1
|
Semenov KN, Ageev SV, Kukaliia ON, Murin IV, Petrov AV, Iurev GO, Andoskin PA, Panova GG, Molchanov OE, Maistrenko DN, Sharoyko VV. Application of carbon nanostructures in biomedicine: realities, difficulties, prospects. Nanotoxicology 2024; 18:181-213. [PMID: 38487921 DOI: 10.1080/17435390.2024.2327053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/02/2024] [Indexed: 05/02/2024]
Abstract
The review systematizes data on the wide possibilities of practical application of carbon nanostructures. Much attention is paid to the use of carbon nanomaterials in medicine for the visualization of tumors during surgical interventions, in the creation of cosmetics, as well as in agriculture in the creation of fertilizers. Additionally, we demonstrate trends in research in the field of carbon nanomaterials with a view to elaborating targeted drug delivery systems. We also show the creation of nanosized medicinal substances and diagnostic systems, and the production of new biomaterials. A separate section is devoted to the difficulties in studying carbon nanomaterials. The review is intended for a wide range of readers, as well as for experts in the field of nanotechnology and nanomedicine.
Collapse
Affiliation(s)
- Konstantin N Semenov
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
- Department of Basic Research, A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Sergei V Ageev
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Olegi N Kukaliia
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Igor V Murin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Andrey V Petrov
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Gleb O Iurev
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Pavel A Andoskin
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Gaiane G Panova
- Light Physiology of Plants, Agrophysical Research Institute, Saint Petersburg, Russia
| | - Oleg E Molchanov
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Department of Basic Research, A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Dmitrii N Maistrenko
- Department of Basic Research, A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Vladimir V Sharoyko
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
2
|
Approach for the Description of Chemical Equilibrium Shifts in the Systems with Free and Connected Chemical Reactions. Processes (Basel) 2022. [DOI: 10.3390/pr10122493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Approach for the description of chemical equilibrium shifts in the systems with free and connected chemical reactions was elaborated. Driving forces of chemical equilibrium shifts were temperature change (at P = const), pressure change (at T = const), and input or output of reagents or products (at T, P = const). It was demonstrated how the conditions for passing through the extremes of the state parameters (T, P, and components molar numbers) in one of the reactions transmitted to other reactions, connected with the first one by reagents or products.
Collapse
|
3
|
Sharoyko VV, Shemchuk OS, Meshcheriakov AA, Vasina LV, Iamalova NR, Luttsev MD, Ivanova DA, Petrov AV, Maystrenko DN, Molchanov OE, Semenov KN. Biocompatibility, antioxidant activity and collagen photoprotection properties of C 60 fullerene adduct with L-methionine. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 40:102500. [PMID: 34843985 DOI: 10.1016/j.nano.2021.102500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/14/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Functionalization of the fullerene core with amino acids has become a new and promising direction in the field of nanochemistry. The biologic activity of water-soluble fullerene derivatives is based on such properties as lipophilicity, electron deficiency and photosensitivity. The complex of above-mentioned properties can be used to develop protection of biomolecules (in particular, proteins) from external physical and chemical influences. Thus, development and up-scaling of synthesis procedures, as well as investigation of the biological properties of these derivatives, are extremely important. This paper presents new data on the biocompatibility studies of C60 fullerene adduct with L-methionine (C60[C5H11NO2S]3; C60-Met). Antiradical activity, binding to human serum albumin (HSA), collagen and deoxyribonucleic acid (DNA), hemocompatibility, photodynamic properties, genotoxicity and cytotoxicity were studied. In addition, it was found that C60-Met increases the photostability of the collagen molecule, and this effect is dose-dependent.
Collapse
Affiliation(s)
- Vladimir V Sharoyko
- Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia; Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia; A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia.
| | - Olga S Shemchuk
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia
| | - Anatolii A Meshcheriakov
- Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia; Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia
| | - Lubov V Vasina
- Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia
| | - Nailia R Iamalova
- Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia
| | - Michail D Luttsev
- Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia
| | - Daria A Ivanova
- Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia
| | - Andrey V Petrov
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia
| | - Dmitriy N Maystrenko
- A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Oleg E Molchanov
- A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Konstantin N Semenov
- Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia; Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia; A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia.
| |
Collapse
|
4
|
|
5
|
Belik AY, Rybkin AY, Goryachev NS, Sadkov AP, Filatova NV, Buyanovskaya AG, Talanova VN, Klemenkova ZS, Romanova VS, Koifman MO, Terentiev AA, Kotelnikov AI. Nanoparticles of water-soluble dyads based on amino acid fullerene C 60 derivatives and pyropheophorbide: Synthesis, photophysical properties, and photodynamic activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119885. [PMID: 33993022 DOI: 10.1016/j.saa.2021.119885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Synthesis, spectral properties, and photodynamic activity of water-soluble amino acid fullerene C60 derivatives (AFD) and four original AFD-PPa dyads, obtained by covalent addition of dye pyropheophorbide (PPa) to AFD, were studied. In aqueous solution, these AFD-PPa dyads form nanoassociates as a result of self-assembly. In this case, a significant change in the absorption spectra and strong quenching of the dye fluorescence in the structure of the dyads were observed. A comparison of superoxide or singlet oxygen generation efficiency of the studied compounds in an aqueous solution showed the photodynamic mechanism switching from type II (singlet oxygen generation of the native dye) to I type (superoxide generation of dyads). All dyads have pronounced phototoxicity on cells Hela with IC50 9.2 µM, 9.2 µM, 12.2 µM for dyads Val-C60-PPa, Ala-C60-PPa and Pro-C60-PPa, respectively. Such facilitation of type I photodynamic mechanism could be perspective against hypoxic tumors.
Collapse
Affiliation(s)
- A Yu Belik
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Oblast 142432, Russia.
| | - A Yu Rybkin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Oblast 142432, Russia
| | - N S Goryachev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Oblast 142432, Russia; Lomonosov Moscow State University, Moscow 119991, Russia
| | - A P Sadkov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Oblast 142432, Russia
| | - N V Filatova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Oblast 142432, Russia
| | - A G Buyanovskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 117813, Russia
| | - V N Talanova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 117813, Russia
| | - Z S Klemenkova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 117813, Russia
| | - V S Romanova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 117813, Russia
| | - M O Koifman
- Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
| | - A A Terentiev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Oblast 142432, Russia; Lomonosov Moscow State University, Moscow 119991, Russia
| | - A I Kotelnikov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Oblast 142432, Russia; Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
6
|
Charykov NA, Keskinov VA, Petrov AV. Physicochemical Properties of Adducts of Light Fullerenes and Amino Acids. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Gerasimova LV, Charykov NA, Semenov KN, Keskinov VV, Kulenova AA, Shaimardanov ZK, Shaimardanova BK, Ayat K, Letenko DG. Volume Properties of Aqueous Solutions of Light Fullerene С60 and Its Association in Binary C60(OH)24–H2O System at 25°С. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
|
9
|
Semenov KN, Charykov NA, Kurilenko AV, Keskinov VA, Shaimardanov ZK, Shaimardanova BK, Kulenova NA, Matuzenko MY, Klepikov VV. Thermodynamic Functions in the Binary System of a C60 Fullerene Derivative with Methionine Amino Acid–Н2О. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420040172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Pochkaeva EI, Podolsky NE, Zakusilo DN, Petrov AV, Charykov NA, Vlasov TD, Penkova AV, Vasina LV, Murin IV, Sharoyko VV, Semenov KN. Fullerene derivatives with amino acids, peptides and proteins: From synthesis to biomedical application. PROG SOLID STATE CH 2020. [DOI: 10.1016/j.progsolidstchem.2019.100255] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Pochkaeva EI, Meshcheriakov AA, Ageev SV, Podolsky NE, Petrov AV, Charykov NA, Vasina LV, Nikolaeva OY, Gaponenko IN, Sharoyko VV, Murin IV, Semenov KN. Polythermal density and viscosity, nanoparticle size distribution, binding with human serum albumin and radical scavenging activity of the C60-l-arginine (C60(C6H13N4O2)8H8) aqueous solutions. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Gaponenko IN, Ageev SV, Iurev GO, Shemchuk OS, Meshcheriakov AA, Petrov AV, Solovtsova IL, Vasina LV, Tennikova TB, Murin IV, Semenov KN, Sharoyko VV. Biological evaluation and molecular dynamics simulation of water-soluble fullerene derivative C 60[C(COOH) 2] 3. Toxicol In Vitro 2019; 62:104683. [PMID: 31639450 DOI: 10.1016/j.tiv.2019.104683] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022]
Abstract
One of the most studied fullerene members, C60, has a potential of application in various fields of biomedicine including reactive oxygen species (ROS) scavenging activity, inhibiting of tumours development, inactivating of viruses and bacteria, as well as elaboration of diagnostic and targeted drug delivery tools. However, the hydrophobicity of this molecule impedes its practical use, therefore the actuality of the research devoted to functionalisation of fullerenes leading to amphiphilic derivatives remains important. In this work, the water-soluble carboxylated fullerene derivative C60[C(COOH)2]3 was studied. Extensive biomedical investigation of this compound, namely, the binding with human serum albumin (HSA), radical scavenging activity in the reaction with diphenylpicrylhydrazyl (DPPH) radical, photodynamic properties, cytotoxicity in human embryonic kidney (HEK293) cell line, erythrocytes' haemolysis, platelet aggregation, and genotoxicity in human peripheral mononuclear cells (PBMC) was conducted. Moreover, the dynamic and structural characteristics of C60[C(COOH)2]3-H2O binary system were obtained using molecular dynamic (MD) method, and size distribution of C60[C(COOH)2]3 associates was measured.
Collapse
Affiliation(s)
- Ivan N Gaponenko
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, Saint Petersburg 197022, Russia
| | - Sergei V Ageev
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
| | - Gleb O Iurev
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, Saint Petersburg 197022, Russia; Almazov National Medical Research Centre, Akkuratova str. 2, Saint Petersburg 197341, Russia
| | - Olga S Shemchuk
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
| | - Anatolii A Meshcheriakov
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
| | - Andrey V Petrov
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
| | - Irina L Solovtsova
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, Saint Petersburg 197022, Russia
| | - Lubov V Vasina
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, Saint Petersburg 197022, Russia; Almazov National Medical Research Centre, Akkuratova str. 2, Saint Petersburg 197341, Russia
| | - Tatiana B Tennikova
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
| | - Igor V Murin
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
| | - Konstantin N Semenov
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, Saint Petersburg 197022, Russia; Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia; Almazov National Medical Research Centre, Akkuratova str. 2, Saint Petersburg 197341, Russia.
| | - Vladimir V Sharoyko
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia; Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, Saint Petersburg 197022, Russia
| |
Collapse
|
13
|
Serebryakov EB, Zakusilo DN, Semenov KN, Charykov NA, Akentiev AV, Noskov BA, Petrov AV, Podolsky NE, Mazur AS, Dul'neva LV, Murin IV. Physico-chemical properties of C70-l-threonine bisadduct (C70(C4H9NO2)2) aqueous solutions. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Podolsky NE, Marcos MA, Cabaleiro D, Semenov KN, Lugo L, Petrov AV, Charykov NA, Sharoyko VV, Vlasov TD, Murin IV. Physico-chemical properties of C60(OH)22–24 water solutions: Density, viscosity, refraction index, isobaric heat capacity and antioxidant activity. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.148] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|