1
|
Farias TRB, Sanches NB, Petrus RR. The amazing native Brazilian fruits. Crit Rev Food Sci Nutr 2024; 64:9382-9399. [PMID: 37195442 DOI: 10.1080/10408398.2023.2212388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A number of native Brazilian plant species are under exploited by the scientific community, despite the country's precious biodiversity. The vast majority of native Brazilian fruits (NBF) is source of compounds that provide many health benefits and can potentially be used to prevent diseases and formulate high-added value products. This review covers the scientific research over the last decade (2012-2022) on eight NBF, and focuses on information about the production and market panorama, physical description, physicochemical characterization, nutritional composition, their functional value of bioactive compounds and health benefits, as well as the potential for utilizations for each. The studies herein compiled reveal the outstanding nutritional value of these NBF. They are sources of vitamins, fibers, minerals and bioactive compounds that exhibit antioxidant activity, and they contain phytochemicals with anti-inflammatory action, anti-obesity and other functions that bring many health benefits to consumers. NBF can be also used as raw material for multiple products such as nectars, juices, jams, frozen pulps, liquor, among others. The dissemination of knowledge about NBF has fundamental implications worldwide.
Collapse
Affiliation(s)
| | | | - Rodrigo Rodrigues Petrus
- Universidade de Sao Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, SP, Brazil
| |
Collapse
|
2
|
Silva GC, Rodrigues RAF, Bottoli CBG. In vitro diffusion of plant phenolics through the skin: A review update. Int J Cosmet Sci 2024; 46:239-261. [PMID: 38083814 DOI: 10.1111/ics.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 04/04/2024]
Abstract
OBJECTIVE Excessive skin exposure to deleterious environmental variables results in inflammation as well as molecular and cellular impairments that compromise its functionality, aesthetic qualities, and overall well-being. The implementation of topical administration of antioxidants and other compounds as a method for preventing or reversing damage is a rational approach. Numerous phenolic compounds derived from plants have demonstrated capabilities such as scavenging free radicals and promoting tissue healing. However, the primary obstacle lies in effectively delivering these compounds to the specific place on the skin, and accurately forecasting their diffusion through the skin can assist in determining the most effective tactics. Hence, this article provides a comprehensive analysis of recent literature pertaining to the in vitro skin diffusion characteristics of plant phenolics. The aim is to gain a deeper understanding of their behaviour when present in various forms such as solutions, suspensions, and formulations. METHOD The data on plant extracts and isolated plant phenolic compounds in vitro skin diffusion assays published over the last six years were compiled and discussed. RESULTS Even though the gold standard Franz diffusion cell is the most commonly used in the assessment of in vitro plant phenolic skin diffusion profiles, a plethora of skin models and assay conditions are reported for a variety of compounds and extracts in different vehicles. CONCLUSION The presence of numerous models and vehicles poses a challenge in creating correlations among the existing data on plant phenolic compounds. However, it is possible to draw some general conclusions regarding molecular, vehicle, and skin characteristics based on the gathered information.
Collapse
Affiliation(s)
- Gisláine C Silva
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Campinas, Brazil
| | - Rodney A F Rodrigues
- Universidade Estadual de Campinas (UNICAMP), Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Paulínia, Brazil
| | - Carla B G Bottoli
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Campinas, Brazil
| |
Collapse
|
3
|
Andrade JFM, Cunha-Filho M, Gelfuso GM, Gratieri T. Iontophoresis for the cutaneous delivery of nanoentraped drugs. Expert Opin Drug Deliv 2023:1-14. [PMID: 37119173 DOI: 10.1080/17425247.2023.2209719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
INTRODUCTION The skin is an attractive route for drug delivery. However, the stratum corneum is a critical limiting barrier for drug permeation. Nanoentrapment is a way to enhance cutaneous drug delivery, by diverse mechanisms, with a notable trend of nanoparticles accumulating into the hair follicles when topically applied. Iontophoresis is yet another way of increasing drug transport by applying a mild electrical field that preferentially passes through the hair follicles, for being the pathway of lower resistance. So, iontophoresis application to nanocarriers could further increase actives accumulation into the hair follicles, impacting cutaneous drug delivery. AREAS COVERED In this review, the authors aimed to discuss the main factors impacting iontophoretic skin transport when combining nanocarriers with iontophoresis. We further provide an overview of the conditions in which this combination has been studied, the characteristics of nanosystems employed, and hypothesize why the association has succeeded or failed to enhance drug permeation. EXPERT OPINION Nanocarriers and iontophoresis association can be promising to enhance cutaneous drug delivery. For better results, the electroosmotic contribution to the iontophoretic transport, mainly of negatively charged nanocarriers, charge density, formulation pH, and skin models should be considered. Moreover, the transfollicular pathway should be considered, especially when designing the nanocarriers.
Collapse
Affiliation(s)
- Jayanaraian F M Andrade
- School of Health Sciences, Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil
| | - Marcilio Cunha-Filho
- School of Health Sciences, Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- School of Health Sciences, Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil
| | - Tais Gratieri
- School of Health Sciences, Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil
| |
Collapse
|
4
|
Quintão WSC, Silva-Carvalho AE, Hilgert LA, Gratieri T, Cunha-Filho M, Saldanha-Araújo F, Gelfuso GM. Anti-inflammatory effect evaluation of naringenin and its incorporation into a chitosan-based film for transdermal delivery. Int J Pharm 2022; 627:122231. [PMID: 36167188 DOI: 10.1016/j.ijpharm.2022.122231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/03/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022]
Abstract
Naringenin is a bioflavonoid mainly found in citrus fruits. It presents many pharmacological benefits, including a remarkable anti-inflammatory activity, but its oral bioavailability is poor. To overcome this drawback, this work proposes a transdermal administration of such bioflavonoid, considering its use in the chronic treatment of inflammatory conditions. For this, it aims to develop a chitosan-based film that guarantees a consistent transdermal delivery of the drug. First, naringenin's in vitro anti-inflammatory effect on T-cell proliferation was evaluated, followed by research on the modulation of gene expression for inflammatory factors in peripheral blood mononuclear cells. Chitosan films were then prepared and characterized. Afterward, naringenin release profile from a selected film was determined as well as the drug permeation across porcine skin provided by the film. Naringenin induced the expression of the anti-inflammatory factors IL-10 and TGF-β1 while inhibiting the expression of the pro-inflammatory cytokine IL-1β and limiting T-cell proliferation. The chitosan film was successfully developed, and the drug was progressively released to the physiological media following both first order and Korsmeyer-Peppas kinetics. When topically applied, the chitosan film guaranteed a constant and continuous diffusion of naringenin across the skin over 72 h. Indeed, the permeation flux of naringenin was 0.30 ± 0.01 µg/cm2/h, which means a concentration in the receptor solution 14-fold (p < 0.05) higher than that provided by the drug solution. Thus, the chitosan film represents a promising transdermal alternative for the long-term treatment of inflammatory conditions using naringenin.
Collapse
Affiliation(s)
- Wanessa S C Quintão
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70.910-900 Brasília, DF, Brazil
| | - Amandda E Silva-Carvalho
- Laboratório de Hematologia e Células-Tronco, School of Health Sciences, University of Brasília, 70910-900 Brasília, DF, Brazil
| | - Leandro A Hilgert
- Department of Dentistry, School of Health Sciences, University of Brasilia, 70.910-900 Brasília, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70.910-900 Brasília, DF, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70.910-900 Brasília, DF, Brazil
| | - Felipe Saldanha-Araújo
- Laboratório de Hematologia e Células-Tronco, School of Health Sciences, University of Brasília, 70910-900 Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70.910-900 Brasília, DF, Brazil.
| |
Collapse
|
5
|
Pouteria macrophylla Fruit Extract Microemulsion for Cutaneous Depigmentation: Evaluation Using a 3D Pigmented Skin Model. Molecules 2022; 27:molecules27185982. [PMID: 36144732 PMCID: PMC9504890 DOI: 10.3390/molecules27185982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Here, we verify the depigmenting action of Pouteria macrophylla fruit extract (EXT), incorporate it into a safe topical microemulsion and assess its effectiveness in a 3D pigmented skin model. Melanocytes-B16F10- were used to assess the EXT effects on cell viability, melanin synthesis, and melanin synthesis-related gene transcription factor expression, which demonstrated a 32% and 50% reduction of intra and extracellular melanin content, respectively. The developed microemulsion was composed of Cremophor EL®/Span 80 4:1 (w/w), ethyl oleate, and pH 4.5 HEPES buffer and had an average droplet size of 40 nm (PdI 0.40 ± 0.07). Skin irritation test with reconstituted epidermis (Skin Ethic RHETM) showed that the formulation is non-irritating. Tyrosinase inhibition was maintained after skin permeation in vitro, in which microemulsion showed twice the inhibition of the conventional emulsion (20.7 ± 2.2% and 10.7 ± 2.4%, respectively). The depigmenting effect of the microemulsion was finally confirmed in a 3D culture model of pigmented skin, in which histological analysis showed a more pronounced effect than a commercial depigmenting formulation. In conclusion, the developed microemulsion is a promising safe formulation for the administration of cutite fruit extract, which showed remarkable depigmenting potential compared to a commercial formulation.
Collapse
|
6
|
Ozogul Y, Karsli GT, Durmuş M, Yazgan H, Oztop HM, McClements DJ, Ozogul F. Recent developments in industrial applications of nanoemulsions. Adv Colloid Interface Sci 2022; 304:102685. [PMID: 35504214 DOI: 10.1016/j.cis.2022.102685] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023]
Abstract
Nanotechnology is being utilized in various industries to increase the quality, safety, shelf-life, and functional performance of commercial products. Nanoemulsions are thermodynamically unstable colloidal dispersions that consist of at least two immiscible liquids (typically oil and water), as well as various stabilizers (including emulsifiers, texture modifiers, ripening inhibitors, and weighting agents). They have unique properties that make them particularly suitable for some applications, including their small droplet size, high surface area, good physical stability, rapid digestibility, and high bioavailability. This article reviews recent developments in the formulation, fabrication, functional performance, and gastrointestinal fate of nanoemulsions suitable for use in the pharmaceutical, cosmetic, nutraceutical, and food industries, as well as providing an overview of regulatory and health concerns. Nanoemulsion-based delivery systems can enhance the water-dispersibility, stability, and bioavailability of hydrophobic bioactive compounds. Nevertheless, they must be carefully formulated to obtain the required functional attributes. In particular, the concentration, size, charge, and physical properties of the nano-droplets must be taken into consideration for each specific application. Before launching a nanoscale product onto the market, determination of physicochemical characteristics of nanoparticles and their potential health and environmental risks should be evaluated. In addition, legal, consumer, and economic factors must also be considered when creating these systems.
Collapse
Affiliation(s)
- Yesim Ozogul
- Cukurova University, Seafood Processing Technology, Adana, Turkey.
| | | | - Mustafa Durmuş
- Cukurova University, Seafood Processing Technology, Adana, Turkey
| | - Hatice Yazgan
- Cukurova University, Faculty of Ceyhan Veterinary Medicine, Department of Food Hygiene and Technology of Veterinary Medicine, Adana, Turkey
| | - Halil Mecit Oztop
- Middle East Technical University, Department of Food Engineering, Ankara, Turkey
| | | | - Fatih Ozogul
- Cukurova University, Seafood Processing Technology, Adana, Turkey
| |
Collapse
|
7
|
Qadir A, Ullah SNMN, Gupta DK, Khan N. Phytoconstituents loaded nanomedicines for the management of Acne. J Cosmet Dermatol 2022; 21:3240-3255. [DOI: 10.1111/jocd.14999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Abdul Qadir
- Department of Pharmaceutics School of pharmaceutical education and research Jamia Hamdard New Delhi 110062
- Department of Research and Developments Herbalfarm Health care Private Limited New Delhi 110020
| | | | - Dipak Kumar Gupta
- Department of Pharmaceutics School of pharmaceutical education and research Jamia Hamdard New Delhi 110062
| | - Nausheen Khan
- Department of Pharmacognosy and Phytochemistry school of pharmaceutical education and research Jamia Hamdard New Delhi 110062
| |
Collapse
|
8
|
Szumała P, Macierzanka A. Topical delivery of pharmaceutical and cosmetic macromolecules using microemulsion systems. Int J Pharm 2022; 615:121488. [DOI: 10.1016/j.ijpharm.2022.121488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 01/29/2023]
|
9
|
Improved skin permeability and whitening effect of catechin-loaded transfersomes through topical delivery. Int J Pharm 2021; 607:121030. [PMID: 34438007 DOI: 10.1016/j.ijpharm.2021.121030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022]
Abstract
The aim of the study was to prepare catechin-loaded transfersomes to enhance drug permeability through topical administration for the skin protection against ultraviolet radiation induced photo-damage. The results showed that the catechin-loaded transfersomes were monodispersed with polydispersity index (PDI) < 0.2, <200 nm in particle size and with high encapsulation efficiency (E.E.%) greater than 85%. The in vitro skin permeation test indicated that the catechin-loaded transfersomes enhanced the skin permeability by 85% compared to the catechin aqueous solution. Similarly, the in-vivo skin whitening study demonstrated that F5 transfersome formulation was effective in tyrosinase inhibition and had good biocompatibility to the guinea pig skin. Finally, the stability study showed that both physicochemical properties and E.E.% of the F5 transferosome formulation were fairly stable after 3 months storage. Therefore, topical administration of catechin-loaded transfersomes could be considered as a potential strategy for the treatment of UV-induced oxidative damage to the skin.
Collapse
|
10
|
Ferreira-Nunes R, Cunha-Filho M, Gratieri T, Gelfuso GM. Follicular-targeted delivery of spironolactone provided by polymeric nanoparticles. Colloids Surf B Biointerfaces 2021; 208:112101. [PMID: 34517218 DOI: 10.1016/j.colsurfb.2021.112101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
This study proposes developing a topical formulation based on poly-ε-caprolactone (PCL) or methacrylic acid/methyl methacrylate copolymer (EL100) nanoparticles to enable a safer and more effective therapy of alopecia and acne with spironolactone. The effect of the size of the nanoparticle on follicular-targeted drug delivery is also verified. Compatibility studies based on thermal analyses and complementary techniques showed a small interaction of the drug with excipients, which may not compromise the drug stability. PCL nanoparticles of 180.0 ± 1.6 and 126.8 ± 1.0 nm, and EL100 nanoparticles of 102.7 ± 7.1 nm were then prepared. All nanoparticles entrapped more than 75 % of spironolactone, were physically stable, and stabilized the drug for at least 90 days. They were also non-irritant according to HET-CAM tests. Drug release from the nanoparticles was reduced in aqueous buffer media but fast when in contact with oil. Finally, in vitro skin penetration experiments revealed the largest nanoparticles (of 180 nm) targeted drug delivery to the hair follicles 5-fold (p < 0.05) more than the control solution, 2.1-fold (p < 0.05) more than nanoparticles produced with the same polymer (PCL) but with smaller size (123 nm), and 4.9-fold (p < 0.05) more than the 102-nm E100 nanoparticles. In conclusion, follicular targeting can be adjusted according to nanoparticle size, and this work succeeded in obtaining polymeric nanoparticles adequate to enable topical treatment of acne and alopecia with spironolactone.
Collapse
Affiliation(s)
- Ricardo Ferreira-Nunes
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70.910-900, Brasília, DF, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70.910-900, Brasília, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70.910-900, Brasília, DF, Brazil
| | - Guilherme Martins Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70.910-900, Brasília, DF, Brazil.
| |
Collapse
|
11
|
Romes NB, Abdul Wahab R, Abdul Hamid M. The role of bioactive phytoconstituents-loaded nanoemulsions for skin improvement: a review. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1915869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Nissha Bharrathi Romes
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
| | - Mariani Abdul Hamid
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
| |
Collapse
|
12
|
Barbalho GN, Matos BN, Espirito Santo MEL, Silva VR, Chaves SB, Gelfuso GM, Cunha‐Filho M, Gratieri T. In vitro skin model for the evaluation of burn healing drug delivery systems. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Ordoñez Lozada MI, Rodrigues Maldonade I, Bobrowski Rodrigues D, Silva Santos D, Ortega Sanchez BA, Narcizo de Souza PE, Longo JP, Bernardo Amaro G, de Lacerda de Oliveira L. Physicochemical characterization and nano-emulsification of three species of pumpkin seed oils with focus on their physical stability. Food Chem 2020; 343:128512. [PMID: 33223288 DOI: 10.1016/j.foodchem.2020.128512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
We present the chemical composition, quality parameters and antioxidant capacity of pumpkin seed oils (PSO) from Cucurbita pepo, Cucurbita maxima, and Cucurbita moschata cultivated in Brazil. In addition, PSO nanoemulsions (nanopepo, nanomax and nanomosc) were developed and their physical stabilities were assessed under long-term storage at two temperatures. Among the PSO, C. pepo presented the highest contents of polyunsaturated fatty acids, total carotenoids, and chlorophylls, but the lowest oxidative stability. Conversely, C. maxima PSO showed highest oxidative stability and total tocopherol content but the lowest chlorophyll content. Nanomax and nanopepo were more stable to droplet growth at 4 °C, while nanomosc was more stable at 25 °C. Nanopepo was the most stable formulation after the heating-cooling cycles, whereas nanomax was the most stable under centrifugation regardless the temperature. Overall, all nanoemulsions presented droplet diameter lower than 200 nm and ζ-potential approaching -30 mV until the end of storage.
Collapse
Affiliation(s)
| | | | | | - Débora Silva Santos
- Institute of Biology, University of Brasilia, Campus Darcy Ribeiro, Brasilia, DF 70910-900, Brazil
| | | | | | - João Paulo Longo
- Institute of Biology, University of Brasilia, Campus Darcy Ribeiro, Brasilia, DF 70910-900, Brazil
| | - Geovani Bernardo Amaro
- Brazilian Agricultural Research Corporation (Embrapa) Vegetables, Brasília, DF 70275-970, Brazil
| | | |
Collapse
|
14
|
Oliveira ACS, Oliveira PM, Cunha-Filho M, Gratieri T, Gelfuso GM. Latanoprost Loaded in Polymeric Nanocapsules for Effective Topical Treatment of Alopecia. AAPS PharmSciTech 2020; 21:305. [PMID: 33151434 DOI: 10.1208/s12249-020-01863-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/24/2020] [Indexed: 12/26/2022] Open
Abstract
Latanoprost has recently been used to treat alopecia as it causes an increase in the capillary density of patients. This work presents for the first time the development of polymeric nanocapsules containing latanoprost for the topical treatment of alopecia. Poly-ε-caprolactone nanocapsules loading latanoprost were developed by nanoprecipitation of the polymer on the surface of drug oily nanodroplets. The method encapsulated 93.9 ± 0.4% of the drug into nanocapsules of 197.8 (± 1.2) nm (PdI = 0.15 ± 0.01). The nanosystem presented a zeta potential equal to - 30.1 ± 1.8 mV and was stable for at least 90 days when stored at 6°C. The colloidal aqueous dispersion was non-irritating, according to the in vitro HET-CAM test. The nanocapsules improved latanoprost accumulation into the hair follicles when topically applied on porcine skin, delivering 30% more drug to these skin structures relative to the control solution (P < 0.05). Also, with a simple manual massage, latanoprost accumulation was increased by twofold (P < 0.05). In conclusion, in addition to being a stable and safe formulation, nanocapsules enhanced latanoprost accumulation into the hair follicles, being a nanosystem with high potential for use as a topical formulation for the treatment of androgenic alopecia.
Collapse
|
15
|
Leite CB, Coelho JM, Ferreira-Nunes R, Gelfuso GM, Durigan JL, Azevedo RB, Muehlmann LA, Sousa MH. Phonophoretic application of a glucosamine and chondroitin nanoemulsion for treatment of knee chondropathies. Nanomedicine (Lond) 2020; 15:647-659. [PMID: 32118508 DOI: 10.2217/nnm-2019-0317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study was performed to assess the effect of the phonophoretic application of a nanoemulsion incorporating glucosamine and chondroitin sulfate (NANO-CG) associated with kinesiotherapy on the reduction of pain and stiffness in knee chondropathy. Materials & methods: NANO-CG was tested in vitro and in vivo prior to being applied in a randomized and controlled clinical trial. Results: Cell viability and hen's egg test-chorionallantonic membrane tests indicated the NANO-CG is safe for topical application. Permeation tests showed NANO-CG enhances drug permeation through the skin. There was no statistical significance between treated groups in this preliminary study, however, pain reduction and complete recovery of articular cartilage were observed in some patients treated with NANO-CG. Conclusion: We demonstrate that NANO-CG may be a promising candidate for the therapy of knee chondropathy.
Collapse
Affiliation(s)
- Cláudia Bs Leite
- Green Nanotechnology Group, Faculty of Ceilandia, University of Brasilia, Brasilia, DF 72220-900, Brazil
| | - Janaina M Coelho
- Laboratory of Nanoscience & Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia, DF 72220-900, Brazil.,Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Ricardo Ferreira-Nunes
- Laboratory of Food, Drugs & Cosmetics (LTMAC), University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs & Cosmetics (LTMAC), University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - João Lq Durigan
- Rehabilitation Sciences Graduation Program, University of Brasilia, Brasilia, DF 72220-900, Brazil
| | - Ricardo B Azevedo
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Luis A Muehlmann
- Laboratory of Nanoscience & Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia, DF 72220-900, Brazil
| | - Marcelo H Sousa
- Green Nanotechnology Group, Faculty of Ceilandia, University of Brasilia, Brasilia, DF 72220-900, Brazil
| |
Collapse
|
16
|
Emulsion incorporating Eugenia dysenterica aqueous extract entrapped in chitosan microparticles as a novel topical treatment of cutaneous infections. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Microemulsions incorporating Brosimum gaudichaudii extracts as a topical treatment for vitiligo: In vitro stimulation of melanocyte migration and pigmentation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Pires FQ, da Silva JKR, Sa-Barreto LL, Gratieri T, Gelfuso GM, Cunha-Filho M. Lipid nanoparticles as carriers of cyclodextrin inclusion complexes: A promising approach for cutaneous delivery of a volatile essential oil. Colloids Surf B Biointerfaces 2019; 182:110382. [DOI: 10.1016/j.colsurfb.2019.110382] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 01/30/2023]
|