Changsha 410128 China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology; Changsha 410128 China
| | - Zhou Yue
- College of Food Science and Technology; Hunan Agricultural University; Changsha 410128 China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology; Changsha 410128 China
| | - Xin-An Zeng
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
| | - Jun-Hu Cheng
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
| | - Rana Muhammad Aadil
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
- National Institute of Food Science and Technology; University of Agriculture; Faisalabad 38000 Pakistan
| |
Collapse
|
14
|
Yusof KN, Alias SS, Harun Z, Basri H, Azhar FH. Parkia speciosa
as Reduction Agent in Green Synthesis Silver Nanoparticles. ChemistrySelect 2018. [DOI: 10.1002/slct.201801846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Khairul Nazri Yusof
- Advanced Manufacturing and Materials Centre (AMMC); Institute of Intergrated Engineering (I E); Universiti Tun Hussein Onn Malaysia; 86400 Parit Raja, Johor Malaysia
- Faculty of Mechanical and Manufacturing Engineering; Universiti Tun Hussein Onn Malaysia; 86400 Parit Raja, Johor Malaysia
| | - Siti Salwa Alias
- Advanced Manufacturing and Materials Centre (AMMC); Institute of Intergrated Engineering (I E); Universiti Tun Hussein Onn Malaysia; 86400 Parit Raja, Johor Malaysia
| | - Zawati Harun
- Advanced Manufacturing and Materials Centre (AMMC); Institute of Intergrated Engineering (I E); Universiti Tun Hussein Onn Malaysia; 86400 Parit Raja, Johor Malaysia
- Faculty of Mechanical and Manufacturing Engineering; Universiti Tun Hussein Onn Malaysia; 86400 Parit Raja, Johor Malaysia
| | - Hatijah Basri
- Advanced Manufacturing and Materials Centre (AMMC); Institute of Intergrated Engineering (I E); Universiti Tun Hussein Onn Malaysia; 86400 Parit Raja, Johor Malaysia
- Faculty of Mechanical and Manufacturing Engineering; Universiti Tun Hussein Onn Malaysia; 86400 Parit Raja, Johor Malaysia
- Faculty of Applied Sciences and Technology; Universiti Tun Hussein Onn Malaysia; 84600, Pagoh, Johor Malaysia
| | - Faiz Hafeez Azhar
- Advanced Manufacturing and Materials Centre (AMMC); Institute of Intergrated Engineering (I E); Universiti Tun Hussein Onn Malaysia; 86400 Parit Raja, Johor Malaysia
- Faculty of Mechanical and Manufacturing Engineering; Universiti Tun Hussein Onn Malaysia; 86400 Parit Raja, Johor Malaysia
| |
Collapse
|
15
|
Xiao J, Chen G, Li N. Ionic Liquid Solutions as a Green Tool for the Extraction and Isolation of Natural Products. Molecules 2018; 23:E1765. [PMID: 30021998 PMCID: PMC6100307 DOI: 10.3390/molecules23071765] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 01/16/2023] Open
Abstract
In the past few years, the application of ionic liquids (ILs) had attracted more attention of the researchers. Many studies focused on extracting active components from traditional herbals using ILs as alternative solvents so as to address the issue caused by the traditional methods for extraction of natural products (NPs) with organic chemical reagents. Through the summary of reported research work, an overview was presented for the application of ILs or IL-based materials in the extraction of NPs, including flavonoids, alkaloids, terpenoids, phenylpropanoids and so on. Here, we mainly describe the application of ILs to rich the extraction of critical bioactive constituents that were reported possessing multiple therapeutic effects or pharmacological activities, from medicinal plants. This review could shed some light on the wide use of ILs in the field of natural products chemistry to further reduce the environmental damage caused by large quantity of organic chemical reagents.
Collapse
Affiliation(s)
- Jiao Xiao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| |
Collapse
|
16
|
Sun S, Hou X, Zhou W. Effect of ionic liquids on enzymatic preparation of lipophilic feruloylated structured lipids using distearin as feruloylated acceptor and kinetic analysis. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Izadiyan Z, Shameli K, Hara H, Mohd Taib SH. Cytotoxicity assay of biosynthesis gold nanoparticles mediated by walnut ( Juglans regia ) green husk extract. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.09.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Pillegowda M, Periyasamy G. Influence of Ionic Liquid Solvation on Various Size Homo- and Heterometallic Clusters [M’ m
M n
] (M and M’= Au, Cu, Ag, Ni, Pd and Pt). ChemistrySelect 2017. [DOI: 10.1002/slct.201701889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Ganga Periyasamy
- Department of Chemistry; Bangalore University; Bangalore- 560001 India
| |
Collapse
|