1
|
Minhas S, Pandey RP, Hasan SW. Emerging nanomaterials incorporated in membranes for polyfluoroalkyl substances (PFAS) removal from water: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123888. [PMID: 39736225 DOI: 10.1016/j.jenvman.2024.123888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/08/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
Water purification become more challenging day by day, due to novel anthropogenic pollutants such as per- and polyfluoroalkyl substances (PFAS) used in nonstick cookware, firefighting foams, packaging etc. PFAS has adverse effects on human health and ecosystem and their physicochemical properties and unique molecular structures make the conventional water treatment methods more challenging. Among the novel PFAS removal technologies, nanomaterials incorporated in membranes are regarded as promising membrane technology for the treatment of PFAS. This review explores the incorporation of nanomaterials in membranes for PFASs removal, examining both current applications and future prospects. Nanomaterials possessing excellent features when incorporated in membranes can enhance their properties and hence makes this technology a potential candidate for PFAS removal. In this critical review, the relationships between membrane performance and properties are studied. Challenges and limitations such as high production costs, stability of nanomaterials within membranes, non-uniform distribution of nanomaterials in membrane matrices, and potential toxicity associated with nanomaterials are identified. This analysis also underscores research gap, prompting further exploration and development such as large-scale production and commercialization of mixed matrix membrane systems, optimization of membrane fabrication techniques, and the exploration of additional 2D nanomaterials.
Collapse
Affiliation(s)
- Sana Minhas
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Ravi P Pandey
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Badran I, Al‐Ejli MO. Efficient Multi‐walled Carbon Nanotubes/Iron Oxide Nanocomposite for the Removal of the Drug Ketoprofen for Wastewater Treatment Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202202976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ismail Badran
- Department of Chemistry Faculty of Sciences An-Najah National University Nablus Palestine, P.O.Box: 7
| | - Maan Omar Al‐Ejli
- Department of Chemistry and Earth Sciences College of Arts and Sciences Qatar University P.O. Box 2713 Doha Qatar College of Arts and Sciences, Qatar University
| |
Collapse
|
3
|
Barasarathi J, Abdullah PS, Uche EC. Application of magnetic carbon nanocomposite from agro-waste for the removal of pollutants from water and wastewater. CHEMOSPHERE 2022; 305:135384. [PMID: 35724716 DOI: 10.1016/j.chemosphere.2022.135384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 05/22/2023]
Abstract
Water pollution has significant impact on water usage, and various contaminants, such as organic and inorganic compounds, heavy metals, dyes, pharmaceuticals compounds, pathogens and radioactive compounds, are implicated. The quest for globalisation, structural developments and other related anthropogenic activities promote the release of contaminants that induce water pollution. Hence, treatment and remediation options that can remove pollutants from watercourses and wastewater have been developed. Applied nanotechnology using carbon nanocomposites has recently drawn attention because it has the advantages of low preparation cost, high surface area, pore volume and environmental stability. Magnetic carbon nanocomposites usually exhibit excellent performance in adsorbing contaminants from aqueous solutions, and thus expanding the use of nanotechnology in water treatment is of great importance. Therefore, this review explores the geographical outlook of water pollution, sources of water pollution and types of contaminants found in water and discusses the use of carbon nanocomposites as an emerging sustainable technology for water pollutant removal. The various properties of carbon-based composites influence the extent of pollutant adsorption during water treatment processes. Most carbon-based nanocomposites are generated from biomass produced by agro-waste materials. Magnetic activated carbon nanocomposites produced from walnut shells and rice husk waste can remove 78% of Cd(II) from contaminated aqueous systems. Magnetic nanocomposites from peanut shell, tea waste, curcumin nanoparticles, sunflower head waste, rice husk, hydrophyte biomass, palm waste and sugarcane bagasse facilitate hydrothermal carbonisation, chemical precipitation, co-precipitation, chemical activation, calcination and fast pyrolysis. These nanocomposites have benefitted wastewater treatment by increasing efficiency in removing pharmaceutical, dye and organic contaminants, such as promazine, ciprofloxacin, amoxicillin, rhodamine 6G, methyl blue, phenol and phenanthrene. Hence, this review discusses the relatively low costs, good biocompatibility, large surface-to-volume ratio, magnetic separation capability and reusability carbon materials and highlights the advantages of using magnetic carbon nanocomposites in the removal of contaminants from water or wastewater through adsorption mechanisms.
Collapse
Affiliation(s)
- Jayanthi Barasarathi
- Faculty of Health & Life Sciences (FHLS), Inti International University, Nilai, Malaysia
| | | | - Emenike Chijioke Uche
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Canada; Natural and Applied Sciences, Hezekiah University, Umudi, Nigeria.
| |
Collapse
|
4
|
Yin S, Villagrán D. Design of nanomaterials for the removal of per- and poly-fluoroalkyl substances (PFAS) in water: Strategies, mechanisms, challenges, and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154939. [PMID: 35367257 DOI: 10.1016/j.scitotenv.2022.154939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Due to their persistent and pervasive distribution and their adverse effects on human health, the removal of per- and polyfluoroalkyl substances (PFAS) from the environment has been the focus of current research. Recent studies have shown that engineered nanomaterials provide great opportunities for their removal by chemical, physical and electrochemical adsorption methods, or as photo- or electrocatalysts that promote their degradation. This review summarizes and discusses the performance of recently reported nanomaterials towards PFAS removal in water treatment applications. We discuss the performance, mechanisms, and PFAS removal conditions of a variety of nanomaterials, including carbon-based, non-metal, single-metal, and multi-metal nanomaterials. We show that nanotechnology provides significant opportunities for PFAS remediation and further nanomaterial development can provide solutions for the removal of PFAS from the environment. We also provide an overview of the current challenges.
Collapse
Affiliation(s)
- Sheng Yin
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), USA
| | - Dino Villagrán
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), USA.
| |
Collapse
|
5
|
Schio RDR, da Boit Martinello K, Netto MS, Silva LF, Mallmann ES, Dotto GL. Adsorption performance of Food Red 17 dye using an eco-friendly material based on Luffa cylindrica and chitosan. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Karimi Z, Khalili R, Ali Zazouli M. Surface modified polythiophene/Al 2O 3 and polyaniline/Al 2O 3 nanocomposites using poly(vinyl alcohol) for the removal of heavy metal ions from water: kinetics, thermodynamic and isotherm studies. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:182-199. [PMID: 34280163 DOI: 10.2166/wst.2021.224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, polythiophene/Al2O3 (PTh/Al2O3) and polyaniline/Al2O3 (PAn/Al2O3) nanocomposites in the presence of poly(vinyl alcohol) (PVA) as the surfactant were synthesized via in situ chemical oxidative polymerization method in aqueous medium. The synthesized nanocomposites were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). Results indicated that the Al2O3 and poly(vinyl alcohol) influenced the properties of synthesized nanocomposites. The aim of this research was to investigate the sorption characteristics of polythiophene and polyaniline nanocomposites for the removal of heavy metal cations including Pb(II), Zn(II) and Cd(II) from aqueous solution. The factors that affected the adsorption equilibrium as well as the removal efficiency of the nanoadsorbents, i.e., contact time, metal ion concentration, pH and adsorption conditions were investigated in detail. From the kinetic results, it was concluded that the pseudo-second-order kinetic model was found to be the best at describing the adsorption process for Pb(II), Zn(II) and Cd(II) on PTh-PVA/Al2O3 and PAn-PVA/Al2O3. In addition, thermodynamic analysis suggests the endothermic and spontaneous nature of the present adsorption process with increased entropy on PTh-PVA/Al2O3 and PAn-PVA/Al2O3. The results suggest polythiophene, polyaniline and their nanocomposites have great potential to be used as efficient absorbent for the removal of heavy metal ions from water.
Collapse
Affiliation(s)
- Zeynab Karimi
- Department of Environmental Health Engineering, Faculty of Health, Student Research Committee, Mazandaran University of Medical Science, Sari, Iran
| | - Reza Khalili
- Department of Chemical Engineering, Babol University of Technology, P.O. Box 484, Babol, Iran
| | - Mohammad Ali Zazouli
- Department of Environmental Health Engineering, Faculty of Health, Mazandaran University of Medical Science, Sari, Iran
| |
Collapse
|
7
|
Peng J, He Y, Zhou C, Su S, Lai B. The carbon nanotubes-based materials and their applications for organic pollutant removal: A critical review. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Li Z, Chen X, Qiu L, Wang Y, Zhou Z. Nano Porous Carbon Derived from Citrus Pomace for the Separation and Purification of PMFs in Citrus Processing Wastes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:nano10101914. [PMID: 32992899 PMCID: PMC7600721 DOI: 10.3390/nano10101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
The by-product of citrus juice processing is a huge source of bioactive compounds, especially polymethoxyflavones (PMFs) and fibers. In this study, a method for the separation and purification of PMFs from citrus pomace was established based on citrus nanoporous carbon (CNPC) enrichment. Different biomass porous carbons were synthesized, their adsorption/desorption characteristics were evaluated, and the CNPCs from the peel of Citrus tangerina Tanaka were found to be best for the enrichment of PMFs from the crude extracts of citrus pomace. Using this method, six PMF compounds including low-abundant PMFs in citrus fruits such as 5,6,7,4'-tetramethoxyflavone and 5-hydroxy-6,7,8,3',4'-pentamethoxyflavone can be simultaneously obtained, and the purities of these compounds were all higher than 95%, with the highest purity of nobiletin reaching 99.96%. Therefore, CNPCs have a great potential for the separation and purification of PMFs in citrus processing wastes, potentially improving the added value of citrus wastes. We also provide a method reference for disposing of citrus pomace in the future.
Collapse
Affiliation(s)
- Zhenqing Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Z.L.); (X.C.); (L.Q.); (Y.W.)
| | - Xin Chen
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Z.L.); (X.C.); (L.Q.); (Y.W.)
| | - Lulu Qiu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Z.L.); (X.C.); (L.Q.); (Y.W.)
| | - Yu Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Z.L.); (X.C.); (L.Q.); (Y.W.)
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Z.L.); (X.C.); (L.Q.); (Y.W.)
- The Southwest Institute of Fruits Nutrition, Banan District, Chongqing 400054, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
9
|
Avcı A, İnci İ, Baylan N. Adsorption of ciprofloxacin hydrochloride on multiwall carbon nanotube. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127711] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Çelebican Ö, İnci İ, Baylan N. Modeling and optimization of formic acid adsorption by multiwall carbon nanotube using response surface methodology. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127312] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Çelebican Ö, İnci İ, Baylan N. Investigation of adsorption properties of levulinic acid by a nanotechnological material. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Yan L, Zhu G, Guan J, Han G. One‐Pot Synthesis of Magnetic Nanoparticles Encapsulated by Carbon Nanotube for Selective Aromatic Compound Adsorption. ChemistrySelect 2019. [DOI: 10.1002/slct.201902910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Li Yan
- College of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Geng Zhu
- College of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Jian‐Ning Guan
- College of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Guo‐Zhi Han
- College of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| |
Collapse
|