1
|
Cheng Q, Abdiryim T, Jamal R, Liu X, Liu F, Xue C, Tang X, Chen J, Wei J. Detection of tetracycline by molecularly imprinted electrochemical sensor based on the modification of poly(3,4-propylene dioxythiophene)/chitosan/au. Int J Biol Macromol 2024; 281:136468. [PMID: 39393732 DOI: 10.1016/j.ijbiomac.2024.136468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/04/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
In this study, a molecularly imprinted polymer (MIP) electrochemical sensor based on poly(3,4-propylenedioxythiophene)/chitosan/Au (PProDOT/CS/Au) composite modification was designed for highly sensitive and selective detection of TC. Green synthesis of CS/Au without the use of reducing agents, followed by in-situ oxidation polymerization of PProDOT. The high electrochemical activity and high stability of PProDOT, the numerous functional groups (-OH, -NH2) of CS, and the excellent electron transport capacity of AuNPs, which provided a suitable incubation chamber for the production of imprinted cavities. Meanwhile, combined with the specific recognition ability of MIP, it showed superior performance over bare glassy carbon electrodes. Under the optimal experimental conditions, this sensor showed good linearity for TC in the concentration ranges of 0.0001-100 μM, with a low limit of detection (LOD) of 0.19 nM. At the same time, the sensor exhibited satisfactory selectivity, repeatability, reproducibility and stability. It was evident from the results of the study that the sensor designed in this paper showed considerable potential for application in the detection of TC in pharmaceuticals, the environment, and food samples.
Collapse
Affiliation(s)
- Qian Cheng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Tursun Abdiryim
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Ruxangul Jamal
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, Xinjiang, PR China.
| | - Xiong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Fangfei Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Cong Xue
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Xinsheng Tang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Jiaying Chen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Jin Wei
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| |
Collapse
|
2
|
Ma Q, Wei Y, Zhao N, Wang S, Zhang B, Liu D, Yuan P. Construction of an allophane-based molecularly imprinted polymer for the efficient removal of antibiotic from aqueous solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166464. [PMID: 37607629 DOI: 10.1016/j.scitotenv.2023.166464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
The widespread presence of ciprofloxacin (CIP) antibiotic in the water and soil poses substantial potential risks to the environment, threatening both human and animal health. In this study, we used nanoclay mineral allophane (Allo), β-cyclodextrin (β-CD) as a bifunctional monomer, and sodium alginate as a cross-linking agent, to prepare 3D porous Allo-β-CD molecularly imprinted polymers (MIPs) for the efficient removal of CIP from aqueous solution. The prepared Allo-β-CD MIP was characterized by scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and zeta potential measurements. The effects of initial concentration, time, pH level, and ion concentration on CIP removal dynamics were systematically studied. The adsorption kinetics and equilibrium data of CIP were well-fitted by the pseudo-second-order kinetic model and Langmuir isotherm models, respectively. The Allo-β-CD MIP can efficiently remove CIP from an aqueous solution, with a maximal adsorption capacity of 635 mg/g. It also has impressive recyclability, and enhanced selectivity, and is widely adaptable to various environmental conditions. The adsorption mechanisms of the as-prepared adsorbent include H bonds, hydrophobic interactions, surface complexation, and n-π EDA interactions. Given the experimental evidence, as-prepared adsorbent is therefore a promising candidate for the effective removal of CIP from the aquatic environment.
Collapse
Affiliation(s)
- Qiyi Ma
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfu Wei
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, 999078, Macao
| | - Ning Zhao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shun Wang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Neutron Science Platform, Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Baifa Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Dong Liu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Yuan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
3
|
Bhatt P, Joshi S, Urper Bayram GM, Khati P, Simsek H. Developments and application of chitosan-based adsorbents for wastewater treatments. ENVIRONMENTAL RESEARCH 2023; 226:115530. [PMID: 36863653 DOI: 10.1016/j.envres.2023.115530] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/05/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Water quality is deteriorating continuously as increasing levels of toxic inorganic and organic contaminants mostly discharging into the aquatic environment. Removal of such pollutants from the water system is an emerging research area. During the past few years use of biodegradable and biocompatible natural additives has attracted considerable attention to alleviate pollutants from wastewater. The chitosan and its composites emerged as a promising adsorbents due to their low price, abundance, amino, and hydroxyl groups, as well as their potential to remove various toxins from wastewater. However, a few challenges associated with its practical use include lack of selectivity, low mechanical strength, and solubility in acidic medium. Therefore, several approaches for modification have been explored to improve the physicochemical properties of chitosan for wastewater treatment. Chitosan nanocomposites found effective for the removal of metals, pharmaceuticals, pesticides, microplastics from the wastewaters. Nanoparticle doped with chitosan in the form of nano-biocomposites has recently gained much attention and proven a successful tool for water purification. Hence, applying chitosan-based adsorbents with numerous modifications is a cutting-edge approach to eliminating toxic pollutants from aquatic systems with the global aim of making potable water available worldwide. This review presents an overview of distinct materials and methods for developing novel chitosan-based nanocomposites for wastewater treatment.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| | - Samiksha Joshi
- Graphic Era Hill University Bhimtal, Nainital, Uttarakhand, India
| | - Gulsum Melike Urper Bayram
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Priyanka Khati
- Crop Production Division, Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
4
|
Sharma P, Sharma M, Laddha H, Gupta R, Agarwal M. Non-toxic and biodegradable κ-carrageenan/ZnO hydrogel for adsorptive removal of norfloxacin: Optimization using response surface methodology. Int J Biol Macromol 2023; 238:124145. [PMID: 36958451 DOI: 10.1016/j.ijbiomac.2023.124145] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Antibiotic resistance is increasing globally due to increased prescription and easy dispensing of antibiotic drugs universally. Hence, to mitigate this effect, efficient, biodegradable, and non-toxic adsorbents are required to be developed. Carrageenan (CG), a natural polymer, having multiple functional groups, provides a backbone for crosslinking with borax and incorporation of ZnO nanoparticles that formed borax-cross-linked κ-carrageenan (CG/Bx/ZnO) hydrogel which is used for efficient adsorption of norfloxacin from water. Surface morphology of as-synthesized hydrogel revealed the rough surface, which was determined by FESEM. Surface area of CG/Bx/ZnO hydrogel was found to be 22.90 m2/g with 3.41 nm pore radius. Systematic batch adsorption studies revealed that 99.4 % removal efficiency could be achieved at a dosage level of 20 mg/L of norfloxacin with 10 mg of hydrogel at pH of 4 in 8 h at room temperature. Experimentally optimized key parameters affecting the overall efficiency of adsorption matched well with the results assessed from ANOVA using Box-Behnken composite design model. The adsorption process was well fitted with the pseudo-second-order model and Langmuir isotherm with 1282.05 mg/g adsorption capacity. Thermodynamic study results show that adsorption is spontaneous and endothermic. The CG/Bx/ZnO hydrogel demonstrated excellent repeatability with minimal loss in norfloxacin adsorption for seven cycles.
Collapse
Affiliation(s)
- Priya Sharma
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Manish Sharma
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Harshita Laddha
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Ragini Gupta
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India; Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India.
| | - Madhu Agarwal
- Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India.
| |
Collapse
|
5
|
Dutta J, Mala AA, Kyzas GZ. Chitosan beads coated with almond and walnut shells for the adsorption of gatifloxacin antibiotic compound from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23553-23567. [PMID: 36327083 DOI: 10.1007/s11356-022-23892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In the present study, chitosan (C), walnut (W), and almond shell (A) powder adsorbent (in different combinations as almond shells:walnut:chitosan 2:1:1 (AWC), chitosan:almond shell:walnut 2:1:1 (CAW), and walnut:almond shells:chitosan 2:1:1 (WAC)) powder were combined in different ratios to produce low-cost composite adsorbent beads for the removal of antibiotics gatifloxacin (GAT) from synthetic wastewater. The beads were characterized by a scanning electron microscope, Fourier transform infrared spectrum spectrophotometer, and energy-dispersive X-ray spectroscopy. The batch adsorption approach was employed to remove the antibiotic from the water. Moreover, isotherm and kinetics were conducted to illustrate the adsorption mechanism. Parameters like the effect of the adsorbent's dosage, pH, initial concentration, and contact time on antibiotic adsorption were evaluated. Adsorption percentage increased slightly with the increase in adsorbent dosage. The optimum pH for GAT adsorption on beads was 5-7. In addition, adsorption increased with initial antibiotic concentration and time rise. The adsorption isotherm data were successfully fitted to Langmuir isotherm for AWC and CAW beads, while WAC beads followed the Freundlich isotherm. The highest adsorption was attained at pH 5 on CAW beads and pH 7 on AWC and WAC beads. The optimal contact time for equilibrium studies was 120 min for all types of beads. The adsorption isotherm data in AWC beads fit well with the Langmuir model and Freundlich adsorption for CAW and WAC beads. The rate of adsorption on beads follows Lagergren pseudo-second-order kinetics. The results indicate that prepared combination beads can be used to remove antibiotics from wastewater.
Collapse
Affiliation(s)
- Joydeep Dutta
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Aijaz Ahmad Mala
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, 654 04, Kavala, Greece
| |
Collapse
|
6
|
Osman D, Uyanık İ, Mıhçıokur H, Özkan O. Evaluation of ciprofloxacin (CIP) and clarithromycin (CLA) adsorption with weathered PVC microplastics. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:498-505. [PMID: 37073438 DOI: 10.1080/10934529.2023.2198475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The sorption kinetics of two of the most frequently used antibiotics onto recycled (weathered) polyvinyl chloride (PVC) was investigated, using Freundlich and Langmuir isotherm models. Various experimental conditions were set, including pH, contact time, rotational speed, temperature, and initial concentration. The batch experimental results indicated that Freundlich model was better fitted than Langmuir (R2: 98.7 and 84.7, for CIP and CLA respectively). Maximum adsorption capacity is 45.9 mg/g and 22.0 mg/g for CIP and CLA, respectively. Enthalpy (ΔH), and entropy (ΔS) values were negative for CIP, indicating that the reaction was exothermic and spontaneous, respectively. It was vice versa for CLA. Field emission scanning electron microscope (FESEM) and Fourier transform infrared spectrometer (FT-IR) analysis confirmed the physical adsorption mechanism. The results demonstrated that the recycled PVC microplastic has a good capacity for adsorption for both antibiotics.
Collapse
Affiliation(s)
- Duygu Osman
- Environmental Engineering Department, Erciyes University, Kayseri, Turkey
| | - İbrahim Uyanık
- Environmental Engineering Department, Erciyes University, Kayseri, Turkey
- Environmental Problems and Cleaner Production Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Hamdi Mıhçıokur
- Environmental Engineering Department, Erciyes University, Kayseri, Turkey
| | - Oktay Özkan
- Environmental Engineering Department, Erciyes University, Kayseri, Turkey
| |
Collapse
|
7
|
Ma Y, Wang X, Su T, Lu F, Chang Q, Gao J. Recent Advances in Macroporous Hydrogels for Cell Behavior and Tissue Engineering. Gels 2022; 8:606. [PMID: 36286107 PMCID: PMC9601978 DOI: 10.3390/gels8100606] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Hydrogels have been extensively used as scaffolds in tissue engineering for cell adhesion, proliferation, migration, and differentiation because of their high-water content and biocompatibility similarity to the extracellular matrix. However, submicron or nanosized pore networks within hydrogels severely limit cell survival and tissue regeneration. In recent years, the application of macroporous hydrogels in tissue engineering has received considerable attention. The macroporous structure not only facilitates nutrient transportation and metabolite discharge but also provides more space for cell behavior and tissue formation. Several strategies for creating and functionalizing macroporous hydrogels have been reported. This review began with an overview of the advantages and challenges of macroporous hydrogels in the regulation of cellular behavior. In addition, advanced methods for the preparation of macroporous hydrogels to modulate cellular behavior were discussed. Finally, future research in related fields was discussed.
Collapse
Affiliation(s)
| | | | | | | | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China
| |
Collapse
|
8
|
Cui F, Li H, Chen C, Wang Z, Liu X, Jiang G, Cheng T, Bai R, Song L. Cattail fibers as source of cellulose to prepare a novel type of composite aerogel adsorbent for the removal of enrofloxacin in wastewater. Int J Biol Macromol 2021; 191:171-181. [PMID: 34509521 DOI: 10.1016/j.ijbiomac.2021.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/19/2021] [Accepted: 09/04/2021] [Indexed: 12/26/2022]
Abstract
In this study, cattail was researched as a natural cellulose source to extract cellulose. Dewaxing, alkali and bleaching treatments were carried out for the cattail fibers (CFs). The FTIR, SEM and XRD results indicated that hemicellulose and lignin were successfully removed from the CFs, and the content of cattail cellulose increased from 41.66 ± 1.11% to 89.72 ± 1.07%. Subsequently, cellulose aerogel was prepared by the extracted cattail cellulose. The Zeolitic imidazolate framework-8 (ZIF-8) was uniformly loaded onto the surface of cellulose aerogel by the in situ growth, and ZIF-8 Cattail Cellulose Aerogel (ZCCA) was finally prepared. The SEM, FTIR, XRD and TGA results further confirmed the successful preparation of ZCCA. Additionally, the results of the adsorption experiment showed that ZCCA had excellent adsorption performance for enrofloxacin, and the maximum adsorption capacity of enrofloxacin reached 172.09 mg·g-1 while showing good reusability. The adsorption process followed the pseudo-second-order kinetic model and the Langmuir isotherm model. Thermodynamic studies showed that the adsorption of enrofloxacin was a spontaneous endothermic reaction and that the adsorption mechanism involves the interaction of hydrogen bonds, electrostatic and π-π stacking.
Collapse
Affiliation(s)
- Fengjiao Cui
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Huidong Li
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China.
| | - Chen Chen
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Zhixia Wang
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Xinxin Liu
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Gang Jiang
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Tianjia Cheng
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Runying Bai
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Lei Song
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| |
Collapse
|
9
|
Langmuir Monolayer Techniques for the Investigation of Model Bacterial Membranes and Antibiotic Biodegradation Mechanisms. MEMBRANES 2021; 11:membranes11090707. [PMID: 34564524 PMCID: PMC8471293 DOI: 10.3390/membranes11090707] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022]
Abstract
The amounts of antibiotics of anthropogenic origin released and accumulated in the environment are known to have a negative impact on local communities of microorganisms, which leads to disturbances in the course of the biodegradation process and to growing antimicrobial resistance. This mini-review covers up-to-date information regarding problems related to the omnipresence of antibiotics and their consequences for the world of bacteria. In order to understand the interaction of antibiotics with bacterial membranes, it is necessary to explain their interaction mechanism at the molecular level. Such molecular-level interactions can be probed with Langmuir monolayers representing the cell membrane. This mini-review describes monolayer experiments undertaken to investigate the impact of selected antibiotics on components of biomembranes, with particular emphasis on the role and content of individual phospholipids and lipopolysaccharides (LPS). It is shown that the Langmuir technique may provide information about the interactions between antibiotics and lipids at the mixed film surface (π–A isotherm) and about the penetration of the active substances into the phospholipid monolayer model membranes (relaxation of the monolayer). Effects induced by antibiotics on the bacterial membrane may be correlated with their bactericidal activity, which may be vital for the selection of appropriate bacterial consortia that would ensure a high degradation efficiency of pharmaceuticals in the environment.
Collapse
|
10
|
Ndlovu SP, Ngece K, Alven S, Aderibigbe BA. Gelatin-Based Hybrid Scaffolds: Promising Wound Dressings. Polymers (Basel) 2021; 13:2959. [PMID: 34502997 PMCID: PMC8434607 DOI: 10.3390/polym13172959] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Wound care is a major biomedical field that is challenging due to the delayed wound healing process. Some factors are responsible for delayed wound healing such as malnutrition, poor oxygen flow, smoking, diseases (such as diabetes and cancer), microbial infections, etc. The currently used wound dressings suffer from various limitations, including poor antimicrobial activity, etc. Wound dressings that are formulated from biopolymers (e.g., cellulose, chitin, gelatin, chitosan, etc.) demonstrate interesting properties, such as good biocompatibility, non-toxicity, biodegradability, and attractive antimicrobial activity. Although biopolymer-based wound dressings display the aforementioned excellent features, they possess poor mechanical properties. Gelatin, a biopolymer has excellent biocompatibility, hemostatic property, reduced cytotoxicity, low antigenicity, and promotes cellular attachment and growth. However, it suffers from poor mechanical properties and antimicrobial activity. It is crosslinked with other polymers to enhance its mechanical properties. Furthermore, the incorporation of antimicrobial agents into gelatin-based wound dressings enhance their antimicrobial activity in vitro and in vivo. This review is focused on the development of hybrid wound dressings from a combination of gelatin and other polymers with good biological, mechanical, and physicochemical features which are appropriate for ideal wound dressings. Gelatin-based wound dressings are promising scaffolds for the treatment of infected, exuding, and bleeding wounds. This review article reports gelatin-based wound dressings which were developed between 2016 and 2021.
Collapse
Affiliation(s)
| | | | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice 5700, South Africa; (S.P.N.); (K.N.); (S.A.)
| |
Collapse
|
11
|
Berges J, Moles S, Ormad MP, Mosteo R, Gómez J. Antibiotics removal from aquatic environments: adsorption of enrofloxacin, trimethoprim, sulfadiazine, and amoxicillin on vegetal powdered activated carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8442-8452. [PMID: 33063209 DOI: 10.1007/s11356-020-10972-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
This study addresses the growing concern about the high levels of antibiotics in water, outlining an alternative for their removal. The adsorption of four representative antibiotics from commonly used families (fluoroquinolones, β-lactams, trimethoprim, and sulfonamides) was performed over vegetal powdered activated carbon. The evolution of the adsorption was studied during 60 min for different initial antibiotic concentrations, not only individually but also simultaneously to determine competitive adsorption. Moreover, this research studied the adsorption isotherms and kinetics of the process, as well as the pH influence; FTIR of the activated carbon before and after adsorption was carried out. Trimethoprim and sulfadiazine showed more affinity for the adsorbent than amoxicillin and enrofloxacin. This trend might be attributed to their structure, capable of stablishing stronger π-π interactions with the adsorbent, which showed high affinity for the active sites of the adsorbent via FTIR. In addition, the sorption isotherms of trimethoprim followed a Langmuir type isotherm, amoxicillin followed a Freundlich type isotherm, and enrofloxacin and sulfadiazine followed both. The antibiotics followed pseudo-second-order kinetics. Sulfadiazine and amoxicillin gave better performances in acidic conditions. By contrast, the sorption of trimethoprim was favored in basic environments. Variations of pH had a negligible effect on the removal of enrofloxacin.
Collapse
Affiliation(s)
- Javier Berges
- Research Group Agua y Salud Ambiental, University of Zaragoza, Zaragoza, Spain.
| | - Samuel Moles
- Research Group Agua y Salud Ambiental, University of Zaragoza, Zaragoza, Spain
| | - María P Ormad
- Research Group Agua y Salud Ambiental, University of Zaragoza, Zaragoza, Spain
| | - Rosa Mosteo
- Research Group Agua y Salud Ambiental, University of Zaragoza, Zaragoza, Spain
| | - Jairo Gómez
- Navarra de Infraestructuras Locales SA, Pamplona, Spain
| |
Collapse
|
12
|
Saremi F, Miroliaei MR, Shahabi Nejad M, Sheibani H. Adsorption of tetracycline antibiotic from aqueous solutions onto vitamin B6-upgraded biochar derived from date palm leaves. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114126] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Gordi Z, Ghorbani M, Ahmadian Khakhiyani M. Adsorptive removal of enrofloxacin with magnetic functionalized graphene oxide@ metal-organic frameworks employing D-optimal mixture design. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1935-1947. [PMID: 32319707 DOI: 10.1002/wer.1346] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/08/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
A novel sorbent based on a mixture of magnetic functionalized graphene oxide and MOFs was developed to remove enrofloxacin (EFX) from water samples. The prepared sorbent was characterized using Fourier transform infrared spectra, scanning electron microscope images, and X-ray powder diffraction pattern. The sorbent compositions were optimized by the mixture experimental design. Under the optimal condition, the percentages of each sorbent component, including triethylene tetramine-functionalized graphene oxide (FGO), Fe3 O4 , and MOF-5, were 40%, 21%, and 39%, respectively. Besides, the intraparticle diffusion and pseudo-second-order kinetic models can describe the EFX adsorption procedure because of two adsorption mechanisms of EFX on FGO and MOF-5. A positive standard enthalpy of 49.80 kJ/mol indicated the EFX adsorption is endothermic with a chemisorption process. The negative values of ΔGo obtained in the range of -8.979 to -3.431 kJ/mol at all studied temperatures showed that the adsorption process was also spontaneous. The Langmuir and Freundlich isotherm models were analyzed with the partition coefficient to reduce bias in the isotherm model evaluation. The maximum adsorption capacity of 344.83 mg/g and a high partition coefficient of 17.42 g/L in an initial EFX concentration of 10 mg/L were obtained for the EFX removal. PRACTITIONER POINTS: Magnetic functionalized graphene oxide @MOF-5 as a sorbent for the enrofloxacin removal is synthesized. The percentage amount of each component of the sorbent is optimized using the D-optimal mixture design. Adsorption mechanisms of enrofloxacin on magnetic functionalized graphene oxide @MOF-5 are discussed. Thermodynamic parameters for the enrofloxacin adsorption with the sorbents are determined. Isotherm model for the enrofloxacin removal with the sorbent is investigated.
Collapse
Affiliation(s)
- Zinat Gordi
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | - Mahdi Ghorbani
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | | |
Collapse
|
14
|
Dutta J, Mala AA. Removal of antibiotic from the water environment by the adsorption technologies: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:401-426. [PMID: 32960788 DOI: 10.2166/wst.2020.335] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Antibiotics are known as emergent pollutants because of their toxicological properties. Due to continuous discharge and persistence in the aquatic environment, antibiotics are detected almost in every environmental matrix. Therefore antibiotics that are polluting the aquatic environment have gained significant research interest for their removal. Several techniques have been used to remove pollutants, but appropriate technology is still to be found. This review addresses the use of modified and cheap materials for antibiotic removal from the environment.
Collapse
Affiliation(s)
- Joydeep Dutta
- Department of Zoology School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India E-mail:
| | - Aijaz Ahmad Mala
- Department of Zoology School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India E-mail:
| |
Collapse
|
15
|
Mashile GP, Dimpe KM, Nomngongo PN. A Biodegradable Magnetic Nanocomposite as a Superabsorbent for the Simultaneous Removal of Selected Fluoroquinolones from Environmental Water Matrices: Isotherm, Kinetics, Thermodynamic Studies and Cost Analysis. Polymers (Basel) 2020; 12:polym12051102. [PMID: 32408684 PMCID: PMC7285333 DOI: 10.3390/polym12051102] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 02/05/2023] Open
Abstract
The application of a magnetic mesoporous carbon/β-cyclodextrin–chitosan (MMPC/Cyc-Chit) nanocomposite for the adsorptive removal of danofloxacin (DANO), enrofloxacin (ENRO) and levofloxacin (LEVO) from aqueous and environmental samples is reported in this study. The morphology and surface characteristics of the magnetic nanocomposite were investigated by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption–desorption and Fourier transform infrared spectroscopy (FTIR). The N2 adsorption–desorption results revealed that the prepared nanocomposite was mesoporous and the BET surface area was 1435 m2 g−1. The equilibrium data for adsorption isotherms were analyzed using two and three isotherm parameters. Based on the correlation coefficients (R2), the Langmuir and Sips isotherm described the data better than others. The maximum monolayer adsorption capacities of MMPC/Cyc-Chit nanocomposite for DANO, ENRO and LEVO were 130, 195 and 165 mg g−1, respectively. Adsorption thermodynamic studies performed proved that the adsorption process was endothermic and was dominated by chemisorption.
Collapse
Affiliation(s)
- Geaneth Pertunia Mashile
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa; (G.P.M.); (K.M.D.)
- DSI/NRF SARChI Chair: Nanotechnology for Water, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Kgokgobi Mogolodi Dimpe
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa; (G.P.M.); (K.M.D.)
- DSI/NRF SARChI Chair: Nanotechnology for Water, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa; (G.P.M.); (K.M.D.)
- DSI/NRF SARChI Chair: Nanotechnology for Water, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- Correspondence: ; Tel.: +27115596187
| |
Collapse
|
16
|
Kumar A, Kumari A, Sharma G, Du B, Naushad M, Stadler FJ. Carbon quantum dots and reduced graphene oxide modified self-assembled S@C3N4/B@C3N4 metal-free nano-photocatalyst for high performance degradation of chloramphenicol. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112356] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
|
18
|
Tian B, Hua S, Tian Y, Liu J. Chemical and physical chitosan hydrogels as prospective carriers for drug delivery: a review. J Mater Chem B 2020; 8:10050-10064. [DOI: 10.1039/d0tb01869d] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes and discusses recent research progress in chemical and physical chitosan hydrogels for drug delivery.
Collapse
Affiliation(s)
- Bingren Tian
- School of Chemical Engineering and Technology
- Xinjiang University
- Urumchi 830046
- China
| | - Shiyao Hua
- School of Pharmacy
- Ningxia Medical University
- Yinchuan 750004
- China
| | - Yu Tian
- School of Computer Science and Engineering
- Beihang University
- Beijing 100083
- China
| | - Jiayue Liu
- School of Pharmacy
- Ningxia Medical University
- Yinchuan 750004
- China
| |
Collapse
|
19
|
Yang Y, Zheng L, Zhang T, Yu H, Zhan Y, Yang Y, Zeng H, Chen S, Peng D. Adsorption behavior and mechanism of sulfonamides on phosphonic chelating cellulose under different pH effects. BIORESOURCE TECHNOLOGY 2019; 288:121510. [PMID: 31150967 DOI: 10.1016/j.biortech.2019.121510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Phosphonic chelating fiber (PCCSF) as a novel adsorbent was produced through alkalization, etherification, amination and phosphonation, and then it was applied to adsorb sulfonamides (SAs), such as sulfadiazine (SD), sulfamonomethoxine (SMM) and sulfamethoxazole (SMZ). Specially, their adsorption behavior at different pH values was studied. As a result, PCCSF was provided with amino (NH2 or NH) and PO(OH)2 (PO) groups, and its equilibrium data were generally represented by both Langmuir and Freundlich models. Combining adsorbent-to-solution distribution coefficients (Kd) values and the effect of pH, the primary mechanism suggested that adsorption capacity of PCCSF was lower in strong acid and alkali solution, due to the electrostatic repulsion and hydrophobic interactions. By contrast, its adsorption affinity became more excellent at 3 < pH < 9 owing to the π-π electron-donor-acceptor (EDA) charge-assisted H-bond, Lewis acid-base interaction and charge-assisted H-bond (CAHB).
Collapse
Affiliation(s)
- Yuebei Yang
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Liuchun Zheng
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China.
| | - Tao Zhang
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Huajian Yu
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Yiru Zhan
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Yufang Yang
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Hao Zeng
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Shukai Chen
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Dan Peng
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| |
Collapse
|