1
|
Shrivastav G, Borkotoky S, Dey D, Singh B, Malhotra N, Azad K, Jayaram B, Agarwal M, Banerjee M. Structure and energetics guide dynamic behaviour in a T = 3 icosahedral virus capsid. Biophys Chem 2024; 305:107152. [PMID: 38113782 DOI: 10.1016/j.bpc.2023.107152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Although virus capsids appear as rigid, symmetric particles in experimentally determined structures; biochemical studies suggest a significant degree of structural flexibility in the particles. We carried out all-atom simulations on the icosahedral capsid of an insect virus, Flock House Virus, which show intriguing differences in the degree of flexibility of quasi-equivalent capsid subunits consistent with previously described biological behaviour. The flexibility of all the β and γ subunits of the protein and RNA fragments is analysed and compared. Both γA subunit and RNA fragment exhibit higher flexibility than the γB and γC subunits. The capsid shell is permeable to the bidirectional movement of water molecules, and the movement is heavily influenced by the geometry of the capsid shell along specific symmetry axes. In comparison to the symmetry axes along I5 and I3, the I2 axis exhibits a slightly higher water content. This enriched water environment along I2 could play a pivotal role in facilitating the structural transitions necessary for RNA release, shedding some light on the intricate and dynamic processes underlying the viral life cycle. Our study suggests that the physical characterization of whole virus capsids is the key to identifying biologically relevant transition states in the virus life cycle and understanding the basis of virus infectivity.
Collapse
Affiliation(s)
- Gourav Shrivastav
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Subhomoi Borkotoky
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Debajit Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Bhumika Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nidhi Malhotra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kimi Azad
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - B Jayaram
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Manish Agarwal
- Computer Services Centre, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
2
|
Unravelling viral dynamics through molecular dynamics simulations - A brief overview. Biophys Chem 2022; 291:106908. [DOI: 10.1016/j.bpc.2022.106908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022]
|
3
|
Tarasova E, Okimoto N, Feng S, Nerukh D, Khayat R, Taiji M. Constant pH molecular dynamics of porcine circovirus 2 capsid protein reveals a mechanism for capsid assembly. Phys Chem Chem Phys 2021; 23:24617-24626. [PMID: 34726674 PMCID: PMC8705882 DOI: 10.1039/d1cp02874j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spatiotemporal regulation of viral capsid assembly ensures the selection of the viral genome for encapsidation. The porcine circovirus 2 is the smallest autonomously replicating pathogenic virus, yet how PCV2 capsid assembly is regulated to occur within the nucleus remains unknown. We report that pure PCV2 capsid proteins, in the absence of nucleic acids, require acidic conditions to assemble into empty capsids in vitro. By employing constant pH replica exchange molecular dynamics, we unveil the atomistic mechanism of pH-dependency for capsid assembly. The results show that an appropriate protonation configuration for a cluster of acidic amino acids is necessary to appropriately position the GH-loop for driving the capsid assembly. We demonstrate that assembly is prohibited at neutral pH because deprotonation of these residues results in their electrostatic repulsion, shifting the GH-loop to a position incompatible with capsid assembly. We propose that encapsulation of nucleic acids overcomes this repulsion to suitably position the GH-loop. Our findings provide the first atomic resolution mechanism of capsid assembly regulation. These findings are useful for the development of therapeutics that inhibit PCV2 self-assembly.
Collapse
Affiliation(s)
- Elvira Tarasova
- Laboratory for Computational Molecular Design, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA.
| | - Noriaki Okimoto
- Laboratory for Computational Molecular Design, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
- Drug Discovery Molecular Simulation Platform Unit, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Shanshan Feng
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA.
| | - Dmitry Nerukh
- Department of Mathematics, Aston University, Birmingham, UK
| | - Reza Khayat
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA.
| | - Makoto Taiji
- Laboratory for Computational Molecular Design, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
- Drug Discovery Molecular Simulation Platform Unit, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| |
Collapse
|
4
|
Fujimoto K, Yamaguchi Y, Urano R, Shinoda W, Ishikawa T, Omagari K, Tanaka Y, Nakagawa A, Okazaki S. All-atom molecular dynamics study of hepatitis B virus containing pregenome RNA in solution. J Chem Phys 2021; 155:145101. [PMID: 34654297 DOI: 10.1063/5.0065765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Immature hepatitis B virus (HBV) captures nucleotides in its capsid for reverse transcription. The nucleotides and nucleotide analog drugs, which are triphosphorylated and negatively charged in the cell, approach the capsid via diffusion and are absorbed into it. In this study, we performed a long-time molecular dynamics calculation of the entire HBV capsid containing pregenome RNA to investigate the interactions between the capsid and negatively charged substances. Electric field analysis demonstrated that negatively charged substances can approach the HBV capsid by thermal motion, avoiding spikes. The substances then migrate all over the floor of the HBV capsid. Finally, they find pores through which they can pass through the HBV capsid shell. Free energy profiles were calculated along these pores for small ions to understand their permeability through the pores. Anions (Cl-) showed higher free energy barriers than cations (Na+ and K+) through all pores, and the permeation rate of Cl- was eight times slower than that of K+ or Na+. Furthermore, the ions were more stable in the capsid than in the bulk water. Thus, the HBV capsid exerts ion selectivity for uptake and provides an environment for ions, such as nucleotides and nucleotide analog drugs, to be stabilized within the capsid.
Collapse
Affiliation(s)
- Kazushi Fujimoto
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| | - Youhei Yamaguchi
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| | - Ryo Urano
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| | - Tetsuya Ishikawa
- Department of Integrated Health Sciences, Nagoya University, Nagoya, Japan
| | | | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University, Nagoya, Japan
| | | | - Susumu Okazaki
- Department of Advanced Materials Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Ye. M. Makogonenko RYM, Hrabovskyi OO, Bereznytskyj GK, Pyrogova LV, Gogolinskaya GK, Makogonenko YM. Chlorine-binding structures: role and organization in different proteins. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The review focuses on chloride-binding structures in the proteins of bacteria, plants, viruses and animals. The structure and amino acid composition of the chloride-binding site and its role in the functioning of structural, regulatory, transport, receptor, channel proteins, transcription factors and enzymes are considered. Data on the important role of chloride-binding structures and chloride anions in the polymerization of fibrin are presented.
Collapse
|
6
|
|
7
|
Farafonov VS, Nerukh D. MS2 bacteriophage capsid studied using all-atom molecular dynamics. Interface Focus 2019; 9:20180081. [PMID: 31065345 DOI: 10.1098/rsfs.2018.0081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2019] [Indexed: 11/12/2022] Open
Abstract
The all-atom model of an MS2 bacteriophage particle without its genome (the capsid) was built using high-resolution cryo-electron microscopy (EM) measurements for initial conformation. The structural characteristics of the capsid and the dynamics of the surrounding solution were examined using molecular dynamics simulation. The model demonstrates the overall preservation of the cryo-EM structure of the capsid at physiological conditions (room temperature and ions composition). The formation of a dense anion layer near the inner surface and a diffuse cation layer near the outer surface of the capsid was detected. The flow of water molecules and ions across the capsid through its pores were quantified, which was considerable for water and substantial for ions.
Collapse
Affiliation(s)
- Vladimir S Farafonov
- Department of Physical Chemistry, V. N. Karazin Kharkiv National University, 61022 Kharkiv, Ukraine
| | - Dmitry Nerukh
- Department of Mathematics, Systems Analytics Research Institute, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
8
|
Almansour I, Alhagri M, Alfares R, Alshehri M, Bakhashwain R, Maarouf A. IRAM: virus capsid database and analysis resource. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5531860. [PMID: 31318422 PMCID: PMC6637973 DOI: 10.1093/database/baz079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/12/2019] [Accepted: 05/26/2019] [Indexed: 12/11/2022]
Abstract
IRAM is an online, open access, comprehensive database and analysis resource for virus capsids. The database includes over 200 000 hierarchically organized capsid-associated nucleotide and amino acid sequences, as well as 193 capsids structures of high resolution (1-5 Å). Each capsid's structure includes a data file for capsid domain (PDB), capsid symmetry unit (PDB) and capsid structure information (PSF); these contain capsid structural information that is necessary to run further computational studies. Physicochemical properties analysis is implemented for calculating capsid total charge at given radii and for calculating charge distributions. This resource includes BLASTn and BLASTp tools, which can be applied to compare nucleotide and amino acid sequences. The diverse functionality of IRAM is valuable to researchers because it integrates different aspects of virus capsids via a user-friendly interface. Such data are critical for studying capsid evolution and patterns of conservation. The IRAM database can also provide initial necessary information for the design of synthetic capsids for various biotechnological applications.
Collapse
Affiliation(s)
- Iman Almansour
- Epidemic Diseases Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O.Box 1982, Dammam 31441 Saudi Arabia
| | - Mazen Alhagri
- Scientific and High Performance Computing Center, Deanship of Information and Communication Technology, Imam Abdulrahman Bin Faisal University, P.O.Box 1982, Dammam 31441 Saudi Arabia
| | - Rahaf Alfares
- Epidemic Diseases Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O.Box 1982, Dammam 31441 Saudi Arabia
| | - Manal Alshehri
- Epidemic Diseases Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O.Box 1982, Dammam 31441 Saudi Arabia
| | - Razan Bakhashwain
- Department of Physics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O.Box 1982, Dammam 31441 Saudi Arabia
| | - Ahmed Maarouf
- Department of Physics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O.Box 1982, Dammam 31441 Saudi Arabia
| |
Collapse
|