1
|
Farhan A, Qayyum W, Fatima U, Nawaz S, Balčiūnaitė A, Kim TH, Srivastava V, Vakros J, Frontistis Z, Boczkaj G. Powering the Future by Iron Sulfide Type Material (Fe xS y) Based Electrochemical Materials for Water Splitting and Energy Storage Applications: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402015. [PMID: 38597684 DOI: 10.1002/smll.202402015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Water electrolysis is among the recent alternatives for generating clean fuels (hydrogen). It is an efficient way to produce pure hydrogen at a rapid pace with no unwanted by-products. Effective and cheap water-splitting electrocatalysts with enhanced activity, specificity, and stability are currently widely studied. In this regard, noble metal-free transition metal-based catalysts are of high interest. Iron sulfide (FeS) is one of the essential electrocatalysts for water splitting because of its unique structural and electrochemical features. This article discusses the significance of FeS and its nanocomposites as efficient electrocatalysts for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), and overall water splitting. FeS and its nanocomposites have been studied also for energy storage in the form of electrode materials in supercapacitors and lithium- (LIBs) and sodium-ion batteries (SIBs). The structural and electrochemical characteristics of FeS and its nanocomposites, as well as the synthesis processes, are discussed in this work. This discussion correlates these features with the requirements for electrocatalysts in overall water splitting and its associated reactions. As a result, this study provides a road map for researchers seeking economically viable, environmentally friendly, and efficient electrochemical materials in the fields of green energy production and storage.
Collapse
Affiliation(s)
- Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Wajeeha Qayyum
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Urooj Fatima
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Shahid Nawaz
- Department of Catalysis, Center for Physical Sciences and Technology, Sauletekio av. 3, Vilnius, LT-10257, Lithuania
| | - Aldona Balčiūnaitė
- Department of Catalysis, Center for Physical Sciences and Technology, Sauletekio av. 3, Vilnius, LT-10257, Lithuania
| | - Tak H Kim
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Varsha Srivastava
- Research Unit of Sustainable Chemistry, Faculty of Technology, University of Oulu, Oulu, FI-90014, Finland
| | - John Vakros
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, Patras, GR 265 04, Greece
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Western Macedonia, Kozani, GR-50132, Greece
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk, 80-233, Poland
- EkoTech Center, Gdańsk University of Technology, G. Narutowicza St. 11/12, Gdansk, 80-233, Poland
| |
Collapse
|
2
|
Shah BA, Sardar A, Liu K, Din STU, Li S, Yuan B. Ultrathin TiS 2@N,S-Doped Carbon Hybrid Nanosheets as Highly Efficient Photoresponsive Antibacterial Agents. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27011-27027. [PMID: 38743026 DOI: 10.1021/acsami.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Nanobactericides are employed as a promising class of nanomaterials for eradicating microbial infections, considering the rapid resistance risks of conventional antibiotics. Herein, we present a pioneering approach, reporting the synthesis of two-dimensional titanium disulfide nanosheets coated by nitrogen/sulfur-codoped carbon nanosheets (2D-TiS2@NSCLAA hybrid NSs) using a rapid l-ascorbic acid-assisted sulfurization of Ti3C2Tx-MXene to achieve efficient alternative bactericides. The as-developed materials were systematically characterized using a suite of different spectroscopy and microscopy techniques, in which the X-ray diffraction/Raman spectroscopy/X-ray photoelectron spectroscopy data confirm the existence of TiS2 and C, while the morphological investigation reveals single- to few-layered TiS2 NSs confined by N,S-doped C, suggesting the successful synthesis of the ultrathin hybrid NSs. From in vitro evaluation, the resultant product demonstrates impressive bactericidal potential against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria, achieving a substantial decrease in the bacterial viability under a 1.2 J dose of visible-light irradiation at the lowest concentration of 5 μg·mL-1 compared to Ti3C2Tx (15 μg·mL-1), TiS2-C (10 μg·mL-1), and standard antibiotic ciprofloxacin (15 μg·mL-1), respectively. The enhanced degradation efficiency is attributed to the ultrathin TiS2 NSs encapsulated within heteroatom N,S-doped C, facilitating effective photogenerated charge-carrier separation that generates multiple reactive oxygen species (ROS) and induced physical stress as well as piercing action due to its ultrathin structure, resulting in multimechanistic cytotoxicity and damage to bacterial cells. Furthermore, the obtained results from molecular docking studies conducted via computational simulation (in silico) of the as-synthesized materials against selected proteins (β-lactamasE. coli/DNA-GyrasE. coli) are well-consistent with the in vitro antibacterial results, providing strong and consistent validation. Thus, this sophisticated study presents a simple and effective synthesis technique for the structural engineering of metal sulfide-based hybrids as functionalized synthetic bactericides.
Collapse
Affiliation(s)
- Basit Ali Shah
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, People's Republic of China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, People's Republic of China
| | - Asma Sardar
- Department of Chemistry, Hazara University, Mansehra 21300, Khyber-Pakhtunkhwa, Pakistan
| | - Kai Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, People's Republic of China
| | - Syed Taj Ud Din
- Department of Physics, Dongguk University, Seoul 04620, Republic of Korea
| | - Shaobo Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, People's Republic of China
| | - Bin Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, People's Republic of China
- Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, Guangzhou 510640, Guangdong, People's Republic of China
| |
Collapse
|
3
|
Jana TK, Chatterjee K. Hybrid nanostructures exhibiting both photocatalytic and antibacterial activity-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95215-95249. [PMID: 37597146 DOI: 10.1007/s11356-023-29015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
The most vital issues of the modern world for a sustainable future are "health" and "the environment." Scientific endeavors to tackle these two major concerns for mankind need serious attention. The photocatalytic activity toward curbing environmental pollution and antibacterial performance toward a healthy society are two directions that have been emphasized for decades. Recently, materials engineering, in their nanodimension, has shown tremendous possibilities to integrate these functionalities within the same materials. In particular, hybrid nanostructures have shown magnificent prospects to combat both crucial challenges. Many researchers are separately engaged in this important field of research but the collective knowledge on this domain which can facilitate them to excel is badly missing. The present article integrates the development of different hybrid nanostructures which exhibit both photocatalytic degradations of environmental pollutants and antibacterial efficiency. Various synthesis techniques of those hybrid nanomaterials have been discussed. Hybrid nanosystems based on several successful materials have been categorically discussed for better insight into the research advancement in this direction. In particular, Ag-based, metal oxides-based, layered carbon material-based, and Mexene- and self-cleaning-based materials have been chosen for detailing their performance as anti-pollutant and antibacterial materials. Those hybrid systems along with some miscellaneous booming nanostructured materials have been discussed comprehensively with their success and limitations toward their bifunctionality as antipollutant and antibacterial agents.
Collapse
Affiliation(s)
- Tushar Kanti Jana
- Department of Physics, Vidyasagar University, Midnapore, 721102, India
| | - Kuntal Chatterjee
- Department of Physics, Vidyasagar University, Midnapore, 721102, India.
| |
Collapse
|
4
|
Shan Y, Lu W, Xi J, Qian Y. Biomedical applications of iron sulfide-based nanozymes. Front Chem 2022; 10:1000709. [PMID: 36105309 PMCID: PMC9465017 DOI: 10.3389/fchem.2022.1000709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Nanozymes have attracted great interest owing to their marvelous advantages, such as high stability, facile preparation, and high tunability. In particular, iron sulfide-based nanozymes (termed as ISNs), as one of the most researched nanomaterials with versatile enzyme-mimicking properties, have proved their potential in biomedical applications. In this review, we briefly summarize the classification, catalytic mechanisms of ISNs and then principally introduce ISNs’ biomedical applications in biosensors, tumor therapy, antibacterial therapy, and others, demonstrating that ISNs have promising potential for alleviating human health.
Collapse
Affiliation(s)
- Yunyi Shan
- Department of Pharmacology, School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Wenjie Lu
- Department of Pharmacology, School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Juqun Xi
- Department of Pharmacology, School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
| | - Yayun Qian
- Department of Pharmacology, School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
- *Correspondence: Yayun Qian,
| |
Collapse
|
5
|
Mathematical Modeling for an MTT Assay in Fluorine-Containing Graphene Quantum Dots. NANOMATERIALS 2022; 12:nano12030413. [PMID: 35159758 PMCID: PMC8838801 DOI: 10.3390/nano12030413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 01/04/2023]
Abstract
The paper reports on a new mathematical model, starting with the original Hill equation which is derived to describe cell viability (V) while testing nanomaterials (NMs). Key information on the sample's morphology, such as mean size (⟨s⟩) and size dispersity (σ) is included in the new model via the lognormal distribution function. The new Hill-inspired equation is successfully used to fit MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) data from assays performed with the HepG2 cell line challenged by fluorine-containing graphene quantum dots (F:GQDs) under light (400-700 nm wavelength) and dark conditions. The extracted "biological polydispersity" (light: ⟨sMTT⟩=1.77±0.02 nm and σMTT=0.21±0.02); dark: ⟨sMTT⟩=1.87±0.02 nm and σMTT=0.22±0.01) is compared with the "morphological polydispersity" (⟨sTEM⟩=1.98±0.06 nm and σTEM=0.19±0.03), the latter obtained from TEM (transmission electron microscopy). The fitted data are then used to simulate a series of V responses. Two aspects are emphasized in the simulations: (i) fixing σ, one simulates V versus ⟨s⟩ and (ii) fixing ⟨s⟩, one simulates V versus σ. Trends observed in the simulations are supported by a phenomenological model picture describing the monotonic reduction in V as ⟨s⟩ increases (V~pa/(s)p-a; p and a are fitting parameters) and accounting for two opposite trends of V versus σ: under light (V~σ) and under dark (V~1/σ).
Collapse
|
6
|
Fatolahi L, Feizbakhsh A. Preparation of zinc tellurides quantum dots and zinc tellurides/multi-walled carbon nanotubes nanocomposites and photocatalytic activity. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1814328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Leila Fatolahi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Feizbakhsh
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Pachaiappan R, Rajendran S, Show PL, Manavalan K, Naushad M. Metal/metal oxide nanocomposites for bactericidal effect: A review. CHEMOSPHERE 2021; 272:128607. [PMID: 33097236 DOI: 10.1016/j.chemosphere.2020.128607] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/13/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Many microbial species causing infectious disease all over the world became a social burden and creating threat among community. These microbes possess long lifetime, enhancing mortality and morbidity rate in affected organisms. In this condition, the treatment was ineffective and more chances of spreading of infection into other organisms. Hence, it is necessary to initiate infection control efforts and prevention activities against multidrug resistant microbes, to reduce the death rate of people. Seriously concerning towards this problem progress was shown in developing significant drugs with least side effects. Emergence of nanoparticles and its novelty showed effective role in targeting and destructing microbes well. Further, many research works have shown nanocomposites developed from nanoparticles coupled with other nanoparticles, polymers, carbon material acted as an exotic substance against microbes causing severe loss. However, metal and metal oxide nanocomposites have gained interest due to its small size and enhancing the surface contact with bacteria, producing damage to it. The bactericidal mechanism of metal and metal oxide nanocomposites involve in the production of reactive oxygen species which includes superoxide radical anions, hydrogen peroxide anions and hydrogen peroxide which interact with the cell wall of bacteria causing damage to the cell membrane in turn inhibiting the further growth of cell with leakage of internal cellular components, leading to death of bacteria. This review provides the detailed view on antibacterial activity of metal and metal oxide nanocomposite which possessed novelty due to its physiochemical changes.
Collapse
Affiliation(s)
- Rekha Pachaiappan
- Department of Sustainable Energy Management, Stella Maris College, Chennai, 600086, Tamilnadu, India.
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad deIngeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia.
| | - Kovendhan Manavalan
- Department of Nuclear Physics, University of Madras, Gunidy Campus, Chennai, 600 025, Tamilnadu, India
| | - Mu Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Yonsei Frontier Lab, Yonsei University, Seoul, Korea
| |
Collapse
|
8
|
Synthesis and Characterization of Konjac Gum/Polyethylene Glycol-Silver Nanoparticles and their Potential Application as a Colorimetric Sensor for Hydrogen Peroxide. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Gu H, Lin W, Sun S, Wu C, Yang F, Ziwei Y, Chen N, Ren J, Zheng S. Calcium oxide modification of activated sludge as a low-cost adsorbent: Preparation and application in Cd(II) removal. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111760. [PMID: 33360285 DOI: 10.1016/j.ecoenv.2020.111760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
In this study, a simple to produce, low-cost and environment-friendly sludge based adsorbent, prepared from municipal dewatered sludge and modified by calcium oxide (CaO), is described. The enhancement effect of CaO modification on the adsorption capacity and mechanical strength of sludge based adsorbents (CaO-SA), and the modification mechanism of CaO on activated sludge are discussed. Also, the Cd(II) adsorption conditions are optimized using surface optimization experiment. The results indicated that CaO had a good effect on improving the adsorption capacity and mechanical strength of the sludge-based adsorbent. The CaO-SA adsorbent showed best performance with respect to the mechanical strength and Cd(II) adsorption capacity when prepared under 5% CaO dosage and 60 °C drying temperature. CaO modification can increase the specific surface area and calcium ion content of the sludge-based adsorbent and remove the proton of the carboxylic acid in the sludge. The Box-Behnken experimental design results revealed that the importance of operating conditions for CaO-SA adsorption of Cd(II) can be arranged in the order of adsorption time > dosage> pH> temperature. The results also indicated that the interactions between adsorption time and CaO-SA dosage, adsorption time and pH, adsorption time and temperature are all important factors affecting the Cd(II) adsorption. The optimal conditions (adsorption time of 90 min, CaO-SA dosage of 1 g/L, pH of 5 and adsorption temperature of 40 °C) for CaO-SA to adsorb Cd(II) were obtained by surface optimization, at which the Cd(II) adsorption rate could reach a value of 99.74%.
Collapse
Affiliation(s)
- Haiqi Gu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Weixiong Lin
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China.
| | - Shuiyu Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China.
| | - Chun Wu
- Guangdong Yuanquan Testing Technology Co., Ltd., Foshan 528225, China
| | - Fan Yang
- Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China
| | - Ye Ziwei
- Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China
| | - Nanwei Chen
- Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China
| | - Jie Ren
- Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China
| | - Shilin Zheng
- Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China
| |
Collapse
|
10
|
Gao D, Gao Y, Shen J, Wang Q. Modified nanoscale metal organic framework-based nanoplatforms in photodynamic therapy and further applications. Photodiagnosis Photodyn Ther 2020; 32:102026. [PMID: 32979544 DOI: 10.1016/j.pdpdt.2020.102026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/21/2020] [Accepted: 09/18/2020] [Indexed: 01/01/2023]
Abstract
Photodynamic therapy (PDT) has emerged as a modality in cancer treatment because it is less invasive and highly selective compared with conventional chemotherapy and radiation therapy. Nanoscale metal organic frameworks (nMOFs) have exhibited great potential for use in constructing nanoplatforms for improved PDT because of their unique structural advantages such as large surface areas, high porosities, tunable compositions and various other modifications. The large majority of current nMOF-based systems employ specific modifying groups to overcome the deficiencies previously observed when using older nMOFs in PDT. In this review, we summarize modifications to these systems such as enhancing singlet oxygen generation by introducing photoactive agents, alleviating tumor hypoxia and engineering active targeting abilities. The applications of MOF-based nanoparticles in synergistic cancer therapies that include PDT, as well as in theranostics are also discussed. Finally, we discuss some of the challenges faced in this field and the future prospects for the use of nMOFs in PDT.
Collapse
Affiliation(s)
- Dongruo Gao
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, 310015, PR China; College of Chemical and Biological Engineering, Zhejiang University, Zhejiang, Hangzhou, 310027, PR China
| | - Ying Gao
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, 310015, PR China; Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Jie Shen
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, 310015, PR China.
| | - Qiwen Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China.
| |
Collapse
|
11
|
Abdel Maksoud MIA, El-Sayyad GS, El-Khawaga AM, Abd Elkodous M, Abokhadra A, Elsayed MA, Gobara M, Soliman LI, El-Bahnasawy HH, Ashour AH. Nanostructured Mg substituted Mn-Zn ferrites: A magnetic recyclable catalyst for outstanding photocatalytic and antimicrobial potentials. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123000. [PMID: 32937703 DOI: 10.1016/j.jhazmat.2020.123000] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
With recently increasing the environmental problems and expected energy crisis, it is necessary to synthesis a low-cost, efficient, and UV-light responsive photocatalyst for contaminants' degradation. The nanostructured spinel ferrite Mn0.5Zn0.5-xMgxFe2O4 NPs (x = 0.0, 0.125, 0.25, 0.375 and 0.50) were synthesized via the sol-gel method. The crystallite size was lied in nano regime ranging from 21.8 to 36.5 nm. The surface chemical composition of the Mn0.5Zn0.5-xMgxFe2O4 NPs was investigated via XPS analysis. Mossbauer spectra showed that the peaks were shifted to higher values of the maximum magnetic field as the Mg content increased, indicating that the crystallinity is enhanced while the crystal size is decreased. Also, various parameters such as the photocatalyst dose, dyes concentration, pH, point of zero charge, and the metals leaching were studied. The point of zero charge (PZC) has found at pH = 2.38. The Mn0.5Zn0.125Mg0.375Fe2O4 NPs showed an excellent UV-assisted photocatalytic activity against Chloramine T (90 % removal efficiency) and Rhodamine B (95 % removal efficiency) after 80 min as compared to pure Mn0.5Zn0.5Fe2O4 ferrite NPs. Besides, it a recyclable catalyst at least four times with a negligible reduction of photocatalytic activity with slight elements leaching. Furthermore, the Mn0.5Zn0.25Mg0.25Fe2O4 NPs showed a high antimicrobial activity towards pathogenic bacteria and yeats.
Collapse
Affiliation(s)
- M I A Abdel Maksoud
- Materials Science Lab., Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt.
| | - Gharieb S El-Sayyad
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT) Atomic Energy Authority, Cairo, Egypt; Chemical Engineering Department, Military Technical College, Egyptian Armed Forces, Cairo, Egypt
| | - Ahmed M El-Khawaga
- Chemical Engineering Department, Military Technical College, Egyptian Armed Forces, Cairo, Egypt
| | - M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University, Sheikh Zayed, Giza16453, Egypt
| | - A Abokhadra
- Basic Science Department, Modern Academy of Engineering and Technology, Maadi, Cairo, Egypt
| | - Mohamed A Elsayed
- Chemical Engineering Department, Military Technical College, Egyptian Armed Forces, Cairo, Egypt
| | - Mohamed Gobara
- Chemical Engineering Department, Military Technical College, Egyptian Armed Forces, Cairo, Egypt
| | - L I Soliman
- Basic Science Department, Modern Academy of Engineering and Technology, Maadi, Cairo, Egypt
| | - H H El-Bahnasawy
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - A H Ashour
- Materials Science Lab., Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
12
|
Huang M, Zhang R, Yang Z, Chen J, Deng J, Fakhri A, Gupta VK. Synthesis of Co3S4-SnO2/polyvinylpyrrolidone-cellulose heterojunction as highly performance catalyst for photocatalytic and antimicrobial properties under ultra-violet irradiation. Int J Biol Macromol 2020; 162:220-228. [DOI: 10.1016/j.ijbiomac.2020.06.092] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022]
|
13
|
Yuan Y, Wang L, Gao L. Nano-Sized Iron Sulfide: Structure, Synthesis, Properties, and Biomedical Applications. Front Chem 2020; 8:818. [PMID: 33134265 PMCID: PMC7512625 DOI: 10.3389/fchem.2020.00818] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/04/2020] [Indexed: 12/02/2022] Open
Abstract
Nano-sized iron sulfides have attracted intense research interest due to the variety of their types, structures, and physicochemical properties. In particular, nano-sized iron sulfides exhibit enzyme-like activity by mimicking natural enzymes that depend on an iron-sulfur cluster as cofactor, extending their potential for applications in biomedicine. The present review principally summarizes the synthesis, properties and applications in biomedical fields, demonstrating that nano-sized iron sulfides have considerable potential for improving human health and quality of life.
Collapse
Affiliation(s)
- Ye Yuan
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, China.,School of Life Sciences, Jilin University, Changchun, China.,CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Liping Wang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, China.,School of Life Sciences, Jilin University, Changchun, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Ikram M, Hassan J, Raza A, Haider A, Naz S, Ul-Hamid A, Haider J, Shahzadi I, Qamar U, Ali S. Photocatalytic and bactericidal properties and molecular docking analysis of TiO 2 nanoparticles conjugated with Zr for environmental remediation. RSC Adv 2020; 10:30007-30024. [PMID: 35518250 PMCID: PMC9056309 DOI: 10.1039/d0ra05862a] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/07/2020] [Indexed: 01/04/2023] Open
Abstract
Despite implementing several methodologies including a combination of physical, chemical and biological techniques, aquatic and microbial pollution remains a challenge to this day. Recently, nanomaterials have attracted considerable attention due to their extraordinary prospective for utilization toward environmental remediation. Among several probable candidates, TiO2 stands out due to its potential for use in multifaceted applications. One way to improve the catalytic and antimicrobial potential of TiO2 is to dope it with certain elements. In this study, Zr-doped TiO2 was synthesized through a sol-gel chemical method using various dopant concentrations (2, 4, 6, and 8 wt%). Surface morphological, microstructural and elemental analysis was carried out using FESEM and HR-TEM along with EDS to confirm the formation of Zr-TiO2. XRD spectra showed a linear shift of the (101) anatase peak to lower diffraction angles (from 25.4° to 25.08°) with increasing Zr4+ concentration. Functional groups were examined via FTIR, an ample absorption band appearing between 400 and 700 cm-1 in the acquired spectrum was attributed to the vibration modes of the Ti-O-Ti linkage present within TiO2 nanoparticles, which denotes the formation of TiO2. Experimental results indicated that with increasing dopant concentrations, photocatalytic potential was enhanced significantly. In this respect, TiO2 doped with 8 wt% Zr (sample 0.08 : 1) exhibited outstanding performance by realizing 98% elimination of synthetic MB in 100 minutes. This is thought to be due to a decreased rate of electron-hole pair recombination that transpires upon doping. Therefore, it is proposed that Zr-doped TiO2 can be used as an effective photocatalyst material for various environmental and wastewater treatment applications. The good docking scores and binding confirmation of Zr-doped TiO2 suggested doped nanoparticles as a potential inhibitor against selected targets of both E. coli and S. aureus. Hence, enzyme inhibition studies of Zr-doped TiO2 NPs are suggested for further confirmation of these in silico predictions.
Collapse
Affiliation(s)
- M Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore 54000 Punjab Pakistan
| | - J Hassan
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - A Raza
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - A Haider
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences Lahore 54000 Punjab Pakistan
| | - S Naz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
| | - A Ul-Hamid
- Center for Engineering Research, Research Institute, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - J Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
| | - I Shahzadi
- College of Pharmacy, University of the Punjab Lahore 54000 Pakistan
| | - U Qamar
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - S Ali
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| |
Collapse
|
15
|
Fabrication and structural of the Ag2S-MgO/graphene oxide nanocomposites with high photocatalysis and antimicrobial activities. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 207:111882. [DOI: 10.1016/j.jphotobiol.2020.111882] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022]
|
16
|
Pan H, Xie H, Chen G, Xu N, Wang M, Fakhri A. Cr2S3-Co3O4 on polyethylene glycol-chitosan nanocomposites with enhanced ultraviolet light photocatalysis activity, antibacterial and antioxidant studies. Int J Biol Macromol 2020; 148:608-614. [DOI: 10.1016/j.ijbiomac.2019.12.262] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 01/31/2023]
|
17
|
Rabizadeh H, Feizbakhsh A, Panahi HA, Konoz E. A convenient synthesis of NiO-CuS/molecularly imprinted polymer nanocomposites with highly enhanced adsorption activity and selectivity for removal of Letrozole. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2019.1669658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hanieh Rabizadeh
- Department of chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Feizbakhsh
- Department of chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Homayon Ahmad Panahi
- Department of chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Elaheh Konoz
- Department of chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
18
|
Synthesis and Characterization of Carboxymethyl Cellulose/β-Cyclodextrin/Chitosan Hydrogels and Investigating the Effect of Magnetic Nanoparticles (Fe3O4) on a Novel Carrier for a Controlled Release of Methotrexate as Drug Delivery. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01301-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Manganese disulfide-silicon dioxide nano-material: Synthesis, characterization, photocatalytic, antioxidant and antimicrobial studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 198:111579. [DOI: 10.1016/j.jphotobiol.2019.111579] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 11/18/2022]
|