1
|
Van Haute S, Nikkhah A, Malavi D, Kiani S. Prediction of essential oil content in spearmint (Mentha spicata) via near-infrared hyperspectral imaging and chemometrics. Sci Rep 2023; 13:4261. [PMID: 36918607 PMCID: PMC10014940 DOI: 10.1038/s41598-023-31517-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/13/2023] [Indexed: 03/16/2023] Open
Abstract
Spearmint (Mentha spicata L.) is grown for its essential oil (EO), which find use in food, beverage, fragrance and other industries. The current study explores the ability of near infrared hyperspectral imaging (HSI) (935 to 1720 nm) to predict, in a rapid, nondestructive manner, the essential oil content of dried spearmint (0.2 to 2.6% EO). Spectral values of spearmint samples varied considerably with spatial coordinates, and so the use of averaging the spectral values of a surface scan was warranted. Data preprocessing was done with Multiplicative Scatter Correction (MSC) or Standard Normal Variate (SNV). Selection of spectral input variables was done with Least Absolute Shrinkage and Selection Operator (LASSO), Principal Component Analysis (PCA) or Partial Least Squares (PLS). Regression was executed with linear regression (LASSO, PLS regression, PCA regression), Support Vector Machine (SVM) regression, and Multilayer Perceptron (MLP). The best prediction of EO concentration was achieved with the combination of MSC or SNV preprocessing, PLS dimension reduction, and MLP regression (1 hidden layer with 6 nodes), achieving a good prediction with a ratio of performance to deviation (RPD) of 2.84 ± 0.07, an R2 of prediction of 0.863 ± 0.008, and a RMSE of prediction of 0.219 ± 0.005% EO. These results show that NIR-HSI is a viable method for rapid, nondestructive analysis of EO concentration. Future work should explore the use of NIR in the visible spectrum, the use of HSI for determining EO in other plant materials and the potential of HSI to determine individual compounds in these solid plant/food matrices.
Collapse
Affiliation(s)
- Sam Van Haute
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium. .,Department of Molecular Biotechnology, Environmental Technology, and Food Technology, Ghent University Global Campus, 119, Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 21985, South Korea.
| | - Amin Nikkhah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.,Department of Molecular Biotechnology, Environmental Technology, and Food Technology, Ghent University Global Campus, 119, Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 21985, South Korea.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Derick Malavi
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.,Department of Molecular Biotechnology, Environmental Technology, and Food Technology, Ghent University Global Campus, 119, Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 21985, South Korea
| | - Sajad Kiani
- Biosystems Engineering Department, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| |
Collapse
|
2
|
He X, E H, Ding G. Development of a CH 2-dependent analytical method using near-infrared spectroscopy via the integration of two algorithms: non-dominated sorting genetic-II and competitive adaptive reweighted sampling (NSGAII-CARS). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1286-1296. [PMID: 36804584 DOI: 10.1039/d2ay02072f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In most of the near-infrared studies, near-infrared spectra (NIRS) were often mathematically treated. However, these algorithms selected a large number of variables and latent variables, and they caused the over-fitting phenomenon, which became very common. The large number of variables made it impossible to extract the "chemical information" directly from the NIRS. To build robust and interpretable mathematical models, the non-dominated sorting genetic-II-competitive adaptive reweighted sampling (NSGAII-CARS) algorithm was proposed to determine influential functional groups for quantitative analysis. In this research, data on a primary mixture of two amino acids (AAs), namely NH2(CH2)3COOH and HOOC(NH2)CH(CH2)2COOH, was used to illustrate the algorithm. The principle of the algorithm was first to find out the different characteristic spectral regions of two amino acids by extreme points according to Non-dominated Sorting Genetic-II (NSGAII). Second, based on the absolute value of the regression coefficient, we found out [ν(CH2) + 2δ(CH2)] and [2ν(CH2)], where the wavenumber ranged from 6165 to 5683 cm-1, were the influential functional groups for quantitative analysis. Finally, the CARS (competitive adaptive reweighted sampling) algorithm was combined with NSGAII to find the specific fingerprint points for the determination of two AAs. Compared with the previous results, the NSGAII-CARS algorithm not only pointed out the influential quantitative functional groups but also used only 6 points for HOOC(NH2)CH(CH2)2COOH and 18 points for NH2(CH2)3COOH to achieve the full-spectrum quantitative effect. The results proposed a general algorithm for the quantitative analysis of NIRS obtained in the binary or ternary mixed systems. The MATLAB codes of the NSGAII-CARS algorithm are available on the website: https://github.com/Mark1988NK/NSGAII-CARS-Algorithm.git.
Collapse
Affiliation(s)
- Xin He
- Department of Medical Oncology, The First Hospital of China Medical University, No. 210, Baita Street, Hunnan District, Shenyang 110001, China.
| | - Huanyu E
- Shenyang Medical College, Huanghe North Street 146, Shenyang 110034, China.
| | - Guoyu Ding
- Shenyang Medical College, Huanghe North Street 146, Shenyang 110034, China.
| |
Collapse
|
3
|
W. Huck C. Present and Future of Miniaturized NIR Spectrometers Combined with Challenging Data Management Strategies. MAKEDONSKO FARMACEVTSKI BILTEN 2022. [DOI: 10.33320/maced.pharm.bull.2022.68.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Christian W. Huck
- 1 Institute of Analytical Chemistry and Radiochemistry, CCB – Center for Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
| |
Collapse
|
4
|
Beć KB, Grabska J, Huck CW. In silico NIR spectroscopy - A review. Molecular fingerprint, interpretation of calibration models, understanding of matrix effects and instrumental difference. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121438. [PMID: 35667136 DOI: 10.1016/j.saa.2022.121438] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Quantum mechanical calculations are routinely used as a major support in mid-infrared (MIR) and Raman spectroscopy. In contrast, practical limitations for long time formed a barrier to developing a similar synergy between near-infrared (NIR) spectroscopy and computational chemistry. Recent advances in theoretical methods suitable for calculation of NIR spectra opened the pathway to modeling NIR spectra of various molecules. Accurate theoretical reproduction of NIR spectra of molecules reaching the size of long-chain fatty acids was accomplished so far. In silico NIR spectroscopy, where the spectra are calculated ab initio, provides substantial improvement in our understanding of the overtones and combination bands that overlap in staggering numbers and create complex lineshape typical for NIR spectra. This improves the comprehension of the spectral information enabling access to rich and detail molecular footprint, essential for fundamental research and useful in routine analysis by NIR spectroscopy and chemometrics. This review article summarizes the most recent accomplishments in the emerging field with examples of simulated NIR spectra of molecules reaching long-chain fatty acids and polymers. In addition to detailed NIR band assignments and new physical insights, simulated spectra enable innovative support in applications. Understanding of the difference in the performance observed between miniaturized NIR spectrometers and chemical interpretation of the chemometric models are noteworthy here. These new elements integrated into NIR spectroscopy framework enable a knowledge-based design of the analysis with comprehension of the processed chemical information.
Collapse
Affiliation(s)
- Krzysztof B Beć
- University of Innsbruck, Institute of Analytical Chemistry and Radiochemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Justyna Grabska
- University of Innsbruck, Institute of Analytical Chemistry and Radiochemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Christian W Huck
- University of Innsbruck, Institute of Analytical Chemistry and Radiochemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
5
|
Beć KB, Grabska J, Huck CW. Miniaturized NIR Spectroscopy in Food Analysis and Quality Control: Promises, Challenges, and Perspectives. Foods 2022; 11:foods11101465. [PMID: 35627034 PMCID: PMC9140213 DOI: 10.3390/foods11101465] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
The ongoing miniaturization of spectrometers creates a perfect synergy with the common advantages of near-infrared (NIR) spectroscopy, which together provide particularly significant benefits in the field of food analysis. The combination of portability and direct onsite application with high throughput and a noninvasive way of analysis is a decisive advantage in the food industry, which features a diverse production and supply chain. A miniaturized NIR analytical framework is readily applicable to combat various food safety risks, where compromised quality may result from an accidental or intentional (i.e., food fraud) origin. In this review, the characteristics of miniaturized NIR sensors are discussed in comparison to benchtop laboratory spectrometers regarding their performance, applicability, and optimization of methodology. Miniaturized NIR spectrometers remarkably increase the flexibility of analysis; however, various factors affect the performance of these devices in different analytical scenarios. Currently, it is a focused research direction to perform systematic evaluation studies of the accuracy and reliability of various miniaturized spectrometers that are based on different technologies; e.g., Fourier transform (FT)-NIR, micro-optoelectro-mechanical system (MOEMS)-based Hadamard mask, or linear variable filter (LVF) coupled with an array detector, among others. Progressing technology has been accompanied by innovative data-analysis methods integrated into the package of a micro-NIR analytical framework to improve its accuracy, reliability, and applicability. Advanced calibration methods (e.g., artificial neural networks (ANN) and nonlinear regression) directly improve the performance of miniaturized instruments in challenging analyses, and balance the accuracy of these instruments toward laboratory spectrometers. The quantum-mechanical simulation of NIR spectra reveals the wavenumber regions where the best-correlated spectral information resides and unveils the interactions of the target analyte with the surrounding matrix, ultimately enhancing the information gathered from the NIR spectra. A data-fusion framework offers a combination of spectral information from sensors that operate in different wavelength regions and enables parallelization of spectral pretreatments. This set of methods enables the intelligent design of future NIR analyses using miniaturized instruments, which is critically important for samples with a complex matrix typical of food raw material and shelf products.
Collapse
|
6
|
Nagy MM, Wang S, Farag MA. Quality analysis and authentication of nutraceuticals using near IR (NIR) spectroscopy: A comprehensive review of novel trends and applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Beć KB, Grabska J, Badzoka J, Huck CW. Spectra-structure correlations in NIR region of polymers from quantum chemical calculations. The cases of aromatic ring, C=O, C≡N and C-Cl functionalities. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120085. [PMID: 34174679 DOI: 10.1016/j.saa.2021.120085] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Near-infrared (NIR) spectroscopy is a valued analytical tool in various applications involving polymers. However, complex nature of NIR spectra imposes difficulties in their direct interpretation. Here, anharmonic quantum chemical calculations are used to simulate NIR spectra of nine polymers; acrylonitrile butadiene styrene (ABS), ethylene-vinyl acetate (EVAC), polycarbonate (PC), polyethylene terephthalate (PET), polylactide or polylactic acid (PLA), polymethylmethacrylate (PMMA), polyoxymethylene (POM), polystyrene (PS) and polyvinylchloride (PVC). The generalized spectra-structure correlations are derived for these systems with focus given to the manifestation in NIR spectra of aromatic ring, C=O, C≡N and C-Cl functionalities. It is concluded that the nature of NIR polymer bands is only moderately sensitive to the remote chemical neighborhood. The majority of NIR absorption of polymers originates from binary combination bands, while the first overtones are meaningful only in ca. 6200-5500 cm-1 region. The contribution of the overtone bands is relatively higher for the polymers bearing aromatic rings because of higher intensity of C-H stretching overtones. Highly characteristic combination bands of the modes localized in aromatic ring (ring deformation and CH stretching) are relatively independent on the remaining structure of the polymer. The combination bands originating from C=O group are more sensitive to the chemical neighborhood in near proximity, forming a useful fingerprint for a specific polymer. In contrast, the vibrational bands of C≡N functionality are far less useful in NIR region than in infrared (IR) region. With aid of the calculated absorption bands, structural specificity of NIR spectroscopy of polymers can be markedly improved.
Collapse
Affiliation(s)
- Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Jovan Badzoka
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
8
|
Beć KB, Grabska J, Plewka N, Huck CW. Insect Protein Content Analysis in Handcrafted Fitness Bars by NIR Spectroscopy. Gaussian Process Regression and Data Fusion for Performance Enhancement of Miniaturized Cost-Effective Consumer-Grade Sensors. Molecules 2021; 26:molecules26216390. [PMID: 34770798 PMCID: PMC8587585 DOI: 10.3390/molecules26216390] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Future food supply will become increasingly dependent on edible material extracted from insects. The growing popularity of artisanal food products enhanced by insect proteins creates particular needs for establishing effective methods for quality control. This study focuses on developing rapid and efficient on-site quantitative analysis of protein content in handcrafted insect bars by miniaturized near-infrared (NIR) spectrometers. Benchtop (Büchi NIRFlex N-500) and three miniaturized (MicroNIR 1700 ES, Tellspec Enterprise Sensor and SCiO Sensor) in hyphenation to partial least squares regression (PLSR) and Gaussian process regression (GPR) calibration methods and data fusion concept were evaluated via test-set validation in performance of protein content analysis. These NIR spectrometers markedly differ by technical principles, operational characteristics and cost-effectiveness. In the non-destructive analysis of intact bars, the root mean square error of cross prediction (RMSEP) values were 0.611% (benchtop) and 0.545–0.659% (miniaturized) with PLSR, and 0.506% (benchtop) and 0.482–0.580% (miniaturized) with GPR calibration, while the analyzed total protein content was 19.3–23.0%. For milled samples, with PLSR the RMSEP values improved to 0.210% for benchtop spectrometer but remained in the inferior range of 0.525–0.571% for the miniaturized ones. GPR calibration improved the predictive performance of the miniaturized spectrometers, with RMSEP values of 0.230% (MicroNIR 1700 ES), 0.326% (Tellspec) and 0.338% (SCiO). Furthermore, Tellspec and SCiO sensors are consumer-oriented devices, and their combined use for enhanced performance remains a viable economical choice. With GPR calibration and test-set validation performed for fused (Tellspec + SCiO) data, the RMSEP values were improved to 0.517% (in the analysis of intact samples) and 0.295% (for milled samples).
Collapse
|
9
|
Grabska J, Beć KB, Ozaki Y, Huck CW. Anharmonic DFT Study of Near-Infrared Spectra of Caffeine: Vibrational Analysis of the Second Overtones and Ternary Combinations. Molecules 2021; 26:molecules26175212. [PMID: 34500645 PMCID: PMC8433751 DOI: 10.3390/molecules26175212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Anharmonic quantum chemical calculations were employed to simulate and interpret a near-infrared (NIR) spectrum of caffeine. First and second overtones, as well as binary and ternary combination bands, were obtained, accurately reproducing the lineshape of the experimental spectrum in the region of 10,000–4000 cm−1 (1000–2500 nm). The calculations enabled performing a detailed analysis of NIR spectra of caffeine, including weak bands due to the second overtones and ternary combinations. A highly convoluted nature of NIR spectrum of caffeine was unveiled, with numerous overlapping bands found beneath the observed spectral lineshape. To properly reflect that intrinsic complexity, the band assignments were provided in the form of heat maps presenting the contributions to the NIR spectrum from various kinds of vibrational transitions. These contributions were also quantitatively assessed in terms of the integral intensities. It was found that the combination bands provide the decisively dominant contributions to the NIR spectrum of caffeine. The first overtones gain significant importance between 6500–5500 cm−1, while the second overtones are meaningful in the higher wavenumber regions, particularly in the 10,000–7000 cm−1 region. The obtained detailed band assignments enabled deep interpretation of the absorption regions of caffeine identified in the literature as meaningful for analytical applications of NIR spectroscopy focused on quantitative analysis of caffeine content in drugs and natural products.
Collapse
Affiliation(s)
- Justyna Grabska
- CCB—Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck, Austria; (K.B.B.); (C.W.H.)
- Correspondence:
| | - Krzysztof B. Beć
- CCB—Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck, Austria; (K.B.B.); (C.W.H.)
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda 669-1337, Hyogo, Japan;
- Toyota Physical and Chemical Research Institute, Yokomichi, Nagakute 480-1192, Aichi, Japan
| | - Christian W. Huck
- CCB—Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck, Austria; (K.B.B.); (C.W.H.)
| |
Collapse
|
10
|
Ozaki Y, Beć KB, Morisawa Y, Yamamoto S, Tanabe I, Huck CW, Hofer TS. Advances, challenges and perspectives of quantum chemical approaches in molecular spectroscopy of the condensed phase. Chem Soc Rev 2021; 50:10917-10954. [PMID: 34382961 DOI: 10.1039/d0cs01602k] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this review is to demonstrate advances, challenges and perspectives of quantum chemical approaches in molecular spectroscopy of the condensed phase. Molecular spectroscopy, particularly vibrational spectroscopy and electronic spectroscopy, has been used extensively for a wide range of areas of chemical sciences and materials science as well as nano- and biosciences because it provides valuable information about structure, functions, and reactions of molecules. In the meantime, quantum chemical approaches play crucial roles in the spectral analysis. They also yield important knowledge about molecular and electronic structures as well as electronic transitions. The combination of spectroscopic approaches and quantum chemical calculations is a powerful tool for science, in general. Thus, our article, which treats various spectroscopy and quantum chemical approaches, should have strong implications in the wider scientific community. This review covers a wide area of molecular spectroscopy from far-ultraviolet (FUV, 120-200 nm) to far-infrared (FIR, 400-10 cm-1)/terahertz and Raman spectroscopy. As quantum chemical approaches, we introduce several anharmonic approaches such as vibrational self-consistent field (VSCF) and the combination of periodic harmonic calculations with anharmonic corrections based on finite models, grid-based techniques like the Numerov approach, the Cartesian coordinate tensor transfer (CCT) method, Symmetry-Adapted Cluster Configuration-Interaction (SAC-CI), and the ZINDO (Semi-empirical calculations at Zerner's Intermediate Neglect of Differential Overlap). One can use anharmonic approaches and grid-based approaches for both infrared (IR) and near-infrared (NIR) spectroscopy, while CCT methods are employed for Raman, Raman optical activity (ROA), FIR/terahertz and low-frequency Raman spectroscopy. Therefore, this review overviews cross relations between molecular spectroscopy and quantum chemical approaches, and provides various kinds of close-reality advanced spectral simulation for condensed phases.
Collapse
Affiliation(s)
- Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan. and Toyota Physical and Chemical Research Institute, Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Yusuke Morisawa
- Department of Chemistry, School of Science and Engineering, Kindai University, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shigeki Yamamoto
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ichiro Tanabe
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Thomas S Hofer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, A6020 Innsbruck, Austria
| |
Collapse
|
11
|
Grabska J, Beć KB, Mayr S, Huck CW. Theoretical Simulation of Near-Infrared Spectrum of Piperine: Insight into Band Origins and the Features of Regression Models. APPLIED SPECTROSCOPY 2021; 75:1022-1032. [PMID: 34236925 PMCID: PMC8320572 DOI: 10.1177/00037028211027951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
We investigated the near-infrared spectrum of piperine using quantum mechanical calculations. We evaluated two efficient approaches, DVPT2//PM6 and DVPT2//ONIOM [PM6:B3LYP/6-311++G(2df, 2pd)] that yielded a simulated spectrum with varying accuracy versus computing time factor. We performed vibrational assignments and unveiled complex nature of the near-infrared spectrum of piperine, resulting from a high level of band convolution. The most meaningful contribution to the near-infrared absorption of piperine results from binary combination bands. With the available detailed near-infrared assignment of piperine, we interpreted the properties of partial least square regression models constructed in our earlier study to describe the piperine content in black pepper samples. Two models were compared with spectral data sets obtained with a benchtop and a miniaturized spectrometer. The two spectrometers implement distinct technology which leads to a profound instrumental difference and discrepancy in the predictive performance when analyzing piperine content. We concluded that the sensitivity of the two instruments to certain types of piperine vibrations is different and that the benchtop spectrometer unveiled higher selectivity. Such difference in obtaining chemical information from a sample can be one of the reasons why the benchtop spectrometer performs better in analyzing the piperine content of black pepper. This evidenced direct correspondence between the features critical for applied near-infrared spectroscopic routine and the underlying vibrational properties of the analyzed constituent in a complex sample.
Collapse
Affiliation(s)
| | - Krzysztof B. Beć
- Krzysztof B. Beć, University of Innsbruck, Innrain 80-82, Innsbruck 6020, Austria.
| | | | | |
Collapse
|
12
|
Si L, Ni H, Pan D, Zhang X, Xu F, Wu Y, Bao L, Wang Z, Xiao W, Wu Y. Nondestructive qualitative and quantitative analysis of Yaobitong capsule using near-infrared spectroscopy in tandem with chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119517. [PMID: 33578123 DOI: 10.1016/j.saa.2021.119517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
The purpose of the study is to present a nondestructive qualitative and quantitative approach of hard-shell capsule using near-infrared (NIR) spectroscopy combined with chemometrics. The Yaobitong capsule (YBTC) was used for demonstration of the proposed approach and the NIR spectra were collected using a handheld fiber probe (FP) without the damage of capsule shell. By comparing the differences and similarities of the NIR spectra of capsule shells, contents and intact capsules, a preliminary conclusion can be drawn that the NIR spectra contained the information of the contents. Characteristic variables were selected by competitive adaptive weighted resampling (CARS) method, and least squares support vector machine (LSSVM) method based on particle swarm optimization (PSO) algorithm was applied to the construction of quantitative models. The relative standard error of prediction (RSEP) values of five saponins including notoginsenoside R1, ginsenoside Rg1, Re, Rb1, and Rd were 3.240%, 5.468%, 5.303%, 5.043%, and 3.745%, respectively. In addition, for qualitative model, three different types of adulterated capsules were designed. The model established by data driven version of soft independent modeling of class analogy (DD-SIMCA) demonstrated a satisfactory result that all adulterated capsules were identified accurately after an appropriate number of principal components (PCs) were chosen. The results indicated that although the NIR spectra collection was affected by capsule shell, sufficient content information can be obtained for quantitative and qualitative analysis after combining with chemometrics. It further proved that acquired NIR spectra do contain the effective component information of the capsule. This study provided a reference for the rapid nondestructive quality analysis of traditional Chinese medicine (TCM) capsule without damaging capsule shell.
Collapse
Affiliation(s)
- Leting Si
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongfei Ni
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongyue Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Zhang
- Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, Jiangsu 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu 222001, China; National & Local Joint Engineering Research Center on Intelligent Manufacturing of Traditional Chinese Medicine, Lianyungang, Jiangsu 222001, China
| | - Fangfang Xu
- Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, Jiangsu 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu 222001, China; National & Local Joint Engineering Research Center on Intelligent Manufacturing of Traditional Chinese Medicine, Lianyungang, Jiangsu 222001, China
| | - Yun Wu
- Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, Jiangsu 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu 222001, China; National & Local Joint Engineering Research Center on Intelligent Manufacturing of Traditional Chinese Medicine, Lianyungang, Jiangsu 222001, China
| | - Lewei Bao
- Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, Jiangsu 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu 222001, China; National & Local Joint Engineering Research Center on Intelligent Manufacturing of Traditional Chinese Medicine, Lianyungang, Jiangsu 222001, China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, Jiangsu 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu 222001, China; National & Local Joint Engineering Research Center on Intelligent Manufacturing of Traditional Chinese Medicine, Lianyungang, Jiangsu 222001, China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, Jiangsu 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu 222001, China; National & Local Joint Engineering Research Center on Intelligent Manufacturing of Traditional Chinese Medicine, Lianyungang, Jiangsu 222001, China.
| | - Yongjiang Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Beć KB, Grabska J, Huck CW. NIR spectroscopy of natural medicines supported by novel instrumentation and methods for data analysis and interpretation. J Pharm Biomed Anal 2020; 193:113686. [PMID: 33142115 DOI: 10.1016/j.jpba.2020.113686] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023]
Abstract
Near-infrared (NIR) spectroscopy is a powerful tool for qualitative and quantitative phytoanalysis. It is a rapid and high-throughput analytical method, with on-site capability, high chemical specificity, and no/minimal sample preparation. NIR spectroscopy is a powerful non-invasive and low-cost alternative with significant practical advantages compared to the conventional methods of analysis. These advantages are particularly exposed in the field of phytoanalysis. In contrast to synthetic medicines, natural products feature chemical diversity that can vary depending on the medicinal plant cultivation conditions, geographical origin or harvest time. The content of bioactive compounds and their derivatives, and thus, the quality parameters of the natural medicine need to be controlled with respect to a number of conditions. NIR spectroscopy has been proved to be particularly competitive in such difficult scenarios. In recent years, remarkable advances in the field of spectroscopic instrumentation and methods of analysis have appeared. Noteworthy was the appearance and dynamic continuing development of miniaturized, on-site capable NIR spectrometers. This was accompanied by application of new tools increasing the potential and reliability of NIR spectroscopy in phytoanalytical applications. The present review discussed the major principles of this technique and critically assesses its future application potential in phytoanalytical strategies. Major attention is given to the current development trends based on the most recent literature published in the field.
Collapse
Affiliation(s)
- Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020, Innsbruck, Austria
| | - Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020, Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020, Innsbruck, Austria.
| |
Collapse
|
14
|
Stuppner S, Mayr S, Beganovic A, Beć K, Grabska J, Aufschnaiter U, Groeneveld M, Rainer M, Jakschitz T, Bonn GK, Huck CW. Near-Infrared Spectroscopy as a Rapid Screening Method for the Determination of Total Anthocyanin Content in Sambucus Fructus. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4983. [PMID: 32887485 PMCID: PMC7506738 DOI: 10.3390/s20174983] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/26/2022]
Abstract
Elderberry (Sambucus nigra L., fructus) is a very potent herbal drug, deriving from traditional European medicine (TEM). Ripe elderberries are rich in anthocyanins, flavonols, flavonol esters, flavonol glycosides, lectins, essential oils, unsaturated fatty acids and vitamins. Nevertheless, unripe elderflower fruits contain a certain amount of sambunigrin, a toxic cyanogenic glycoside, whose concentration decreases in the ripening process. Therefore, quality assurance must be carried out. The standard method described in literature is the photometric determination (pH-differential method) of the total anthocyanin content (TAC) that is the highest when the berries are ripe. The drawback of the pH-differential method is the extensive sample preparation and the low accuracy of the method. Therefore, the goal of this publication was to develop a fast non invasive near-infrared (NIR) method for the determination of TAC in whole berries. TAC of elderberries was measured using pH-differentiation method where TAC values of 632.87 mg/kg to 4342.01 mg/kg were measured. Additionally, cyanidin-3-O-glucoside, cyanidin-3-O-sambubioside and cyanidin-3-O-sambubioside-5-O-glucoside which represent more than 98% of TAC in elderberry were quantified using ultra high performance liquid chromatography-multiple wavelength detection-ultra high resolution-quadrupole-time of flight-mass spectrometry (UHPLC-MWD-UHR-Q-TOF-MS) and their sum parameter was determined, ranging between 499.43 mg/kg and 8199.07 mg/kg. Using those two methods as reference, whole elderberries were investigated by NIR spectroscopy with the Büchi NIRFlex N-500 benchtop spectrometer. According to the constructed partial least squares regression (PLSR) models the performance was as follows: a relative standard deviation (RSDPLSR) of 13.5% and root mean square error of calibration (RMSECV/RMSEC) of 1.31 for pH-differentiation reference and a RSDPLSR of 12.9% and RMSECV/RMSEC of 1.28 for the HPLC reference method. In this study, we confirm that it is possible to perform a NIR screening for TAC in whole elderberries. Using quantum chemical calculations, we obtained detailed NIR band assignments of the analyzed compounds and interpreted the wavenumber regions established in PLSR models as meaningful for anthocyanin content. The NIR measurement turned out to be a fast and cost-efficient alternative for the determination of TAC compared to pH-differential method and UHPLC-MWD-UHR-Q-TOF-MS. Due to the benefit of no sample preparation and extraction the technology can be considered as sustainable green technology. With the above mentioned inversely proportional ratio of TAC to total amount of toxic cyanogenic glycosides, NIR proves to be a reliable screening method for the ideal harvest time with maximal content of TAC and lowest content of cyanogenic glycosides in elderberry.
Collapse
Affiliation(s)
- Stefan Stuppner
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.S.); (S.M.); (A.B.); (K.B.); (J.G.); (U.A.); (M.G.); (M.R.); (G.K.B.)
- ADSI-Austrian Drug Screening Institute GmbH, Innrain 66A, 6020 Innsbruck, Austria;
| | - Sophia Mayr
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.S.); (S.M.); (A.B.); (K.B.); (J.G.); (U.A.); (M.G.); (M.R.); (G.K.B.)
| | - Anel Beganovic
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.S.); (S.M.); (A.B.); (K.B.); (J.G.); (U.A.); (M.G.); (M.R.); (G.K.B.)
| | - Krzysztof Beć
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.S.); (S.M.); (A.B.); (K.B.); (J.G.); (U.A.); (M.G.); (M.R.); (G.K.B.)
| | - Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.S.); (S.M.); (A.B.); (K.B.); (J.G.); (U.A.); (M.G.); (M.R.); (G.K.B.)
| | - Urban Aufschnaiter
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.S.); (S.M.); (A.B.); (K.B.); (J.G.); (U.A.); (M.G.); (M.R.); (G.K.B.)
| | - Magdalena Groeneveld
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.S.); (S.M.); (A.B.); (K.B.); (J.G.); (U.A.); (M.G.); (M.R.); (G.K.B.)
| | - Matthias Rainer
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.S.); (S.M.); (A.B.); (K.B.); (J.G.); (U.A.); (M.G.); (M.R.); (G.K.B.)
| | - Thomas Jakschitz
- ADSI-Austrian Drug Screening Institute GmbH, Innrain 66A, 6020 Innsbruck, Austria;
| | - Günther K. Bonn
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.S.); (S.M.); (A.B.); (K.B.); (J.G.); (U.A.); (M.G.); (M.R.); (G.K.B.)
- ADSI-Austrian Drug Screening Institute GmbH, Innrain 66A, 6020 Innsbruck, Austria;
| | - Christian W. Huck
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.S.); (S.M.); (A.B.); (K.B.); (J.G.); (U.A.); (M.G.); (M.R.); (G.K.B.)
| |
Collapse
|
15
|
Beć KB, Grabska J, Huck CW, Czarnecki MA. Effect of conformational isomerism on NIR spectra of ethanol isotopologues. Spectroscopic and anharmonic DFT study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Beć KB, Grabska J, Huck CW. Near-Infrared Spectroscopy in Bio-Applications. Molecules 2020; 25:E2948. [PMID: 32604876 PMCID: PMC7357077 DOI: 10.3390/molecules25122948] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 11/17/2022] Open
Abstract
Near-infrared (NIR) spectroscopy occupies a specific spot across the field of bioscience and related disciplines. Its characteristics and application potential differs from infrared (IR) or Raman spectroscopy. This vibrational spectroscopy technique elucidates molecular information from the examined sample by measuring absorption bands resulting from overtones and combination excitations. Recent decades brought significant progress in the instrumentation (e.g., miniaturized spectrometers) and spectral analysis methods (e.g., spectral image processing and analysis, quantum chemical calculation of NIR spectra), which made notable impact on its applicability. This review aims to present NIR spectroscopy as a matured technique, yet with great potential for further advances in several directions throughout broadly understood bio-applications. Its practical value is critically assessed and compared with competing techniques. Attention is given to link the bio-application potential of NIR spectroscopy with its fundamental characteristics and principal features of NIR spectra.
Collapse
Affiliation(s)
- Krzysztof B. Beć
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria;
| | | | - Christian W. Huck
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria;
| |
Collapse
|
17
|
Li C, Zong B, Guo H, Luo Z, He P, Gong S, Fan F. Discrimination of white teas produced from fresh leaves with different maturity by near-infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117697. [PMID: 31699592 DOI: 10.1016/j.saa.2019.117697] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 10/15/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
White tea is a special tea product with increasing market demand. The assessment of white tea quality is mainly based on panel sensory by sensory evaluation experts, which is time costly and is limited by many uncertainties. This study established a rapid and accurate method for classification of white teas produced from buds and young leaves and that produced from mature leaves and shoots using near-infrared spectroscopy (NIR). Back propagation neural network modelling and support vector machine (SVM) modelling were compared with six pre-processing methods. The best performance was provided by SVM with particle swarm optimization combined with Savitzky-Golay filter pre-processing method, achieving the accuracy of 98.92% in test samples. The NIR-related chemical compounds of two categories of white teas produced from fresh leaves with different maturity were analyzed, including catechins, alkaloids, amino acids and flavonol glycosides. Compared with chemical component concentration, NIR absorbance had a distinct advantage in quick classification of white teas based on the principal components analysis. In addition, the sensory characteristics of two categories white teas produced from fresh leaves with different maturity were also assessed by panelist. The result showed that characteristics of "umami-like" and "smooth" were more likely present in white teas produced from buds and young leaves, while "woody" and "coarse" characteristics were usually present in white teas produced from mature leaves and shoots. Thus, NIR technique is a rapid and reliable method for discrimination of white teas produced from fresh leaves with different maturity, and is a potential method to discriminate sensory characteristics of white teas.
Collapse
Affiliation(s)
- Chunlin Li
- Institute of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
| | - Bangzheng Zong
- Institute of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
| | - Haowei Guo
- Institute of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
| | - Zhou Luo
- Institute of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
| | - Puming He
- Institute of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
| | - Shuying Gong
- Institute of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China.
| | - Fangyuan Fan
- Institute of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China.
| |
Collapse
|
18
|
Beć KB, Grabska J, Ozaki Y, Czarnecki MA, Huck CW. Simulated NIR spectra as sensitive markers of the structure and interactions in nucleobases. Sci Rep 2019; 9:17398. [PMID: 31758033 PMCID: PMC6874539 DOI: 10.1038/s41598-019-53827-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022] Open
Abstract
Near-infrared (near-IR; NIR) spectroscopy is continuously advancing in biophysical and biochemical fields of investigation. For instance, recent progresses in NIR hyperspectral imaging of biological systems may be noted. However, interpretation of NIR bands for biological samples is difficult and creates a considerable barrier in exploring the full potential of NIR spectroscopy in bioscience. For this reason, we carried out a systematic study of NIR spectra of adenine, cytosine, guanine, and thymine in polycrystalline state. Interpretation of NIR spectra of these nucleobases was supported by anharmonic vibrational analysis using Deperturbed Vibrational Second-Order Perturbation Theory (DVPT2). A number of molecular models of nucleobases was applied to study the effect of the inter-molecular interactions on the NIR spectra. The accuracy of simulated NIR spectra appears to depend on the intra-layer interactions; in contrast, the inter-layer interactions are less influential. The best results were achieved by combining the simulated spectra of monomers and dimers. It is of particular note that in-plane deformation bands are far more populated than out-of-plane ones and the importance of ring modes is relatively small. This trend is in contrast to that observed in mid-IR region. As shown, the local, short-range chemical neighborhood of nucleobase molecules influence their NIR spectra more considerably. This suggests that NIR spectra are more sensitive probe of the nucleobase pairing than mid-IR ones. The obtained results allow, for the first time, to construct a frequency correlation table for NIR spectra of purines and pyrimidines.
Collapse
Affiliation(s)
- Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020, Innsbruck, Austria.
| | - Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020, Innsbruck, Austria
| | - Yukihiro Ozaki
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan
| | - Mirosław A Czarnecki
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Christan W Huck
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020, Innsbruck, Austria
| |
Collapse
|
19
|
Yin L, Zhou J, Chen D, Han T, Zheng B, Younis A, Shao Q. A review of the application of near-infrared spectroscopy to rare traditional Chinese medicine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 221:117208. [PMID: 31170607 DOI: 10.1016/j.saa.2019.117208] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/16/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
Near-infrared spectroscopy (NIRS) has become popular in the field of traditional Chinese medicine (TCM) due to its many practical advantages, such as providing rapid, accurate, and simultaneous analysis. This review is intended to provide up-to-date information on qualitative and quantitative NIRS analysis in TCM, especially rare TCM. By performing a substantial survey of the literature from China and abroad, we also combine our own studies on some rare TCMs using NIRS to review the application of NIRS in this field. Basic analytical methods and specific examples of NIRS demonstrates NIRS's ability in authenticity identification, species identification, geographic origin analysis, quantitative analysis, adulteration detection, rapid detection, and on-line monitoring of TCM, and illustrates the feasibility and effectiveness of NIRS applied in the quality control (QC) of TCM. Some disadvantages and prospects of NIRS are also discussed here in detail.
Collapse
Affiliation(s)
- Lianghong Yin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Junmei Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Dandan Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Tingting Han
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Adnan Younis
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Qingsong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
20
|
Spectra-Structure Correlations in Isotopomers of Ethanol (CX 3CX 2OX; X = H, D): Combined Near-Infrared and Anharmonic Computational Study. Molecules 2019; 24:molecules24112189. [PMID: 31212669 PMCID: PMC6600318 DOI: 10.3390/molecules24112189] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/03/2019] [Accepted: 06/08/2019] [Indexed: 11/21/2022] Open
Abstract
The effect of isotopic substitution on near-infrared (NIR) spectra has not been studied in detail. With an exception of few major bands, it is difficult to follow the spectral changes due to complexity of NIR spectra. Recent progress in anharmonic quantum mechanical calculations allows for accurate reconstruction of NIR spectra. Taking this opportunity, we carried out a systematic study of NIR spectra of six isotopomers of ethanol (CX3CX2OX; X = H, D). Besides, we calculated the theoretical spectra of two other isotopomers (CH3CD2OD and CD3CH2OD) for which the experimental spectra are not available. The anharmonic calculations were based on generalized vibrational second-order perturbation theory (GVPT2) at DFT and MP2 levels with several basis sets. We compared the accuracy and efficiency of various computational methods. It appears that the best results were obtained with B2PLYP-GD3BJ/def2-TZVP//CPCM approach. Our simulations included the first and second overtones, as well as binary and ternary combinations bands. This way, we reliably reproduced even minor bands in the spectra of diluted samples (0.1 M in CCl4). On this basis, the effect of isotopic substitution on NIR spectra of ethanol was accurately reproduced and comprehensively explained.
Collapse
|
21
|
Beć KB. Recent advances in modeling vibrational spectra of food adulterants – Theoretical simulation of IR and NIR bands of melamine. ACTA ACUST UNITED AC 2019. [DOI: 10.1177/0960336019847825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Food safety may be one of the major concerns of the global society in the forthcoming decades. Analytical vibrational spectroscopy is expected to become a major tool used for controlling the food quality at every stage of its production, storage and delivery. Near-infrared and infrared spectroscopy have rapidly been evolving in analytical applications over the last decades with strong hyphenation to numerical and statistical methods of analysis of complex data, which are known as chemometrics. Analytical spectroscopy has reached a remarkable value for both industrial and institutional laboratories nowadays. However, the routinely used methods of analysis do not attempt to interpret the analysed spectral information in physicochemical sense. Therefore, analytical routines seldom take advantage of the molecular background underlying the properties of analysed sample. In the present article, we review the most recent accomplishments that evidence the progress which may be achieved when that background becomes actually available. We focus on the example of infrared and near-infrared spectra simulation applied to melamine, one of the most infamous food adulterant. This sheds light on the correspondences between infrared and near-infrared region observed earlier in the analytical papers dealing with detection and quantification of melamine in food products.
Collapse
Affiliation(s)
- Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
| |
Collapse
|
22
|
Babaei Rouchi M, Khanmohammadi Khorrami M, Garmarudi AB, de la Guardia M. Application of infrared spectroscopy as Process Analytics Technology (PAT) approach in biodiesel production process utilizing Multivariate Curve Resolution Alternative Least Square (MCR-ALS). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 213:347-353. [PMID: 30716646 DOI: 10.1016/j.saa.2019.01.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/24/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Process Analytical Technology means at-line collection of analytical information from the process when the reaction is in progress. Obtained information enables process engineers to better control the Critical Process Parameters and direct the reaction to desirable routs. Near-infrared spectroscopy due to its analytical features, as well as the high capability of automation, versatile sampling and spectral acquisition methods is a useful tool in process monitoring when coupled to chemometrics. The Multiple Scatter Correction preprocessing technique and Alternative Least Square method can extract spectral and concentration information of a reaction mixture simultaneously, were employed pairing with fiber optic Near-Infrared spectroscopy in 1000-2250 nm spectral region was employed to extract the analytical information from the biodiesel production process. The obtained output demonstrated appropriate results about the concentration and type of components during the process. The kinetics of the reaction was also studied using the obtained results and showed a three-stage kinetics with different rates.
Collapse
Affiliation(s)
- Mohammad Babaei Rouchi
- Chemistry Department, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | | | - Amir Bagheri Garmarudi
- Chemistry Department, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, 50 Dr. Moliner St., 46100 Burjassot, Valencia, Spain
| |
Collapse
|
23
|
Distinct Difference in Sensitivity of NIR vs. IR Bands of Melamine to Inter-Molecular Interactions with Impact on Analytical Spectroscopy Explained by Anharmonic Quantum Mechanical Study. Molecules 2019; 24:molecules24071402. [PMID: 30974741 PMCID: PMC6479474 DOI: 10.3390/molecules24071402] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 11/17/2022] Open
Abstract
Melamine (IUPAC: 1,3,5-Triazine-2,4,6-triamine) attracts high attention in analytical vibrational spectroscopy due to its misuse as a food adulterant. Vibrational spectroscopy [infrared (IR) and Raman and near-infrared (NIR) spectroscopy] is a major quality control tool in the detection and quantification of melamine content. The physical background for the measured spectra is not interpreted in analytical spectroscopy using chemometrics. In contrast, quantum mechanical calculations are capable of providing deep and independent insights therein. So far, the NIR region of crystalline melamine has not been studied by quantum mechanical calculations, while the investigations of its IR spectra have remained limited. In the present work, we employed fully anharmonic calculation of the NIR spectrum of melamine based on finite models, and also performed IR spectral simulation by using an infinite crystal model—periodic in three dimensions. This yielded detailed and unambiguous NIR band assignments and revised the previously known IR band assignments. We found that the out-of-plane fundamental transitions, which are essential in the IR region, are markedly more sensitive to out-of-plane inter-molecular interactions of melamine than NIR transitions. Proper description of the chemical surrounding of the molecule of melamine is more important than the anharmonicity of its vibrations. In contrast, the NIR bands mostly arise from in-plane vibrations, and remain surprisingly insensitive to the chemical environment. These findings explain previous observations that were reported in IR and NIR analytical studies of melamine.
Collapse
|
24
|
Beć KB, Huck CW. Breakthrough Potential in Near-Infrared Spectroscopy: Spectra Simulation. A Review of Recent Developments. Front Chem 2019; 7:48. [PMID: 30854368 PMCID: PMC6396078 DOI: 10.3389/fchem.2019.00048] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/18/2019] [Indexed: 11/29/2022] Open
Abstract
Near-infrared (12,500–4,000 cm−1; 800–2,500 nm) spectroscopy is the hallmark for one of the most rapidly advancing analytical techniques over the last few decades. Although it is mainly recognized as an analytical tool, near-infrared spectroscopy has also contributed significantly to physical chemistry, e.g., by delivering invaluable data on the anharmonic nature of molecular vibrations or peculiarities of intermolecular interactions. In all these contexts, a major barrier in the form of an intrinsic complexity of near-infrared spectra has been encountered. A large number of overlapping vibrational contributions influenced by anharmonic effects create complex patterns of spectral dependencies, in many cases hindering our comprehension of near-infrared spectra. Quantum mechanical calculations commonly serve as a major support to infrared and Raman studies; conversely, near-infrared spectroscopy has long been hindered in this regard due to practical limitations. Advances in anharmonic theories in hyphenation with ever-growing computer technology have enabled feasible theoretical near-infrared spectroscopy in recent times. Accordingly, a growing number of quantum mechanical investigations aimed at near-infrared region has been witnessed. The present review article summarizes these most recent accomplishments in the emerging field. Applications of generalized approaches, such as vibrational self-consistent field and vibrational second order perturbation theories as well as their derivatives, and dense grid-based studies of vibrational potential, are overviewed. Basic and applied studies are discussed, with special attention paid to the ones which aim at improving analytical spectroscopy. A remarkable potential arises from the growing applicability of anharmonic computations to solving the problems which arise in both basic and analytical near-infrared spectroscopy. This review highlights an increased value of quantum mechanical calculations to near-infrared spectroscopy in relation to other kinds of vibrational spectroscopy.
Collapse
Affiliation(s)
- Krzysztof B Beć
- Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
| | - Christian W Huck
- Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
| |
Collapse
|