1
|
Katrahalli U, Shanker G, Pal D, Hadagali MD. Molecular spectroscopic and docking analysis of the interaction of fluorescent thiadicarbocyanine dye with biomolecule bovine serum albumin. J Biomol Struct Dyn 2023; 41:10702-10712. [PMID: 36546697 DOI: 10.1080/07391102.2022.2158135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Binding studies of the water-soluble thiadicarbocyanine dye 3,3'-diethylthiadicarbocyanine acetate (DTC) with bovine serum albumin (BSA) were examined under physiological conditions using spectroscopic techniques like fluorescence, UV-Visible, circular dichroism (CD), FT-IR and molecular docking methods. Compiled experimental results envisage that DTC quench the fluorescence intensity of BSA. The increasing binding constants (K) were found to be in the order of 103 Mol-1 as a function of temperature, as calculated from the fluorescence quenching data. The quenching mechanism, thermodynamic parameters (ΔH0, ΔS0 and ΔG0) and the number of binding sites have been explored. CD values showed that the secondary structure of the BSA has been altered upon binding to DTC. Displacement experiments were carried out with different site probes to find out the binding site of DTC on BSA and it was found that binding interaction at site II of sub-domain IIIA. The interference of common metal ions on the interaction of DTC with BSA has also been studied. The experimental data exhibit that DTC interacts with BSA by hydrophobic forces. The experimental findings from BSA binding studies were validated by using in silico molecular docking technique. The results of the investigations were accurately supported by studies on molecular docking. The optimal shape of the molecular probe demonstrated the affinity as a free binding energy release of -7.37 Kcal/mol. The present research report endeavors to the approachable nature of water-soluble DTC dye and paves way for targeted biological interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Govindaswamy Shanker
- Department of Chemistry, Jnana Bharathi Campus, Bangalore University, Bangalore, India
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| | - Manjunatha Devagondanahalli Hadagali
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
- Department of Studies in Chemistry, Davangere University, Davangere, India
| |
Collapse
|
2
|
Hussain I, Fatima S, Ahmed S, Tabish M. Biophysical and molecular modelling analysis of the binding of β-resorcylic acid with bovine serum albumin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Rajan D, Rajamanikandan R, Ilanchelian M. Investigating the biophysical interaction of serum albumins-gold nanorods using hybrid spectroscopic and computational approaches with the intent of enhancing cytotoxicity efficiency of targeted drug delivery. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
4
|
Rostamnezhad F, Hossein Fatemi M. Exploring the interactions of acenaphthene with bovine serum albumin: Spectroscopic methods, molecular modeling and chemometric approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120164. [PMID: 34274633 DOI: 10.1016/j.saa.2021.120164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/06/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
The interaction of acenaphthene (ACN), a widespread environmental pollutant, with bovine serum albumin (BSA) was explored using spectroscopic methods, molecular modeling and chemometric approaches. The multivariate curve resolution-alternating least squares (MCR-ALS) analysis decomposed the overlapped excitation-emission matrix (EEM) spectra of mixture of ACN and BSA successfully and extracted spectral profiles of pure BSA, ACN and BSA-ACN complex. Based on fluorescence quenching analysis, ACN quenched the inherent fluorescence of BSA remarkably via a static mechanism. The obtained value of binding constant (Kb = 3.82 × 105 L mol-1) revealed a high binding affinity of ACN to BSA which facilitates its distribution by blood circulation system. Furthermore, the binding parameters values revealed that one binding site in BSA was involved in BSA-ACN complex. FT-IR, UV-Vis and CD spectra showed that the conformation of BSA was altered in presence of ACN slightly. Molecular docking simulation suggested that ACN was located in the IA region of BSA and the main interactions between ACN and BSA, are van der Waals forces. The obtained results provide some insight into interactions between ACN and serum albumins at the molecular level.
Collapse
Affiliation(s)
- Fatemeh Rostamnezhad
- Laboratory of Chemometrics, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | | |
Collapse
|
5
|
Feizi-Dehnayebi M, Dehghanian E, Mansouri-Torshizi H. DNA/BSA binding affinity studies of new Pd(II) complex with S-S and N-N donor mixed ligands via experimental insight and molecular simulation: Preliminary antitumor activity, lipophilicity and DFT perspective. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Curreri AM, Mitragotri S, Tanner EEL. Recent Advances in Ionic Liquids in Biomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004819. [PMID: 34245140 PMCID: PMC8425867 DOI: 10.1002/advs.202004819] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/04/2021] [Indexed: 05/04/2023]
Abstract
The use of ionic liquids and deep eutectic solvents in biomedical applications has grown dramatically in recent years due to their unique properties and their inherent tunability. This review will introduce ionic liquids and deep eutectics and discuss their biomedical applications, namely solubilization of drugs, creation of active pharmaceutical ingredients, delivery of pharmaceuticals through biological barriers, stabilization of proteins and other nucleic acids, antibacterial agents, and development of new biosensors. Current challenges and future outlooks are discussed, including biocompatibility, the potential impact of the presence of impurities, and the importance of understanding the microscopic interactions in ionic liquids in order to design task-specific solvents.
Collapse
Affiliation(s)
- Alexander M. Curreri
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute of Biologically Inspired EngineeringBostonMA02115USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute of Biologically Inspired EngineeringBostonMA02115USA
| | - Eden E. L. Tanner
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Present address:
Department of Chemistry and BiochemistryThe University of MississippiUniversityMS38677USA
| |
Collapse
|
7
|
Qureshi MA, Javed S. Aflatoxin B 1 Induced Structural and Conformational Changes in Bovine Serum Albumin: A Multispectroscopic and Circular Dichroism-Based Study. ACS OMEGA 2021; 6:18054-18064. [PMID: 34308039 PMCID: PMC8296610 DOI: 10.1021/acsomega.1c01799] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/23/2021] [Indexed: 05/15/2023]
Abstract
Aflatoxin B1 (AFB1) is a mutagen that has been categorized as a group 1 human carcinogen by the International Agency for Research on Cancer. It is produced as a secondary metabolite by soil fungi Aspergillus flavus and Aspergillus parasiticus . Here, in this study, the effect of AFB1 on the structure and conformation of bovine serum albumin (BSA) using multispectroscopic tools like fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, and circular dichroism spectropolarimetry has been ascertained. Ultraviolet absorption spectroscopy revealed hyperchromicity in the absorption spectra of BSA in the presence of AFB1. The binding constant was calculated in the range of 104 M-1, by fluorescence spectroscopy suggesting moderate binding of the toxin to BSA. The study also confirms the static nature of fluorescence quenching. The stoichiometry of binding sites was found to be unity. The competing capability of warfarin for AFB1 was higher than ibuprofen as calculated from site marker displacement assay. Förster resonance energy transfer confirmed the high efficiency of energy transfer from BSA to AFB1. Circular dichroism spectropolarimetry showed a decrease in the α-helix in BSA in the presence of AFB1. The melting temperature of BSA underwent an increment in the presence of a mycotoxin from 62.5 to 70.3 °C. Molecular docking confirmed the binding of AFB1 to subdomain IIA in BSA.
Collapse
|
8
|
Arumugam V, Rajamanikandan R, Ilanchelian M, Xu H, Moodley KG, Gao Y. Spectroscopic and thermodynamic studies on binding behaviour of an ionic liquid, 2′,3′-Epoxypropyl-N-methyl-2-oxopyrrolidinium acetate, with bovine serum albumin (BSA). Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Ameen F, Siddiqui S, Jahan I, Nayeem SM, Rehman SU, Tabish M. A detailed insight into the interaction of memantine with bovine serum albumin: A spectroscopic and computational approach. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112671] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Phopin K, Ruankham W, Prachayasittikul S, Prachayasittikul V, Tantimongcolwat T. Insight into the Molecular Interaction of Cloxyquin (5-chloro-8-hydroxyquinoline) with Bovine Serum Albumin: Biophysical Analysis and Computational Simulation. Int J Mol Sci 2019; 21:E249. [PMID: 31905871 PMCID: PMC6981711 DOI: 10.3390/ijms21010249] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 12/21/2022] Open
Abstract
Cloxyquin is a potential therapeutic compound possessing various bioactivities, especially antibacterial, antifungal, cardioprotective, and pain relief activities. Herein, the interaction mechanism between cloxyquin and bovine serum albumin (BSA) has been elucidated in order to fulfill its pharmacokinetic and pharmacodynamic gaps essential for further development as a therapeutic drug. Multi-spectroscopic and biophysical model analysis suggested that cloxyquin interacts with BSA via a static process by ground-state complex formation. Its binding behavior emerged as a biphasic fashion with a moderate binding constant at the level of 104 M-1. Thermodynamic analysis and molecular docking simulation concurrently revealed that hydrophobic interaction is a major driving force for BSA-cloxyquin complexation. Binding of cloxyquin tends to slightly enlarge the monomeric size of BSA without a significant increase of aggregate fraction. Cloxyquin preferentially binds into the fatty acid binding site 5 (FA5) of the BSA via hydrophobic interaction amongst its quinoline scaffold and Phe550, Leu531, and Leu574 residues of BSA. The quinoline ring and hydroxyl moiety of cloxyquin also form the π-π interaction and the hydrogen bond with Phe506. Our data indicate a potential function of serum albumin as a carrier of cloxyquin in blood circulation.
Collapse
Affiliation(s)
- Kamonrat Phopin
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Waralee Ruankham
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Tanawut Tantimongcolwat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
11
|
Acharyya A, DiGiuseppi D, Stinger BL, Schweitzer-Stenner R, Vaden TD. Structural Destabilization of Azurin by Imidazolium Chloride Ionic Liquids in Aqueous Solution. J Phys Chem B 2019; 123:6933-6945. [DOI: 10.1021/acs.jpcb.9b04113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Arusha Acharyya
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - David DiGiuseppi
- Department of Chemistry, Drexel University, 32 S. 32nd Street, Philadelphia, Pennsylvania 19104, United States
| | - Brittany L. Stinger
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Reinhard Schweitzer-Stenner
- Department of Chemistry, Drexel University, 32 S. 32nd Street, Philadelphia, Pennsylvania 19104, United States
| | - Timothy D. Vaden
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| |
Collapse
|