1
|
Ben Amor I, Hemmami H, Grara N, Aidat O, Ben Amor A, Zeghoud S, Bellucci S. Chitosan: A Green Approach to Metallic Nanoparticle/Nanocomposite Synthesis and Applications. Polymers (Basel) 2024; 16:2662. [PMID: 39339126 PMCID: PMC11436026 DOI: 10.3390/polym16182662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Chitosan, a naturally occurring biopolymer derived from chitin, has emerged as a highly promising instrument for the production and application of metal nanoparticles. The present review delves into the several functions of chitosan in the development and operation of metal nanoparticles, emphasizing its aptitudes as a green reducing agent, shape-directing agent, size-controlling agent, and stabilizer. Chitosan's special qualities make it easier to manufacture metal nanoparticles and nanocomposites with desired characteristics. Furthermore, there is a lot of promise for chitosan-based nanocomposites in a number of fields, such as metal removal, water purification, and photoacoustic, photothermal, antibacterial, and photodynamic therapies. This thorough analysis highlights the potential application of chitosan in the advancement of nanotechnology and the development of medicinal and environmental solutions.
Collapse
Affiliation(s)
- Ilham Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria; (I.B.A.); (H.H.); (A.B.A.); (S.Z.)
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of El Oued, P.O. Box 789, El Oued 39000, Algeria
| | - Hadia Hemmami
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria; (I.B.A.); (H.H.); (A.B.A.); (S.Z.)
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of El Oued, P.O. Box 789, El Oued 39000, Algeria
| | - Nedjoud Grara
- Department of Biology, Faculty of Nature, Life Sciences, Earth and Universe Sciences, University 8 May 1945, P.O. Box 401, Guelma 24000, Algeria
| | - Omaima Aidat
- Laboratoire de Technologie Alimentaire et de Nutrition, Abdelhamid Ibn Badis University, Mostaganem 27000, Algeria;
| | - Asma Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria; (I.B.A.); (H.H.); (A.B.A.); (S.Z.)
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
| | - Soumeia Zeghoud
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria; (I.B.A.); (H.H.); (A.B.A.); (S.Z.)
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of El Oued, P.O. Box 789, El Oued 39000, Algeria
| | - Stefano Bellucci
- National Institute of Materials Physics, Atomistilor 405 A, 077125 Magurele, Romania
- INFN—Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| |
Collapse
|
2
|
Perumal K, Seenuvasan J, Nandhagopal M. Antimicrobial Properties of Secondary Metabolites Produced by Halomonas sp.: A Halophilic Bacterium. Cureus 2024; 16:e69633. [PMID: 39429317 PMCID: PMC11488992 DOI: 10.7759/cureus.69633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Aim It is unknown whether the halotolerant bacterium Halomonas sp. produces a range of secondary metabolites with antimicrobial qualities. In the past few years, there has been a growing interest in the biotechnological capability of halophilic bacteria for the production of antimicrobial compounds. Materials and methods The current review intended to assess the antibacterial and antifungal properties of microbial metabolites, explicitly those produced as secondary metabolites by a putative halophilic bacterium. First, phenotypic and genotypic identification were used to identify and confirm the obtained potent halophilic bacterium as Halomonas sp., and its antioxidant properties and biological compatibility were studied. Results The extracellular metabolites that were obtained exhibit a moderation zone of inhibition against 11 mm of Staphylococcus aureus, 12 mm of Pseudomonas aeruginosa, and 11 mm of Candida albicans. The optimal inhibitory concentration for S. aureus and P. aeruginosa is 256 µg/mL, while the minimum inhibitory concentration (MIC) for C. albicans is 128 µg/mL. The antioxidant property of crude metabolites indicates that 100% scavenging at 512 µg/mL, and the blow at 256 µg/mL, are not reasonable levels of antioxidant activity. Conclusion Secondary metabolites appear to be highly biologically compatible, as there is no hemolytic activity at any of the tested concentrations. According to the study, Halomonas sp.'s secondary metabolites could be a source for the synthesis of novel antimicrobial compounds.
Collapse
Affiliation(s)
- Keerthana Perumal
- Department of Microbiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Jayaprakash Seenuvasan
- Department of Microbiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Manivannan Nandhagopal
- Department of Microbiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
3
|
Karkuzhali K, Manivannan N, Venkatesan S. Antimicrobial Activity of Crude Metabolites of Vitis vinifera using Methanol Extract against the Clinical Pathogens. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S1186-S1190. [PMID: 38882745 PMCID: PMC11174194 DOI: 10.4103/jpbs.jpbs_521_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/25/2023] [Accepted: 10/22/2023] [Indexed: 06/18/2024] Open
Abstract
Background The Vitis vinifera, also known as grapevine, is one of the most widely grown fruit crops in the world and is renowned for producing wine and grapes. Other than their importance in gastronomy and ecology, certain sections of the V. vinifera plant have shown promising bioactive qualities. The numerous phytochemicals in this plant, including flavonoids, stilbenes, and phenolic acids, are what gives its antibacterial and antifungal properties though the antimicrobial properties of seed extract have to be studied, however in this present study we focus on screening and its biological compatibility of seed extracts of V. vinifera. Methods The commercial power of seed (V. vinifera) obtained from local market near Poonamallee, Chennai, India. and the extraction of crude metabolites was done by direction extraction method, the antimicrobial activity was done by well diffusion method, and Minimum Inhibitory concentration was done by CLSI guideline. To check the biocompatibility of crude metabolites was done by hemolytic assay. Results Studies have demonstrated that grapevine extracts and their separated components have potent antibacterial and antifungal effects against a variety of pathogenic microorganisms, including bacterial strains that are resistant to antibiotics. The Minimum Inhibitory Concentration of the plant's extracts have demonstrated potential 128 µg/mL for S. aureus, and 256 µg/mL E. faecalis and C. albicans as the best inhibitory concentration. The biological compatibility of crude metabolites shows 3 % of lysis at 512 µg/mL. Conclusion V. vinifera is a prospective source for the creation of novel antimicrobial drugs because of its antibacterial capabilities. To completely understand the chemicals' mode of action and to create efficient treatments for microbial illnesses, more research is necessary.
Collapse
Affiliation(s)
- Karunanithi Karkuzhali
- Department of Microbiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, Tamil Nadu, India
| | - N Manivannan
- Department of Microbiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, Tamil Nadu, India
| | - Santhosh Venkatesan
- Department of Microbiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Gholap AD, Rojekar S, Kapare HS, Vishwakarma N, Raikwar S, Garkal A, Mehta TA, Jadhav H, Prajapati MK, Annapure U. Chitosan scaffolds: Expanding horizons in biomedical applications. Carbohydr Polym 2024; 323:121394. [PMID: 37940287 DOI: 10.1016/j.carbpol.2023.121394] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
Chitosan, a natural polysaccharide from chitin, shows promise as a biomaterial for various biomedical applications due to its biocompatibility, biodegradability, antibacterial activity, and ease of modification. This review overviews "chitosan scaffolds" use in diverse biomedical applications. It emphasizes chitosan's structural and biological properties and explores fabrication methods like gelation, electrospinning, and 3D printing, which influence scaffold architecture and mechanical properties. The review focuses on chitosan scaffolds in tissue engineering and regenerative medicine, highlighting their role in bone, cartilage, skin, nerve, and vascular tissue regeneration, supporting cell adhesion, proliferation, and differentiation. Investigations into incorporating bioactive compounds, growth factors, and nanoparticles for improved therapeutic effects are discussed. The review also examines chitosan scaffolds in drug delivery systems, leveraging their prolonged release capabilities and ability to encapsulate medicines for targeted and controlled drug delivery. Moreover, it explores chitosan's antibacterial activity and potential for wound healing and infection management in biomedical contexts. Lastly, the review discusses challenges and future objectives, emphasizing the need for improved scaffold design, mechanical qualities, and understanding of interactions with host tissues. In summary, chitosan scaffolds hold significant potential in various biological applications, and this review underscores their promising role in advancing biomedical science.
Collapse
Affiliation(s)
- Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Harshad S Kapare
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 411018, Maharashtra, India
| | - Nikhar Vishwakarma
- Department of Pharmacy, Gyan Ganga Institute of Technology and Sciences, Jabalpur 482003, Madhya Pradesh, India
| | - Sarjana Raikwar
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar 470003, Madhya Pradesh, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Tejal A Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Harsh Jadhav
- Department of Food Engineering and Technology, Institute of Chemical Technology (ICT), Mumbai 400 019, Maharashtra, India
| | - Mahendra Kumar Prajapati
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur 425405, Maharashtra, India.
| | - Uday Annapure
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, Maharashtra, India; Department of Food Engineering and Technology, Institute of Chemical Technology (ICT), Mumbai 400 019, Maharashtra, India.
| |
Collapse
|
5
|
Arif M. A Critical Review of Palladium Nanoparticles Decorated in Smart Microgels. Polymers (Basel) 2023; 15:3600. [PMID: 37688226 PMCID: PMC10490228 DOI: 10.3390/polym15173600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Palladium nanoparticles (Pd) combined with smart polymer microgels have attracted significant interest in the past decade. These hybrid materials have unique properties that make them appealing for various applications in biology, environmental remediation, and catalysis. The responsive nature of the microgels in these hybrids holds great promise for a wide range of applications. The literature contains diverse morphologies and architectures of Pd nanoparticle-based hybrid microgels, and the architecture of these hybrids plays a vital role in determining their potential uses. Therefore, specific Pd nanoparticle-based hybrid microgels are designed for specific applications. This report provides an overview of recent advancements in the classification, synthesis, properties, characterization, and uses of Pd nanostructures loaded into microgels. Additionally, the report discusses the latest progress in biomedical, catalytic, environmental, and sensing applications of Pd-based hybrid microgels in a tutorial manner.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| |
Collapse
|
6
|
Bounegru AV, Bounegru I. Chitosan-Based Electrochemical Sensors for Pharmaceuticals and Clinical Applications. Polymers (Basel) 2023; 15:3539. [PMID: 37688165 PMCID: PMC10490380 DOI: 10.3390/polym15173539] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Chitosan (CTS), a biocompatible and multifunctional material derived from chitin, has caught researchers' attention in electrochemical detection due to its unique properties. This review paper provides a comprehensive overview of the recent progress and applications of CTS-based electrochemical sensors in the analysis of pharmaceutical products and other types of samples, with a particular focus on the detection of medicinal substances. The review covers studies and developments from 2003 to 2023, highlighting the remarkable properties of CTS, such as biocompatibility, chemical versatility, and large surface area, that make it an excellent candidate for sensor modification. Combining CTS with various nanomaterials significantly enhances the detection capabilities of electrochemical sensors. Various types of CTS-based sensors are analyzed, including those utilizing carbon nanomaterials, metallic nanoparticles, conducting polymers, and molecularly imprinted CTS. These sensors exhibit excellent sensitivity, selectivity, and stability, enabling the precise and reliable detection of medications. The manufacturing strategies used for the preparation of CTS-based sensors are described, the underlying detection mechanisms are elucidated, and the integration of CTS sensors with transducer systems is highlighted. The prospects of CTS-based electrochemical sensors are promising, with opportunities for miniaturization, simultaneous detection, and real-time monitoring applications.
Collapse
Affiliation(s)
- Alexandra Virginia Bounegru
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, "Dunărea de Jos" University of Galati, 47 Domnească Street, 800008 Galati, Romania
| | - Iulian Bounegru
- Competences Centre: Interfaces-Tribocorrosion-Electrochemical Systems, "Dunărea de Jos" University of Galati, 47 Domnească Street, 800008 Galati, Romania
- Faculty of Medicine and Pharmacy, "Dunărea de Jos" University of Galati, 35 Al. I. Cuza Street, 800010 Galati, Romania
| |
Collapse
|
7
|
Ali AQ, Siddiqui ZN. Ionic Liquid Functionalized Metal-Organic Framework ([DEIm][PF 6]@MOF-5): Synthesis, Characterization, and Catalytic Application in the Reduction of 4-Nitrophenol. ACS OMEGA 2023; 8:3785-3797. [PMID: 36743021 PMCID: PMC9893260 DOI: 10.1021/acsomega.2c05808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
A novel, unique, highly effective, and recyclable heterogeneous catalyst, diethyl imidazolium hexafluorophosphate ionic liquid supported metal-organic framework ([DEIm][PF6]@MOF-5), has been synthesized using a simple impregnation method at ambient temperature. Characterization of the catalyst was done through various techniques such as Fourier transform infrared (FTIR), energy dispersive X-ray, X-ray diffraction (XRD), transmission electron microscopy, scanning electron microscopy (SEM), elemental mapping, Raman spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis (TGA) analyses. The kinetic study has shown the high catalytic performance of [DEIm][PF6]@MOF-5 for the reduction of 4-nitrophenol (NP) compared to other catalysts. The catalyst also exhibited efficient electrochemical activity toward 4-NP reduction. The catalyst was recyclable for more than seven cycles without any significant loss in its catalytic performance. The recycled catalyst was further studied using XRD, FTIR, SEM, and TGA analyses to investigate the structural changes that occurred during the reaction. The catalyst maintained its structural integrity even after seven cycles.
Collapse
Affiliation(s)
- Abdulaziz
Abdullah Qasem Ali
- Green Chemistry Laboratory,
Organic Chemistry Division, Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh202002, India
| | - Zeba N. Siddiqui
- Green Chemistry Laboratory,
Organic Chemistry Division, Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh202002, India
| |
Collapse
|
8
|
Synthesis and characterization of clay graphene oxide iron oxide (clay/GO/Fe2O3)-nanocomposite for adsorptive removal of methylene blue dye from wastewater. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Zhang C, Gao Y, Yin J, Zhang Y, Meng J. Metalized hierarchical porous poly-melamine-formaldehyde membrane for continuous-flow reduction of 4-nitrophenol. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Farrokhi Z, Sadjadi S, Raouf F, Bahri-Laleh N. Novel bio-based Pd/chitosan-perlite composite bead as an efficient catalyst for rapid decolorization of azo dye. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Rajagopal K, Dhandayutham S, Nandhagopal M, Narayanasamy M, I Elzagheid M, Rhyman L, Ramasami P. Thiazole derivatives: Synthesis, characterization, biological and DFT studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Laourari I, Lakhdari N, Belgherbi O, Medjili C, Berkani M, Vasseghian Y, Golzadeh N, Lakhdari D. Antimicrobial and antifungal properties of NiCu-PANI/PVA quaternary nanocomposite synthesized by chemical oxidative polymerization of polyaniline. CHEMOSPHERE 2022; 291:132696. [PMID: 34718011 DOI: 10.1016/j.chemosphere.2021.132696] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/09/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Increasing antimicrobial resistance has led to use of novel technologies such as nanomaterials and nanocomposites that have shown effective antimicrobial and/or antifungal activities against several gram-positive and gram-negative bacteria. There have been limited studies on antimicrobial properties of the combined polymer nanocomposites with transitional bimetallic nanoparticles such as nickel (Ni) and copper (Cu). Thus, the main objective of this study was to synthesis, characterize and investigate the antibacterial and antifungal properties of NiCu-PANI/PVA nanocomposite. The nanocomposite films with different amount of Ni and Cu salts were synthesized by chemical oxidative polymerization of polyaniline using HCl as oxidant and PVA as a stabilizer. Optical, chemical composition, and morphological characteristics as well as thermal stability were evaluated using UV-Visible, FTIR, SEM-EDX, and TGA analyses. Antimicrobial properties were then determined using the disc diffusion assay against gram-negative bacteria (i.e., Escherichia coli ATCC 25922, Klebsiella pneumonia ATCC 700603, Proteus sp.,) and gram-positive bacteria (i.e., Staphylococcus aureus ATCC 2593). Fungal plant pathogens including Aspergillus niger and Fusarium oxysporum f. sp. pisi were also evaluated for determination of antifungal activity of NiCu-PANI/PVA films. Among the synthesized films, Ni65Cu35-PANI/PVA showed excellent antibacterial activity against all the bacteria strains examined in this study. The diameters of inhibition zones for Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 700603, Proteus sp., and Staphylococcus aureus ATCC 2593 were 23, 23, 17, and 18 mm, respectively indicating good antibacterial activities. Additionally, NiCu-PANI/PVA, particularly the films with higher Cu intake, showed better antifungal activity against Fusarium oxysporum f. sp. pisi. However, NiCu-PANI/PVA was ineffective against Aspergillus niger.
Collapse
Affiliation(s)
- Ines Laourari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66, 25100, Constantine, Algeria
| | - Nadjem Lakhdari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66, 25100, Constantine, Algeria.
| | - Ouafia Belgherbi
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014, Algiers, Algeria
| | - Chahinaz Medjili
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66, 25100, Constantine, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66, 25100, Constantine, Algeria.
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Nasrin Golzadeh
- Science, Technology, Engineering, and Mathematics (STEM) Knowledge Translations Institute, Montreal, Quebec, Canada
| | - Delloula Lakhdari
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014, Algiers, Algeria.
| |
Collapse
|
13
|
Palem RR, Shimoga G, Kim SY, Bathula C, Ghodake GS, Lee SH. Biogenic palladium nanoparticles: An effectual environmental benign catalyst for organic coupling reactions. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Synthesis of ferrocene/chitosan-AgNPs films and application in plasmonic color-switching and antimicrobial materials. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Wang Z, Lü S, Yang F, Kabir SF, Mahmud S, Liu H. Hyaluronate macromolecules reduced-stabilized colloidal palladium nanocatalyst for azo contaminated wastewater treatment. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Begum R, Farooqi ZH, Xiao J, Ahmed E, Sharif A, Irfan A. Crosslinked polymer encapsulated palladium nanoparticles for catalytic reduction and Suzuki reactions in aqueous medium. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Abstract
The past decade has witnessed a phenomenal rise in nanotechnology research due to its broad range of applications in diverse fields including food safety, transportation, sustainable energy, environmental science, catalysis, and medicine. The distinctive properties of nanomaterials (nano-sized particles in the range of 1 to 100 nm) make them uniquely suitable for such wide range of functions. The nanoparticles when manufactured using green synthesis methods are especially desirable being devoid of harsh operating conditions (high temperature and pressure), hazardous chemicals, or addition of external stabilizing or capping agents. Numerous plants and microorganisms are being experimented upon for an eco–friendly, cost–effective, and biologically safe process optimization. This review provides a comprehensive overview on the green synthesis of metallic NPs using plants and microorganisms, factors affecting the synthesis, and characterization of synthesized NPs. The potential applications of metal NPs in various sectors have also been highlighted along with the major challenges involved with respect to toxicity and translational research.
Collapse
|
18
|
Ezhumalai N, Nanthagopal M, Chandirasekar S, Elumalai M, Narayanasamy M, Singaravelu G, Rajendiran N. Synthesis of
N
‐Acetylcysteine Conjugated Cholic Acid Stabilized Gold and Silver Nanoparticles: Evaluation of Their Catalytic Activity and Toxicity Assessment. ChemistrySelect 2021. [DOI: 10.1002/slct.202100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nishanthi Ezhumalai
- Department of Polymer Science University of Madras, Guindy Campus Chennai-25 Tamil Nadu India
| | - Manivannan Nanthagopal
- Centre for Advanced Studies in Botany University of Madras, Guindy Campus, Chennai-25 Tamil Nadu India
| | | | - Manikandan Elumalai
- Department of Polymer Science University of Madras, Guindy Campus Chennai-25 Tamil Nadu India
| | - Mathivanan Narayanasamy
- Centre for Advanced Studies in Botany University of Madras, Guindy Campus, Chennai-25 Tamil Nadu India
| | - Ganesan Singaravelu
- Department of Medical Physics Anna University, Guindy, Chennai-25 Tamil Nadu India
| | - Nagappan Rajendiran
- Department of Polymer Science University of Madras, Guindy Campus Chennai-25 Tamil Nadu India
| |
Collapse
|
19
|
Verma C, Quraishi MA, Alfantazi A, Rhee KY. Corrosion inhibition potential of chitosan based Schiff bases: Design, performance and applications. Int J Biol Macromol 2021; 184:135-143. [PMID: 34119548 DOI: 10.1016/j.ijbiomac.2021.06.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Chemically, chitosan is a linear polysaccharide constituted of arbitrarily distributed D-glucosamine and N-acetyl-D-glucosamine constituents combined together via β-1,4-glycosidic linkage. Because of increasing ecological awareness and strict environmental regulations, species of natural and biological origin such as chitosan can be identified as ideal environmental sustainable alternative to replace traditional heterocyclic (toxic) corrosion inhibitors. Although, chitosan contains numerous electron rich sites however chitosan itself is not highly effective aqueous phase corrosion inhibitors. Aqueous phase application of chitosan is limited because of its limited solubility. However, chemically modified chitosan derivatives, such as chitosan based Schiff bases (CSBs) exhibit remarkable solubility in such electrolytes. Therefore, recently various reports dealing with the anticorrosion potential of CSBs have been reported. Present review article describes the collections on CSBs as aqueous phase corrosion inhibitors. Nature of CSBs adsorption through chelation (coordination) has also been discussed based on literature outcomes.
Collapse
Affiliation(s)
- Chandrabhan Verma
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - M A Quraishi
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Akram Alfantazi
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 2533, Abu Dhabi, United Arab Emirates
| | - Kyong Yop Rhee
- Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University, Yongin 446-701, Republic of Korea.
| |
Collapse
|
20
|
Leudjo Taka A, Fosso-Kankeu E, Naidoo EB, Yangkou Mbianda X. Recent development in antimicrobial activity of biopolymer-inorganic nanoparticle composites with water disinfection potential: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26252-26268. [PMID: 33788086 DOI: 10.1007/s11356-021-13373-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Nowadays, water-borne diseases including hepatitis remain the critical health challenge due to the inadequate supply of potable and safe water for human activities. The major cause is that the pathogenic microorganisms causing diseases have developed resistance against common techniques used by sewage water treatment plants for water disinfection. Therefore, there is a need to improve these conventional water treatment techniques by taking into consideration the application of nanotechnology for wastewater purification. The main aim of this paper is to provide a review on the synthesis of biopolymer-inorganic nanoparticle composites (BINCs), their used as antimicrobial compounds for water disinfection, as well as to elaborate on their antimicrobial mechanism of action. The microbial properties affecting the activity of antimicrobial compounds are also evaluated.
Collapse
Affiliation(s)
- Anny Leudjo Taka
- Institute of Chemical & Biotechnology, Vaal University of Technology, Southern Gauteng Science and Technology Park, Sebokeng Campus, Vanderbijlpark, 1983, South Africa
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark Campus, Vanderbijlpark, South Africa
| | - Elvis Fosso-Kankeu
- School of Chemical and Minerals Engineering, Faculty of Engineering, North West University, Potchefstroom Campus, Potchefstroom, South Africa
| | - Eliazer Bobby Naidoo
- Institute of Chemical & Biotechnology, Vaal University of Technology, Southern Gauteng Science and Technology Park, Sebokeng Campus, Vanderbijlpark, 1983, South Africa.
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark Campus, Vanderbijlpark, South Africa.
| | - Xavier Yangkou Mbianda
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, 2028, South Africa.
| |
Collapse
|
21
|
Pachaiappan R, Rajendran S, Show PL, Manavalan K, Naushad M. Metal/metal oxide nanocomposites for bactericidal effect: A review. CHEMOSPHERE 2021; 272:128607. [PMID: 33097236 DOI: 10.1016/j.chemosphere.2020.128607] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/13/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Many microbial species causing infectious disease all over the world became a social burden and creating threat among community. These microbes possess long lifetime, enhancing mortality and morbidity rate in affected organisms. In this condition, the treatment was ineffective and more chances of spreading of infection into other organisms. Hence, it is necessary to initiate infection control efforts and prevention activities against multidrug resistant microbes, to reduce the death rate of people. Seriously concerning towards this problem progress was shown in developing significant drugs with least side effects. Emergence of nanoparticles and its novelty showed effective role in targeting and destructing microbes well. Further, many research works have shown nanocomposites developed from nanoparticles coupled with other nanoparticles, polymers, carbon material acted as an exotic substance against microbes causing severe loss. However, metal and metal oxide nanocomposites have gained interest due to its small size and enhancing the surface contact with bacteria, producing damage to it. The bactericidal mechanism of metal and metal oxide nanocomposites involve in the production of reactive oxygen species which includes superoxide radical anions, hydrogen peroxide anions and hydrogen peroxide which interact with the cell wall of bacteria causing damage to the cell membrane in turn inhibiting the further growth of cell with leakage of internal cellular components, leading to death of bacteria. This review provides the detailed view on antibacterial activity of metal and metal oxide nanocomposite which possessed novelty due to its physiochemical changes.
Collapse
Affiliation(s)
- Rekha Pachaiappan
- Department of Sustainable Energy Management, Stella Maris College, Chennai, 600086, Tamilnadu, India.
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad deIngeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia.
| | - Kovendhan Manavalan
- Department of Nuclear Physics, University of Madras, Gunidy Campus, Chennai, 600 025, Tamilnadu, India
| | - Mu Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Yonsei Frontier Lab, Yonsei University, Seoul, Korea
| |
Collapse
|
22
|
Cross-Linked Chitosan/Multi-Walled Carbon Nanotubes Composite as Ecofriendly Biocatalyst for Synthesis of Some Novel Benzil Bis-Thiazoles. Polymers (Basel) 2021; 13:polym13111728. [PMID: 34070526 PMCID: PMC8198799 DOI: 10.3390/polym13111728] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/22/2021] [Accepted: 05/22/2021] [Indexed: 11/17/2022] Open
Abstract
Aminohydrazide cross-linked chitosan (CLCS) and its MWCNTs (CLCS/MWCNTs) were formulated and utilized as a potent ecofriendly basic heterogeneous biocatalyst under ultrasonic irradiation for synthesis of two novel series of benzil bis-aryldiazenylthiazoles and benzil bis-arylhydrazonothiazolones from the reaction of benzil bis-thiosemicarbazone with 2-oxo-N′-arylpropanehydrazonoyl chlorides and ethyl 2-chloro-2-(2-phenylhydrazono) acetates, respectively. The chemical structures of the newly synthesized derivatives were elucidated by spectral data and alternative methods, where available. Additionally, their yield % was estimated using a traditional catalyst as TEA and green recyclable catalysts as CLCS and CLCS/MWCNTs composite in a comparative study. We observed that, under the same reaction conditions, the yield % of the desired products increased by changing TEA to CLCS then to CLCS/MWCNT from 72–78% to 79–83% to 84–87%, respectively. The thermal stability of the investigated samples could be arranged as CLCS/MWCNTs composite > CLCS > chitosan, where the weight losses of chitosan, CLCS and CLCS/MWCNTs composite at 500 °C were 65.46%, 57.95% and 53.29%, respectively.
Collapse
|
23
|
Yang Y, Aqeel Ashraf M, Fakhri A, Kumar Gupta V, Zhang D. Facile synthesis of gold-silver/copper sulfide nanoparticles for the selective/sensitive detection of chromium, photochemical and bactericidal application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119324. [PMID: 33385971 DOI: 10.1016/j.saa.2020.119324] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
In this project, bimetallic Au-Agnanoparticles/CuS nanoparticles were prepared via simple hydrothermal methods, which were used as highly efficient material for Cr (III) detection, photocatalytic, and biological process. The Au-Ag/CuS nanoparticles was studied via UV-visible spectroscopy, field-emission scanning electron microscopy, Dynamic light scattering, and X-ray diffraction. The zeta potential and effective size of Au-Ag/CuS nanoparticles was -32.1 mV and 25 nm respectively. The response time of Cr (III) ions interaction was 2 min. The lowest detection of Cr (III) by Au-Ag/CuS nanoparticles was 0.5 nM. The Au-Ag/CuS nano catalyst was applied to decomposition of drug under visible lamp irradiation. The photo degradation response of drug was 100.0% in 30 min irradiation. The particles exhibited excellent antibacterial activities.
Collapse
Affiliation(s)
- Yafeng Yang
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Muhammad Aqeel Ashraf
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Ali Fakhri
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Chemistry, Nano Smart Science Institute (NSSI), Tehran, Iran.
| | - Vinod Kumar Gupta
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dangquan Zhang
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
24
|
Gürbüz MU, Koca M, Elmacı G, Ertürk AS. In situ green synthesis of MnFe
2
O
4
@EP@Ag nanocomposites using
Epilobium parviflorum
green tea extract: An efficient magnetically recyclable catalyst for the reduction of hazardous organic dyes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mustafa Ulvi Gürbüz
- Department of Chemistry, Faculty of Arts and Sciences Yıldız Technical University Istanbul 34220 Turkey
| | - Murat Koca
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Adiyaman University Adiyaman 02040 Turkey
| | - Gökhan Elmacı
- Department of Chemistry, School of Technical Sciences Adıyaman University Adıyaman 02040 Turkey
| | - Ali Serol Ertürk
- Department of Analytical Chemistry, Faculty of Pharmacy Adıyaman University Adıyaman 02040 Turkey
| |
Collapse
|
25
|
Chitosan nanocomposites for water treatment by fixed-bed continuous flow column adsorption: A review. Carbohydr Polym 2021; 255:117398. [PMID: 33436226 DOI: 10.1016/j.carbpol.2020.117398] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 12/11/2022]
Abstract
Nowadays, access to clean water sources worldwide and particularly in Southern Africa is inadequate because of its pollution by organic, inorganic, and microorganism contaminants. A range of conventional water treatment techniques has been used to resolve the problem. However, these methods are currently facing the confronts posed by new emerging contaminants. Therefore, there is a need to develop simple and lower cost-effective water purification methods that use recyclable bio-based natural polymers such as chitosan modified with nanomaterials. These novel functional chitosan-based nanomaterials have been proven to effectively eliminate the different environmental pollutants from wastewater to acceptable levels. This paper aims to present a review of the recent development of functional chitosan modified with carbon nanostructured and inorganic nanoparticles. Their application as biosorbents in fixed-bed continuous flow column adsorption for water purification is also discussed.
Collapse
|
26
|
Phytogenic Synthesis of Pd-Ag/rGO Nanostructures Using Stevia Leaf Extract for Photocatalytic H 2 Production and Antibacterial Studies. Biomolecules 2021; 11:biom11020190. [PMID: 33572968 PMCID: PMC7911859 DOI: 10.3390/biom11020190] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 01/15/2023] Open
Abstract
Continuously increasing energy demand and growing concern about energy resources has attracted much research in the field of clean and sustainable energy sources. In this context, zero-emission fuels are required for energy production to reduce the usage of fossil fuel resources. Here, we present the synthesis of Pd-Ag-decorated reduced graphene oxide (rGO) nanostructures using a green chemical approach with stevia extract for hydrogen production and antibacterial studies under light irradiation. Moreover, bimetallic nanostructures are potentially lime lighted due to their synergetic effect in both scientific and technical aspects. Structural characteristics such as crystal structure and morphological features of the synthesized nanostructures were analyzed using X-ray diffraction and transmission electron microscopy. Analysis of elemental composition and oxidation states was carried out by X-ray photoelectron spectroscopy. Optical characteristics of the biosynthesized nanostructures were obtained by UV-Vis absorption spectroscopy, and Fourier transform infrared spectroscopy was used to investigate possible functional groups that act as reducing and capping agents. The antimicrobial activity of the biosynthesized Pd-Ag-decorated rGO nanostructures was excellent, inactivating 96% of Escherichia coli cells during experiments over 150 min under visible light irradiation. Hence, these biosynthesized Pd-Ag-decorated rGO nanostructures can be utilized for alternative nanomaterial-based drug development in the future.
Collapse
|
27
|
Sun Y, Kang Y, Zhong W, Liu Y, Dai Y. A simple phosphorylation modification of hydrothermally cross-linked chitosan for selective and efficient removal of U(VI). J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121731] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Sadjadi S, Koohestani F, Heravi MM. Fabrication of a metal free catalyst for chemical reactions through decoration of chitosan with ionic liquid terminated dendritic moiety. Sci Rep 2020; 10:19666. [PMID: 33184399 PMCID: PMC7661698 DOI: 10.1038/s41598-020-76795-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/03/2020] [Indexed: 11/09/2022] Open
Abstract
In attempt to develop a biocompatible metal-free catalyst, a dendritic moiety was grown on chitosan through successive reactions with 2,4,6-trichloro-1,3,5-triazine and ethylenediamine. Subsequently, the terminal functional groups of the dendron were decorated with 1-methylimidazolium chloride. The catalyst was characterized with SEM, EDS, TGA, FTIR, XRD and mapping analysis. Then, the catalytic activity of the resultant composite was scrutinized for catalyzing Knoevenagel condensation and synthesis of xanthene derivatives in aqueous media under mild reaction condition. The results confirmed high activity of the catalyst, superior to ionic liquid free counterpart and bare chitosan. This observation was ascribed to the instinct catalytic activity of ionic liquid. Moreover, using control catalysts, it was confirmed that the presence of the dendritic moiety that could increase the content of ionic liquid on the backbone of the catalyst enhanced the catalytic activity.
Collapse
Affiliation(s)
- Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, PO Box 14975-112, Tehran, Iran.
| | - Fatemeh Koohestani
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, PO Box 14975-112, Tehran, Iran
| | - Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University, Vanak, PO Box 1993891176, Tehran, Iran.
| |
Collapse
|
29
|
Huang M, Zhang R, Yang Z, Chen J, Deng J, Fakhri A, Gupta VK. Synthesis of Co3S4-SnO2/polyvinylpyrrolidone-cellulose heterojunction as highly performance catalyst for photocatalytic and antimicrobial properties under ultra-violet irradiation. Int J Biol Macromol 2020; 162:220-228. [DOI: 10.1016/j.ijbiomac.2020.06.092] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022]
|
30
|
Zhang Y, Liu Y, Guo Z, Li F, Zhang H, Bai F, Wang L. Chitosan-based bifunctional composite aerogel combining absorption and phototherapy for bacteria elimination. Carbohydr Polym 2020; 247:116739. [DOI: 10.1016/j.carbpol.2020.116739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 01/07/2023]
|
31
|
Zhong S. Incorporation of Palladium Catalyst Inside Cross-Linked Chitosan Hybrid Nanofibers for the Sonogashira Reaction. KINETICS AND CATALYSIS 2020. [DOI: 10.1134/s0023158420030210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Baran T. Pd NPs@Fe3O4/chitosan/pumice hybrid beads: A highly active, magnetically retrievable, and reusable nanocatalyst for cyanation of aryl halides. Carbohydr Polym 2020; 237:116105. [DOI: 10.1016/j.carbpol.2020.116105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 11/24/2022]
|
33
|
Pd immobilized on hybrid of magnetic graphene quantum dots and cyclodextrin decorated chitosan: An efficient hydrogenation catalyst. Int J Biol Macromol 2020; 150:441-448. [DOI: 10.1016/j.ijbiomac.2020.02.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/22/2022]
|
34
|
Zubair M, Sirajuddin M, Ullah K, Haider A, Perveen F, Hussain I, Ali S, Tahir MN. Synthesis, structural peculiarities, theoretical study and biological evaluation of newly designed O-Vanillin based azomethines. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Rosmarinus officinalis directed palladium nanoparticle synthesis: Investigation of potential anti-bacterial, anti-fungal and Mizoroki-Heck catalytic activities. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.01.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Sadjadi S, Koohestani F. Functionalized chitosan polymerized with cyclodextrin decorated ionic liquid: Metal free and biocompatible catalyst for chemical transformations. Int J Biol Macromol 2020; 147:399-407. [DOI: 10.1016/j.ijbiomac.2020.01.089] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022]
|
37
|
Ge L, Zhang M, Wang R, Li N, Zhang L, Liu S, Jiao T. Fabrication of CS/GA/RGO/Pd composite hydrogels for highly efficient catalytic reduction of organic pollutants. RSC Adv 2020; 10:15091-15097. [PMID: 35495471 PMCID: PMC9052300 DOI: 10.1039/d0ra01884h] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022] Open
Abstract
In this study, natural polymer material chitosan (CS) and graphene oxide (GO) with large specific surface area were used to prepare a new CS/RGO-based composite hydrogel by using glutaraldehyde (GA) as cross-linking agent. In addition, a CS/GA/RGO/Pd composite hydrogel was prepared by loading palladium nanoparticles (Pd NPs). The morphologies and microstructures of the prepared hydrogels were characterized by SEM, TEM, XRD, TG, and BET. The catalytic performance of the CS/GA/RGO/Pd composite hydrogel was analyzed, and the experimental results showed that the CS/GA/RGO/Pd composite hydrogel had good catalytic performance for degradation of p-nitrophenol (4-NP) and o-nitroaniline (2-NA). Therefore, this study has potential application prospect in wastewater treatment and provides new information for composite hydrogel design. New functional CS/GA/RGO/Pd composite hydrogels are prepared via a self-assembly process, demonstrating potential applications in catalysis as well as composite materials.![]()
Collapse
Affiliation(s)
- Lei Ge
- Pollution Prevention Biotechnology Laboratory of Hebei Province
- School of Environmental Science and Engineering
- Hebei University of Science and Technology
- Shijiazhuang 050018
- P. R. China
| | - Meng Zhang
- State Key Laboratory of Metastable Materials Science and Technology
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Ran Wang
- State Key Laboratory of Metastable Materials Science and Technology
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Na Li
- State Key Laboratory of Metastable Materials Science and Technology
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Lexin Zhang
- State Key Laboratory of Metastable Materials Science and Technology
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Shufeng Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| |
Collapse
|
38
|
Dhanavel S, Praveena P, Narayanan V, Stephen A. Chitosan/reduced graphene oxide/Pd nanocomposites for co-delivery of 5-fluorouracil and curcumin towards HT-29 colon cancer cells. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-03039-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Wang Y, Chen J, Han Q, Luo Q, Zhang H, Wang Y. Construction of doxorubicin-conjugated lentinan nanoparticles for enhancing the cytotoxocity effects against breast cancer cells. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
|
41
|
Santhosh S, Manivannan N, Ragavendran C, Mathivanan N, Natarajan D, Hemalatha N, Dhandapani R. Growth optimization, free radical scavenging and antibacterial potential of
Chlorella
sp. SRD3 extracts against clinical isolates. J Appl Microbiol 2019; 127:481-494. [DOI: 10.1111/jam.14336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/26/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022]
Affiliation(s)
- S. Santhosh
- Department of Microbiology, School of Biosciences Periyar University Salem Tamil Nadu India
| | - N. Manivannan
- Centre for Advanced Studies in Botany University of Madras, Guindy Campus Chennai Tamil Nadu India
| | - C. Ragavendran
- Department of Biotechnology, School of Biosciences Periyar University Salem Tamil Nadu India
| | - N. Mathivanan
- Centre for Advanced Studies in Botany University of Madras, Guindy Campus Chennai Tamil Nadu India
| | - D. Natarajan
- Department of Biotechnology, School of Biosciences Periyar University Salem Tamil Nadu India
| | - N. Hemalatha
- Department of Microbiology, School of Biosciences Periyar University Salem Tamil Nadu India
| | - R. Dhandapani
- Department of Microbiology, School of Biosciences Periyar University Salem Tamil Nadu India
| |
Collapse
|
42
|
Chitosan Nanocomposite Coatings for Food, Paints, and Water Treatment Applications. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9122409] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Worldwide, millions of tons of crustaceans are produced every year and consumed as protein-rich seafood. However, the shells of the crustaceans and other non-edible parts constituting about half of the body mass are usually discarded as waste. These discarded crustacean shells are a prominent source of polysaccharide (chitin) and protein. Chitosan is a de-acetylated form of chitin obtained from the crustacean waste that has attracted attention for applications in food, biomedical, and paint industries due to its characteristic properties, like solubility in weak acids, film-forming ability, pH-sensitivity, biodegradability, and biocompatibility. We present an overview of the application of chitosan in composite coatings for applications in food, paint, and water treatment. In the context of food industries, the main focus is on fabrication and application of chitosan-based composite films and coatings for prolonging the post-harvest life of fruits and vegetables, whereas anti-corrosion and self-healing properties are the main properties considered for antifouling applications in paints in this review.
Collapse
|
43
|
|
44
|
Lajevardi A, Tavakkoli Yaraki M, Masjedi A, Nouri A, Hossaini Sadr M. Green synthesis of MOF@Ag nanocomposites for catalytic reduction of methylene blue. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials: current state and perspectives. Appl Microbiol Biotechnol 2019; 103:1989-2006. [PMID: 30637497 DOI: 10.1007/s00253-018-09602-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 12/18/2022]
Abstract
The bacterial infections have always a serious problem to public health. Scientists are developing new antibacterial materials to overcome this problem. Polysaccharides are promising biopolymers due to their diverse biological functions, low toxicity, and high biodegradability. Chitin and chitosan have antibacterial properties due to their cationic nature, while cellulose/bacterial cellulose does not possess any antibacterial activity. Moreover, the insolubility of chitin in common solvents, the poor solubility of chitosan in water, and the low mechanical properties of chitosan have restricted their biomedical applications. In order to solve these problems, chemical modifications such as quaternization, carboxymethylation, cationization, or surface modification of these polymers with different antimicrobial agents, including metal and metal oxide nanoparticles, are carried out to obtain new materials with improved physiochemical and biological properties. This mini review describes the recent progress in such derivatives and composites with potential antibacterial applications.
Collapse
|
46
|
Sivaranjani T, Revathy TA, Dhanavel S, Dhanapal K, Narayanan V, Stephen A. Effect of Dendritic Cu-In Alloy on Cr(VI) Reduction Synthesized via Pulsed Electrodeposition. ChemistrySelect 2018. [DOI: 10.1002/slct.201802651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Saminathan Dhanavel
- Department of Nuclear Physics; University of Madras, Guindy Campus, Chennai; 600 025 Tamilnadu India
| | - Kumaresan Dhanapal
- Department of Nuclear Physics; University of Madras, Guindy Campus, Chennai; 600 025 Tamilnadu India
| | - Vengidusamy Narayanan
- Department of Inorganic Chemistry; University of Madras, Guindy Campus, Chennai; 600 025 Tamilnadu India
| | - Arumainathan Stephen
- Department of Nuclear Physics; University of Madras, Guindy Campus, Chennai; 600 025 Tamilnadu India
| |
Collapse
|
47
|
Preparation of metal-polymer nanocomposites by chemical reduction of metal ions: functions of polymer matrices. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1646-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
48
|
Sadjadi S, Heravi MM, Kazemi SS. Ionic liquid decorated chitosan hybridized with clay: A novel support for immobilizing Pd nanoparticles. Carbohydr Polym 2018; 200:183-190. [DOI: 10.1016/j.carbpol.2018.07.093] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023]
|
49
|
Pd–Co alloy as an efficient recyclable catalyst for the reduction of hazardous 4-nitrophenol. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3645-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Zohreh N, Hosseini SH, Tavakolizadeh M, Busuioc C, Negrea R. Palladium pincer complex incorporation onto the Fe3O4-entrapped cross-linked multilayered polymer as a high loaded nanocatalyst for oxidation. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|