1
|
Soroushmanesh M, Dinari M, Farrokhpour H. Comprehensive Computational Investigation of the Porphyrin-Based COF as a Nanocarrier for Delivering Anti-Cancer Drugs: A Combined MD Simulation and DFT Calculation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19073-19085. [PMID: 39189806 DOI: 10.1021/acs.langmuir.4c02154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
As nanomaterials have gained prominence in drug delivery technology, exploring their feasibility through computational methods is beneficial before practical tests. In this study, we aim to evaluate the capability of the porphyrin-based covalent organic framework COF-366 as a nanocarrier for two anticancer drugs, irinotecan (IRI) and doxorubicin (DOX). The optimal binding conformation of the drug molecules on the COF surface was predicted by using molecular docking. Subsequently, molecular dynamic simulation (MD) was performed to assess the adsorption mechanism of drug molecules on the COF in the aqueous environment. The free energy of adsorption for DOX and IRI was estimated to be -20.07 and -23.89 kcal/mol, respectively. The adsorption of both drugs on the COF surface is mainly influenced by the π-π interaction. Furthermore, density functional theory (DFT) calculation, natural bond orbital (NBO), and quantum theory of atoms in molecules (QTAIM) analyses were employed to investigate the structural stability of Drug@COF complexes and gain a detailed understanding of the interaction between them at the molecular level. Based on DFT results, it was found that in addition to π-π interaction, the bis-piperidine-phenylene interaction affects the adsorption of IRI on the COF surface. Moreover, the diffusion behavior of the drug molecule inside the COF pore was simulated using a ten-layer COF. Based on the mean square displacement analysis, the diffusion coefficients of DOX and IRI within the COF pore were calculated to be 108 and 97 um2/s, respectively. This computational study sheds light on how different types of interactions between the drug molecule and COF affect the adsorption and diffusion process. Our findings validated that the porphyrin-based COF-366 can serve as a nanobased platform for delivering DOX and IRI.
Collapse
Affiliation(s)
- Mohsen Soroushmanesh
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Hossein Farrokhpour
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| |
Collapse
|
2
|
Rastegari F, Asghari S, Mohammadpoor-Baltork I, Sabzyan H, Tangestaninejad S, Moghadam M, Mirkhani V. A pH-dependent and charge selective covalent organic framework for removal of dyes from aqueous solutions. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135075. [PMID: 38986412 DOI: 10.1016/j.jhazmat.2024.135075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/16/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
A novel imine-linked COF is synthesized by the condensation of 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT) and 2-hydroxy-5-methoxyisophthalaldehyde (HMIPA) under solvothermal conditions. This COF adsorbs preferentially the neutral dye Neutral Red (NR) over the positively charged dye Methylene Blue (MB) at pH 7, and the negatively charged Methyl Orange (MO) over the positively charged Methylene Blue (MB) at pH 3. The maximum adsorption capacities (qe) obtained within very short times (11-60 min) under optimized conditions were 108, 185 and 429 mg.g-1 for the MB, MO, and NR dyes, respectively. These adsorptions obey the Langmuir isotherm and pseudo-second-order kinetics. The prepared TAPT-HMIPA-COF is used successfully for the removal of the dyes from real water and treated wastewater samples. The adsorption data, BET, FTIR, and zeta potential measurements show that the electrostatic, π-π stacking and hydrogen bond interactions are responsible for the adsorption of organic dyes on the surface of the prepared COF. Due to recyclability, high capacity and efficiency for the adsorption of positive, negative and neutral organic dyes, this COF can be considered promising for simultaneous removal of various dyes from aqueous solutions at adjusted pHs.
Collapse
Affiliation(s)
- Forouz Rastegari
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran
| | - Saeid Asghari
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran
| | | | - Hassan Sabzyan
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Shahram Tangestaninejad
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran
| | - Majid Moghadam
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran
| | - Valiollah Mirkhani
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
3
|
Younas R, Jubeen F, Bano N, Andreescu S, Zhang H, Hayat A. Covalent organic frameworks (COFs) as carrier for improved drug delivery and biosensing applications. Biotechnol Bioeng 2024; 121:2017-2049. [PMID: 38665008 DOI: 10.1002/bit.28718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024]
Abstract
Porous organic frameworks (POFs) represent a significant subclass of nanoporous materials in the field of materials science, offering exceptional characteristics for advanced applications. Covalent organic frameworks (COFs), as a novel and intriguing type of porous material, have garnered considerable attention due to their unique design capabilities, diverse nature, and wide-ranging applications. The unique structural features of COFs, such as high surface area, tuneable pore size, and chemical stability, render them highly attractive for various applications, including targeted and controlled drug release, as well as improving the sensitivity and selectivity of electrochemical biosensors. Therefore, it is crucial to comprehend the methods employed in creating COFs with specific properties that can be effectively utilized in biomedical applications. To address this indispensable fact, this review paper commences with a concise summary of the different methods and classifications utilized in synthesizing COFs. Second, it highlights the recent advancements in COFs for drug delivery, including drug carriers as well as the classification of drug delivery systems and biosensing, encompassing drugs, biomacromolecules, small biomolecules and the detection of biomarkers. While exploring the potential of COFs in the biomedical field, it is important to acknowledge the limitations that researchers may encounter, which could impact the practicality of their applications. Third, this paper concludes with a thought-provoking discussion that thoroughly addresses the challenges and opportunities associated with leveraging COFs for biomedical applications. This review paper aims to contribute to the scientific community's understanding of the immense potential of COFs in improving drug delivery systems and enhancing the performance of biosensors in biomedical applications.
Collapse
Affiliation(s)
- Rida Younas
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
- Department of Chemistry, Govt College Women University, Faisalabad, Pakistan
| | - Farhat Jubeen
- Department of Chemistry, Govt College Women University, Faisalabad, Pakistan
| | - Nargis Bano
- Department of Physics and Astronomy College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, USA
| | - Hongxia Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
| | - Akhtar Hayat
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Punjab, Pakistan
| |
Collapse
|
4
|
He L, Wang L, He Z, Pang CH, Tang B, Wu A, Li J. Strategies for utilizing covalent organic frameworks as host materials for the integration and delivery of bioactives. MATERIALS HORIZONS 2024; 11:1126-1151. [PMID: 38112198 DOI: 10.1039/d3mh01492d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Covalent organic frameworks (COFs), a new and developing class of porous framework materials, are considered a type of promising carrier for the integration and delivery of bioactives, which have diverse fascinating merits, such as a large specific surface area, designable and specific porosity, stable and orderly framework structure, and various active sites. However, owing to the significant differences among bioactives (including drugs, proteins, nucleic acid, and exosomes), such as size, structure, and physicochemical properties, the interaction between COFs and bioactives also varies. In this review, we firstly summarize three strategies for the construction of single or hybrid COF-based matrices for the delivery of cargos, including encapsulation, covalent binding, and coordination bonding. Besides, their smart response release behaviors are also categorized. Subsequently, the applications of cargo@COF biocomposites in biomedicine are comprehensively summarized, including tumor therapy, central nervous system (CNS) modulation, biomarker analysis, bioimaging, and anti-bacterial therapy. Finally, the challenges and opportunities in this field are briefly discussed.
Collapse
Affiliation(s)
- Lulu He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Department of Chemical and Environment Engineering, The University of Nottingham Ningbo China, Ningbo, 315100, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Le Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Zhen He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| | - Cheng Heng Pang
- Department of Chemical and Environment Engineering, The University of Nottingham Ningbo China, Ningbo, 315100, China.
| | - Bencan Tang
- Department of Chemical and Environment Engineering, The University of Nottingham Ningbo China, Ningbo, 315100, China.
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Juan Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| |
Collapse
|
5
|
Ghosh P, Banerjee P. Drug delivery using biocompatible covalent organic frameworks (COFs) towards a therapeutic approach. Chem Commun (Camb) 2023; 59:12527-12547. [PMID: 37724444 DOI: 10.1039/d3cc01829f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Covalent organic frameworks (COFs) are constructed exclusively with lightweight organic scaffolds, which can have a 2D or 3D architecture. The ease of synthesis, robust skeleton and tunable properties of COFs make them superior candidates among their counterparts for a wide range of uses including biomedical applications. In the biomedical field, drug delivery or photodynamic-photothermal (PDT-PTT) therapy can be individually considered a potential parameter to be investigated. Therefore, this comprehensive review is focused on drug delivery using COFs, highlighting the encapsulation and decapsulation of drugs by COF scaffolds and their delivery in biological media including live cells. Versatile COF scaffolds together with the delivery of several drug molecules are considered. We attempted to incorporate the status of drug encapsulation and decapsulation considering a wide range of recent publications.
Collapse
Affiliation(s)
- Pritam Ghosh
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Chennai 600127, Tamilnadu, India.
| | - Priyabrata Banerjee
- Electric Mobility and Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, India.
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad 201002, Uttarpradesh, India
| |
Collapse
|
6
|
Rejali NA, Dinari M, Wang Y. Post-synthetic modifications of covalent organic frameworks (COFs) for diverse applications. Chem Commun (Camb) 2023; 59:11631-11647. [PMID: 37702105 DOI: 10.1039/d3cc03091a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Covalent organic frameworks (COFs) are porous and crystalline organic polymers, which have found usage in various fields. These frameworks are tailorable through the introduction of diverse functionalities into the platform. Indeed, functionality plays a key role in their different applications. However, sometimes functional groups are not compatible with reaction conditions or can compete and interfere with other groups of monomers in the direct synthetic method. Also, pre-synthesis of bulky moieties in COFs can negatively affect crystal formation. To avoid these problems a post-synthetic modification (PSM) approach is a helpful tactic. Also, with the assistance of this strategy porous size can be tunable and stability can be improved without considerable effect on the crystallite. In addition, conductivity, hydrophobicity/ hydrophilicity, and chirality are among the features that can be reformed with this method. In this review, different types of PSM strategies based on recent articles have been divided into four categories: (i) post-functionalization, (ii) post-metalation, (iii) chemical locking, and (iv) host-guest post-modifications. Post-functionalization and chemical locking methods are based on covalent bond formation while in post-metalation and host-guest post-modifications, non-covalent bonds are formed. Also, the potential of these post-modified COFs in energy storage and conversion (lithium-sulfur batteries, hydrogen storage, proton-exchange membrane fuel cells, and water splitting), heterogeneous catalysts, food safety evaluation, gas separation, environmental domains (greenhouse gas capture, radioactive element uptake, and water remediation), and biological applications (drug delivery, biosensors, biomarker capture, chiral column chromatography, and solid-state smart nanochannels) have been discussed.
Collapse
Affiliation(s)
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Yong Wang
- School of Energy and Environment, Southeast University, Nanjing 210096, P. R. China.
| |
Collapse
|
7
|
Mokhtari N, Dinari M, Khosravi Esmaeiltarkhani F. Imine-Linked Covalent Organic Frameworks: A Biocompatible and pH-Dependent Carrier for In Vitro Sustained Release of Doxorubicin. ACS OMEGA 2023; 8:25565-25573. [PMID: 37483239 PMCID: PMC10357574 DOI: 10.1021/acsomega.3c03316] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
Among the novel drug delivery systems (DDSs), covalent organic frameworks (COFs) show promising features in pharmaceutical science. In this paper, an imine-linked COF with hexagonal topology was synthesized using the autoclave condition. Then, the prepared COF (APB-COF) was used as a pH-dependent carrier for in vitro release of doxorubicin (DOX). The intrinsic properties of APB-COF caused reaching an excellent drug encapsulation efficiency. DOX@APB-COF shows an exemplary pH-dependent release in two different pHs. DOX release at pH = 7.4 was 32%, which increased to 54% by changing the pH to the cancer cell pH (pH = 5.4). Moreover, the cytotoxicity of APB-COF and DOX@APB-COF was studied using the standard MTT test against MCF10 (normal breast cell line) and MDAmb231 cells (breast cancer cell line), respectively. It was observed that the APB-COF does not affect cell proliferation, whereas the DOX@APB-COF only limits cancer cell proliferation. Using APB-COF as the drug carrier can pave the way for using COFs in innovative DDSs.
Collapse
|
8
|
Asadi P, Taymouri S, Khodarahmi G, Jalali H, Zaker H, Sadeghi‐Aliabadi H, Dinari M. Novel nanoscale vanillin based covalent triazine framework as a novel carrier for sustained release of imatinib. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Parvin Asadi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Isfahan University of Medical Sciences Isfahan Iran
- Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Science Isfahan University of Medical Sciences Isfahan Iran
| | - Somayeh Taymouri
- School of Pharmacy and Novel Drug Delivery Systems Research Centre Isfahan University of Medical Sciences Isfahan Iran
| | - Ghadamali Khodarahmi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Isfahan University of Medical Sciences Isfahan Iran
- Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Science Isfahan University of Medical Sciences Isfahan Iran
| | - Hanieh Jalali
- Department of Animal Biology, Faculty of Biological Sciences Kharazmi University Tehran Iran
| | - Hoorieh Zaker
- Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Science Isfahan University of Medical Sciences Isfahan Iran
| | - Hojjat Sadeghi‐Aliabadi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Isfahan University of Medical Sciences Isfahan Iran
| | - Mohammad Dinari
- Department of Chemistry Isfahan University of Technology Isfahan Iran
| |
Collapse
|
9
|
Mokhtari N, Dinari M. Developing novel amine-linked covalent organic frameworks towards reversible iodine capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Wang Y, Sun X, Wang Y. Synthesis of pH-responsive covalent organic frameworks nanocarrier for plumbagin delivery. RSC Adv 2022; 12:16046-16050. [PMID: 35733662 PMCID: PMC9136960 DOI: 10.1039/d2ra03127b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 11/21/2022] Open
Abstract
Covalent organic frameworks have attracted increasing attention in the fields of nanotechnology and nanoscience. However, the biomedical applications of COFs still remain less explored. Here, a new type of nanoscale covalent organic framework (COF-366) composite was prepared by a facile solvothermal method. The obtained material was characterized by powder X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The results showed that the COF-366 nanocarriers possess uniform spherical morphology with a diameter of 150 nm, which make them favourable for drug delivery. After the plumbagin encapsulation, an effective pH responsive release, high adsorption capacity, and good biocompatibility were achieved. These characteristics make nanoscale COF-366 an ideal material for drug delivery and reveal its promising application in biomedical applications.
Collapse
Affiliation(s)
- Yang Wang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325024 China .,School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 China
| | - Xin Sun
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325024 China
| | - Yi Wang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 China
| |
Collapse
|
11
|
Yu Y, Zhou L, Tang J, Wu P, Feng L, Ge B, Chen H, Hu J, Song S, Zeng T. Effective removal of Co(II) and Sr(II) from radiocative wastes using covalent triazine frameworks: Kinetics and isotherm studies. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Recent advances in lignin-based porous materials for pollutants removal from wastewater. Int J Biol Macromol 2021; 187:880-891. [PMID: 34329666 DOI: 10.1016/j.ijbiomac.2021.07.152] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 01/03/2023]
Abstract
Water pollution is one of the most serious threats facing mankind today and has obtained widespread attention. Significant advances have been made in the past decades to apply porous materials in wastewater treatment, due to their large specific surface areas (SBET) for interaction with the aimed ions or molecules. However, the majority of porous materials are prepared from fossil-based resources and still possess some drawbacks, such as high cost and non-degradability, which inevitably cause secondary pollution to the environment from their production to disposal. Lignin is the most abundant and the only scalable renewable aromatic resource on earth. Due to its unique physicochemical properties including high carbon content, plentiful functional groups and environmental friendliness, the lignin-based porous materials (LPMs) have shown promising prospects in efficient removal of soluble pollutants from wastewater. In this review, we firstly described the structural and chemical basis of LPMs, following presented the recent progress in the decontamination of heavy metal ions, organic dyes, antibiotics, anions and radionuclides from aqueous systems. Additionally, the outlook was provided to promote more practical implementation of LPMs in the near future.
Collapse
|
13
|
Ba X, Yun G, Hou Y, Zhang W, Zhao W, Yuan H, Zhang S. Covalent Triazine Framework Sorbent for Solid Phase Extraction of Fipronil and its Metabolite in Eggs with Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1495-1505. [PMID: 34157958 DOI: 10.1080/19440049.2021.1934573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A solid-phase extraction (SPE) method was established for fipronil and its metabolite residues (fipronil desulfinyl, fipronil sulphone and fipronil sulphide) in eggs with a covalent triazine framework (CTF) porous material as the adsorbent followed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) detection. Multiple probes and quantum chemistry theory calculations were conducted to describe the versatile adsorption property directly and quantifiably. The conjugated structure of CTF and N-containing triazine generated π-π interactions and hydrogen bonds between the CTF and the targets, which led to high extraction efficiency and recoveries. The solid-phase extraction parameters, including amount of the adsorbent, type of eluent, amount of eluent and loading rate were investigated. Under the optimal experimental conditions, the recoveries of the analytes were between 85.5% and 103.2%, and the RSD (n = 5) was between 1.8% and 3.6%. The LODs and LOQs were 0.13-0.2 ng g-1 and 0.5-0.8 ng g-1, respectively. The sorbent can effectively reduce the interference of the matrix and meet the detection requirements of fipronil and its metabolites in eggs. These results imply that the CTF as adsorbents have great potential in the analysis of trace targets in samples with complex matrices.
Collapse
Affiliation(s)
- Xin Ba
- College of Chemistry, Zhengzhou University, Zhengzhou, P. R. China
| | - Guo Yun
- College of Chemistry, Zhengzhou University, Zhengzhou, P. R. China
| | - Yafei Hou
- College of Chemistry, Zhengzhou University, Zhengzhou, P. R. China
| | - Wenfen Zhang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, P.R. China
| | - Wuduo Zhao
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, P.R. China
| | - Hang Yuan
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, P.R. China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
14
|
Novel covalent organic polymer-supported Ag nanoparticles as a catalyst for nitroaromatics reduction. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126441] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Recent Advances in Covalent Organic Frameworks for Heavy Metal Removal Applications. ENERGIES 2021. [DOI: 10.3390/en14113197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Covalent organic frameworks comprise a unique class of functional materials that has recently emerged as a versatile tool for energy-related, photocatalytic, environmental, and electrochromic device applications. A plethora of structures can be designed and implemented through a careful selection of ligands and functional units. On the other hand, porous materials for heavy metal absorption are constantly on the forefront of materials science due to the significant health issues that arise from the release of the latter to aquatic environments. In this critical review, we provide insights on the correlation between the structure of functional covalent organic frameworks and their heavy metal absorption. The elements we selected were Pb, Hg, Cr, Cd, and As metal ions, as well as radioactive elements, and we focused on their removal with functional networks. Finally, we outline their advantages and disadvantages compared to other competitive systems such as zeolites and metal organic frameworks (MOFs), we analyze the potential drawbacks for industrial scale applications, and we provide our outlook on the future of this emerging field.
Collapse
|
16
|
Dinari M, Mokhtari N, Hatami M. Covalent triazine based polymer with high nitrogen levels for removal of copper (II) ions from aqueous solutions. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02463-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Asadi P, Falsafin M, Dinari M. Construction of new covalent organic frameworks with benzimidazole moiety as Fe3+ selective fluorescence chemosensors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Synthesis and characterization of a novel fluorene-based covalent triazine framework as a chemical adsorbent for highly efficient dye removal. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122430] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Afshari M, Dinari M, Zargoosh K, Moradi H. Novel Triazine-Based Covalent Organic Framework as a Superadsorbent for the Removal of Mercury(II) from Aqueous Solutions. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00953] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mohaddeseh Afshari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Kiomars Zargoosh
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Hossein Moradi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| |
Collapse
|
20
|
Rahmanian O, Falsafin M, Dinari M. High surface area benzimidazole based porous covalent organic framework for removal of methylene blue from aqueous solutions. POLYM INT 2020. [DOI: 10.1002/pi.6007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Omid Rahmanian
- Department of Environmental Health, Faculty of HealthHormozgan University of Medical Sciences Bandar Abbas Iran
| | - Molood Falsafin
- Department of ChemistryIsfahan University of Technology Isfahan Iran
| | - Mohammad Dinari
- Department of ChemistryIsfahan University of Technology Isfahan Iran
| |
Collapse
|