1
|
Jaswal A, Swami S, Saini A. Mercury (Hg 2+) Sensing Using Coumarin-Derived Fluorescent Chemo-Sensors: An Intuitive Development from 2015 to 2023. J Fluoresc 2024:10.1007/s10895-024-03889-1. [PMID: 39126606 DOI: 10.1007/s10895-024-03889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Mercury is known as a highly toxic metal that is poisonous even if present in a trace amount. Generally, it enters in the food chain (especially fish) and water resources via different pathways and leads to harmful effects. Owing to the detrimental nature of the metal, traditionally several methods were employed by researchers for regular monitoring of the mercury metal ions. However, these methods are associated with many limitations like high cost of technical expertise, and intricacy of the detection procedure. So, using these methods to detect mercury ions in real time is challenging. Therefore, in recent years fluorescent-based analytical tools emerged rapidly. Among the various fluorescent organic scaffolds, coumarin has been scorching, owing to quick response, light stability, high sensitivity, good selectivity, excellent fluorescence intensity, and fluorescence quantum yield. This review provides a deep dive into the coumarin-derived chemo-sensors development throughout 2015-2023. We anticipate that the review will assist to broad scientific community as a reference document to design more interesting sensors.
Collapse
Affiliation(s)
- Ansh Jaswal
- Department of Chemistry, Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Mohali, Punjab, India, 140413
| | - Suman Swami
- Department of Chemistry, Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Mohali, Punjab, India, 140413.
| | - Ajay Saini
- Central Analytical Facilities, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, India, 303007
| |
Collapse
|
2
|
Mohasin M, Khan SA. A Review on Pyrazolines as Colorimetric Fluorescent Chemosensors for Cu 2. J Fluoresc 2024:10.1007/s10895-024-03678-w. [PMID: 38789859 DOI: 10.1007/s10895-024-03678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/20/2024] [Indexed: 05/26/2024]
Abstract
The Pyrazoline derivatives display promising potential as sensitive and selective chemosensors for detecting Cu2+ ions. It has undergone screening for its sensing behavior with various metals using absorption, emission spectroscopic techniques. Their unique structure incorporates both donating and accepting sites, characterized by delocalized orbitals. These derivatives exhibit notable chromogenic and fluorogenic capabilities facilitated by intramolecular charge transfer. The sensors based on pyrazoline demonstrate exceptional selectivity, low detection limits, and precise detection of metal ions, particularly Cu2+. This review offers a comprehensive summary of recent discoveries concerning as pyrazoline-based "On-Off" chemosensors. The discussion places emphasis on exploring the design and photophysical properties of these chemosensors, with the primary objective of detecting Cu2+ metal ions. The unique features of pyrazoline derivatives make them promising candidates for practical applications in environmental and biological monitoring, showcasing their potential significance in advancing sensing technologies.
Collapse
Affiliation(s)
- Md Mohasin
- Department of Chemistry, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, Telangana, India
| | - Salman A Khan
- Department of Chemistry, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, Telangana, India.
| |
Collapse
|
3
|
Ghosh P, Karak A, Mahapatra AK. Small-molecule fluorogenic probes based on indole scaffold. Org Biomol Chem 2024; 22:2690-2718. [PMID: 38465421 DOI: 10.1039/d3ob02057f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Indoles are the most versatile organic N-heterocyclic compounds widely present in bioactive natural products and used in different fields such as coordination chemistry, pharmacy, dyes, and medicine, as well as in the biology and polymer industries. More recently, the indole scaffold has been widely used in analytical chemistry for the design and development of small-molecule fluorescent chemosensors in the fields of molecular recognition and molecular imaging. The indole-based chemosensor derivatives contain heteroatoms like N-, O-, and S-, through which they interact with analytes (cations, anions, and neutral species), producing measurable analytical signals that can be used for the fluorimetric and colorimetric detection of different analytes in biological, agricultural and environmental samples. This review focuses on indole-based small-molecule fluorimetric and colorimetric chemosensors for detecting cations, anions, and neutral species in a comprehensive manner. Furthermore, the recognition mechanisms are discussed in detail, which could help researchers design and develop more powerful and efficient fluorescent chemosensors in the near future.
Collapse
Affiliation(s)
- Pintu Ghosh
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Anirban Karak
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Ajit Kumar Mahapatra
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| |
Collapse
|
4
|
Kursunlu AN, Bastug E, Oguz A, Oguz M, Yilmaz M. A highly branched macrocycle-based dual-channel sensor: Bodipy and pillar[5]arene combination for detection of Sn (II) &Hg (II) and bioimaging in living cells. Anal Chim Acta 2022; 1196:339542. [DOI: 10.1016/j.aca.2022.339542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 01/25/2023]
|
5
|
Ríos MC, Bravo NF, Sánchez CC, Portilla J. Chemosensors based on N-heterocyclic dyes: advances in sensing highly toxic ions such as CN - and Hg 2. RSC Adv 2021; 11:34206-34234. [PMID: 35497277 PMCID: PMC9042589 DOI: 10.1039/d1ra06567j] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/02/2021] [Indexed: 12/19/2022] Open
Abstract
CN- and Hg2+ ions are harmful to both the environment and human health, even at trace levels. Thus, alternative methods for their detection and quantification are highly desirable given that the traditional monitoring systems are expensive and require qualified personnel. Optical chemosensors (probes) have revolutionized the sensing of different species due to their high specificity and sensitivity, corresponding with their modular design. They have also been used in aqueous media and different pH ranges, facilitating their applications in various samples. The design of molecular probes is based on organic dyes, where the key species are N-heterocyclic compounds (NHCs) due to their proven photophysical properties, biocompatibility, and synthetic versatility, which favor diverse applications. Accordingly, this review aims to provide an overview of the reports from 2016 to 2021, in which fluorescent probes based on five- and six-membered N-heterocycles are used for the detection of CN- and Hg2+ ions.
Collapse
Affiliation(s)
- María-Camila Ríos
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - Néstor-Fabián Bravo
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - Christian-Camilo Sánchez
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - Jaime Portilla
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| |
Collapse
|
6
|
Nelson M, Muniyasamy H, Kubendran AM, Balasubramaniem A, Sepperumal M, Ayyanar S. Carbazole based fluorescent chemosensor for the meticulous detection of tryptamine in aqueous medium and its efficacy in cell-imaging and molecular logic gate. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Ali R, Ali IA, Messaoudi S, Alminderej FM, Saleh SM. An effective optical chemosensor film for selective detection of mercury ions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Pan J, Ma J, Liu L, Li D, Huo Y, Liu H. A novel carbazole-based highly sensitive and selective turn-on fluorescent probe for mercury (II) ions in aqueous THF. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Sheng W, Yu Y, Gao N, Jin M, Wang L, Li N, Li C, Zhang H, Zhang Y, Liu K. An ultrasensitive ratiometric fluorescent probe for the detection of Hg 2+ and its application in cell and zebrafish. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1043-1048. [PMID: 33565542 DOI: 10.1039/d1ay00063b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mercury is a highly toxic metal element, and the accumulation of mercury in the human body can cause great harm, including but not limited to brain damage, kidney damage and behavioral disorders. Therefore, an effective way to detect mercury ions in the environment is urgently needed. In this study, a novel fluorescent probe (CP-Hg) was synthesized with coumarin as the fluorophore and propanethiol as the recognition receptor. The probe was characterized with high sensitivity (detection limit is approximately 0.5 nM) and selectivity. Note that the probe can react with mercury ions with a distinct color change. In addition, it has been proved to have low toxicity and successfully applied to detect mercury in water samples, macrophages and zebrafish model.
Collapse
Affiliation(s)
- Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Yamin Yu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Na Gao
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Ning Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Can Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Huili Zhang
- Shandong Technical Market Management Service Center, Jinan 250101, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| |
Collapse
|
10
|
Electron-donating methoxy group enhances the stability and efficiency of indole-based fluorescent probe for detecting Cu2+. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04275-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Nunes MC, dos Santos Carlos F, Fuganti O, da Silva LA, Ribas HT, Winnischofer SMB, Nunes FS. A Facile Preparation of a New Water-Soluble Acridine Derivative and Application as a Turn-off Fluorescence Chemosensor for Selective Detection of Hg2+. J Fluoresc 2020; 30:235-247. [DOI: 10.1007/s10895-020-02489-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/15/2020] [Indexed: 10/25/2022]
|
12
|
Bahta M, Ahmed N. A novel 1,8-naphthalimide as highly selective naked-eye and ratiometric fluorescent sensor for detection of Hg2+ ions. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Pramanik K, Sarkar P, Bhattacharyay D. Semi-quantitative colorimetric and supersensitive electrochemical sensors for mercury using rhodamine b hydrazide thio derivative. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Bhosale TR, Chandam DR, Anbhule PV, Deshmukh MB. Synthesis of Novel 4-((Substituted bis-indolyl)methyl)-benzo-15-crown-5 for the Colorimetric Detection of Hg2+
Ions in an Aqueous Medium. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- T. R. Bhosale
- Department of Chemistry; Shivaji University; Kolhapur Maharashtra 416004 India
| | - D. R. Chandam
- Department of Chemistry; Bhogawati Mahavidyalaya; Kolhapur Maharashtra 416001 India
| | - P. V. Anbhule
- Department of Chemistry; Shivaji University; Kolhapur Maharashtra 416004 India
| | - M. B. Deshmukh
- Department of Chemistry; Shivaji University; Kolhapur Maharashtra 416004 India
| |
Collapse
|