1
|
Rasool MH, Ahmad M, Siddiqui NA, Ali H. Novel application of citric acid based natural deep eutectic solvent in drilling fluids for shale swelling prevention. Sci Rep 2024; 14:25729. [PMID: 39468231 PMCID: PMC11519621 DOI: 10.1038/s41598-024-76182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Swelling of shale in clastic reservoirs poses a significant challenge, causing instability in wellbores. Utilizing water-based drilling mud with shale inhibitors is preferable for environmental reasons over oil-based mud. Ionic liquids (ILs) have garnered interest as shale inhibitors due to their customizable properties and strong electrostatic features. However, widely used imidazolium-based ILs in drilling fluids are found to be toxic, non-biodegradable, and expensive. Deep Eutectic Solvents (DES), considered a more economical and less toxic alternative to ILs, still fall short in terms of environmental sustainability. The latest advancement in this field introduces Natural Deep Eutectic Solvents (NADES), renowned for their genuine eco-friendliness. This study explores NADES formulated with citric acid (as a Hydrogen Bond Acceptor) and glycerine (as a Hydrogen Bond Donor) as additives in drilling fluids. The NADES based drilling mud was prepared according to API 13B-1 standards and their efficacy was compared with KCl, imidazolium based ionic liquid, and Choline Chloride: Urea-DES based mud. A thorough physicochemical characterization of the in-house prepared NADES is detailed. The research evaluates rheological, filtration and shale inhibition properties of the mud, demonstrating that NADES enhanced the yield point to plastic viscosity ratio (YP/PV), reduced mudcake thickness by 26%, and decreased filtrate volume by 30.1% at a 3% concentration. Notably, NADES achieved an impressive 49.14% inhibition of swelling and improved shale recovery by 86.36%. These outcomes are attributed to NADES' ability to modify surface activity, zeta potential, and clay layer spacing which are discussed to understand the underlying mechanism. This sustainable drilling fluid promises to reshape the drilling industry by offering a non-toxic, cost-effective, and highly efficient alternative to conventional shale inhibitors, paving the way for environmentally conscious drilling practices.
Collapse
Affiliation(s)
- Muhammad Hammad Rasool
- Department of Petroleum Geosciences, Universiti Teknologi Petronas, Bandar , Seri Iskander, Malaysia.
| | - Maqsood Ahmad
- Department of Petroleum Geosciences, Universiti Teknologi Petronas, Bandar , Seri Iskander, Malaysia.
| | - Numair Ahmed Siddiqui
- Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology (HKUST), Clear Water Bay, China.
| | - Husnain Ali
- Department of Petroleum Geosciences, Universiti Teknologi Petronas, Bandar , Seri Iskander, Malaysia
| |
Collapse
|
2
|
Dai Z, Sun J, Xiu Z, Huang X, Lv K, Liu J, Sun Y, Dong X. Preparation and Performance Evaluation of Ionic Liquid Copolymer Shale Inhibitor for Drilling Fluid Gel System. Gels 2024; 10:96. [PMID: 38391426 PMCID: PMC10888053 DOI: 10.3390/gels10020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
An inhibitor that can effectively inhibit shale hydration is necessary for the safe and efficient development of shale gas. In this study, a novel ionic liquid copolymer shale inhibitor (PIL) was prepared by polymerizing the ionic liquid monomers 1-vinyl-3-aminopropylimidazolium bromide, acrylamide, and methacryloyloxyethyl trimethyl ammonium chloride. The chemical structure was characterized using fourier transform infrared spectroscopy (FT-IR) and hydrogen-nuclear magnetic resonance (H-NMR), and the inhibition performance was evaluated using the inhibition of slurrying test, bentonite flocculation test, linear expansion test, and rolling recovery test. The experimental results showed that bentonite had a linear expansion of 27.9% in 1 wt% PIL solution, 18% lower than that in the polyether amine inhibitor. The recovery rate of shale in 1 wt% PIL was 87.4%. The ionic liquid copolymer could work synergistically with the filtrate reducer, reducing filtration loss to 7.2 mL with the addition of 1%. Mechanism analysis showed that PIL adsorbed negatively charged clay particles through cationic groups, which reduced the electrostatic repulsion between particles. Thus, the stability of the bentonite gel systems was destroyed, and the hydration dispersion and expansion of bentonite were inhibited. PIL formed a hydrophobic film on the surface of clay and prevented water from entering into the interlayer of clay. In addition, PIL lowered the surface tension of water, which prevented the water from intruding into the rock under the action of capillary force. These are also the reasons for the superior suppression performance of PIL.
Collapse
Affiliation(s)
- Zhiwen Dai
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jinsheng Sun
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
- CNPC Engineering Technology R & D Company Limited, Beijing 102206, China
| | - Zhuoyang Xiu
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xianbin Huang
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Kaihe Lv
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jingping Liu
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yuanwei Sun
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaodong Dong
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
3
|
Kaur G, Mehra S, Kumar H, Kumar A. Exploring the aggregation behaviour and antibiotic binding ability of thiazolium-based surface-active ionic liquids; Understanding transportation of poorly water-soluble drug. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Zhang H, Qu T, Wang H, Wu W, Lu F, Ou J, Zhu G, Gao L, Cheng L. Preparation of asymmetric Janus hollow silica microparticle and its application on oily wastewaters. Sci Rep 2023; 13:4135. [PMID: 36914714 PMCID: PMC10011370 DOI: 10.1038/s41598-023-30269-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Janus nanoparticles have aroused the interest of scholars because of their highly efficient emulsification of spilled oils in wastewater. In this work, interfacially active Janus hollow glass microparticles (J-HGMPs) of asymmetric wettability were designed and synthesized in order to achieve more efficient separation of emulsified oil droplets from oily wastewater. Surface characteristic techniques such as FTIR, SEM, zeta potential and contact angle measurements had been employed to assess the amphiphilic surface properties of J-HGMPs. The oil removal/recovery performance of J-HGMPs in different oil-water systems and their interfacial activities were studied. As a particulate emulsifier, J-HGMPs could remove/recover > 96% oil from oil-water mixed phase. The results showed that J-HGMPs had strong interfacial activities and anchored firmly at oil/water interfaces. This high adsorption energy was also evaluated and verified via the calculation of Gibbs free energy. Overall, this study provided a novel and low-cost oil recovery method via a convenient buoyancy force that could be effectively applied in the treatment of oil spills while achieving the goal of benign and green environmental protection.
Collapse
Affiliation(s)
- Hailong Zhang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National-Local Joint Engineering Laboratory of Harbor Oil and Gas Storage and Transportation Technology, School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Ting Qu
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Hairong Wang
- Zhoushan Institute of Calibration and Testing for Quality and Technology Supervision, Zhoushan, 316000, Zhejiang, China
| | - Weixing Wu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National-Local Joint Engineering Laboratory of Harbor Oil and Gas Storage and Transportation Technology, School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Fangfang Lu
- Zhoushan Institute of Calibration and Testing for Quality and Technology Supervision, Zhoushan, 316000, Zhejiang, China
| | - Jiguang Ou
- ENN (Zhou Shan) Natural Gas Pipelines Co., Ltd, Zhoushan, 316021, Zhejiang, China
| | - Genmin Zhu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National-Local Joint Engineering Laboratory of Harbor Oil and Gas Storage and Transportation Technology, School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Liangjun Gao
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National-Local Joint Engineering Laboratory of Harbor Oil and Gas Storage and Transportation Technology, School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China.
| | - Longsheng Cheng
- ENN (Zhou Shan) Natural Gas Pipelines Co., Ltd, Zhoushan, 316021, Zhejiang, China
| |
Collapse
|
5
|
Kinkeyi Moukoko A, Yang L, Jiang G, Chang X, Dong T. Effect of Alkylation Chain Length on Inhibiting Performance of Soluble Ionic Liquids in Water-Based Drilling Fluids. ACS OMEGA 2023; 8:5939-5946. [PMID: 36816700 PMCID: PMC9933222 DOI: 10.1021/acsomega.2c07796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
This work investigated the effect of the alkyl chain length of soluble methylimidazolium bromide ionic liquids (ILs) on their inhibition performance. The IL with a shorter alkyl chain length showed superior inhibition performance by suppressing clay swelling, mitigating clay dispersion, at room temperature. Particularly, the IL with an alkyl chain length of two (EmBr) reduced the sodium bentonite (Na-BT) swelling degree to 89% and achieved a cutting recovery of 81.9% after being rolled at room temperature, performing the best among all ILs. To systematically analyze the inhibition mechanism of ILs, X-ray diffraction (XRD), ζ potential, and particle size distribution have been carried out. The results revealed that the methylimidazolium with shorter alkyl chain length had better ability to enter the interlayer void by ion exchange and decrease interlayer distance, suppress the electrical double layer of the Na-BT particles and decrease the ζ potential, and promote the aggregation of Na-BT in water. It is also observed that high hot rolling temperature reduced the shale inhibiting performance of all ILs, and ILs with longer alkyl chain length had better ability to prevent cutting disintegration at high temperature. It is attributed to the variation of the hydrophilic characteristic of Na-BT at high temperature where EmBr no longer adsorbed the most on the surface and entered the interlayer voids of Na-BT. This study can be used as a reference to systematically explore the effect of the structure of shale inhibitors on their inhibiting performance and develop effective shale inhibitors.
Collapse
Affiliation(s)
- Aurchy
Dauriant Kinkeyi Moukoko
- MOE
Key Laboratory of Petroleum Engineering, State Key Laboratory of Petroleum
Resources and Prospecting, China University
of Petroleum (Beijing), Changping District, Beijing102249, China
- College
of Safety and Ocean Engineering, Changping District, Beijing102249, China
| | - Lili Yang
- MOE
Key Laboratory of Petroleum Engineering, State Key Laboratory of Petroleum
Resources and Prospecting, China University
of Petroleum (Beijing), Changping District, Beijing102249, China
- College
of Safety and Ocean Engineering, Changping District, Beijing102249, China
| | - Guancheng Jiang
- MOE
Key Laboratory of Petroleum Engineering, State Key Laboratory of Petroleum
Resources and Prospecting, China University
of Petroleum (Beijing), Changping District, Beijing102249, China
| | - Xiangyang Chang
- MOE
Key Laboratory of Petroleum Engineering, State Key Laboratory of Petroleum
Resources and Prospecting, China University
of Petroleum (Beijing), Changping District, Beijing102249, China
| | - Tengfei Dong
- MOE
Key Laboratory of Petroleum Engineering, State Key Laboratory of Petroleum
Resources and Prospecting, China University
of Petroleum (Beijing), Changping District, Beijing102249, China
| |
Collapse
|
6
|
Jia H, Jia H, Wang Q, Yan H, Li X, Wang B, Wang S, Wang Y, Xie Q, Song L, Lv K, Huang P. Investigation of dihydroxyl ionic liquids as high-performance shale inhibitors and their inhibition mechanism. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Zhou L, Fan X, He Y, Gou S, Bi Q, Chen J, Chen L, wang J, Guo H, Wu Y, Yue H, Li X. Enhanced the permeability of water invasion sandstone by effectively inhibiting the swelling and dispersion of montmorillonite. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Abdullah AH, Ridha S, Mohshim DF, Yusuf M, Kamyab H, Krishna S, Maoinser MA. A comprehensive review of nanoparticles: Effect on water-based drilling fluids and wellbore stability. CHEMOSPHERE 2022; 308:136274. [PMID: 36058368 DOI: 10.1016/j.chemosphere.2022.136274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Wellbore stability in shale is a recurring crisis during oil and gas well drilling. The adsorption of water and ions from drilling fluid by shale, which causes clay swelling, is the primary cause of wellbore instability. Nanomaterials have been a subject of interest in recent years to be an effective shale inhibitor in drilling fluid, intending to minimize clay swelling. This article presents a comprehensive review of the current progress of nanoparticle role in water-based drilling fluid with regards to wellbore stability, reviewing the experimental methods, the effect of nanoparticles in drilling fluid, the mechanism of shale stability and the outlook for future research. This paper employed a systematic review methodology to highlight the progress of nanoparticle water-based drilling fluids in recent years. Previous studies indicated the current trend for drilling fluid additives was nanoparticles modified with surfactants and polymers, which minimize colloidal stability issues and enhance shale stability. A review of experimental methods showed that the pressure transmission test benefits shale stability assessment under reservoir conditions. Parametric analysis of nanoparticles showed that parameters such as concentration and size directly affected the shale stability even in high salinity solution. However, there is a lack of studies on nanoparticle types, with silica nanoparticles being the most popular among researchers. Nanoparticles enhance shale stability via physical plugging, chemical inhibition, and electrostatic interactions between surface charges. To better comprehend the influence of nanoparticles on shale stabilization, it is necessary to evaluate a wider range of nanoparticle types using the proper experimental techniques.
Collapse
Affiliation(s)
- Abdul Hazim Abdullah
- Department of Petroleum Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia
| | - Syahrir Ridha
- Department of Petroleum Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia; Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia.
| | - Dzeti Farhah Mohshim
- Department of Petroleum Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia
| | - Mohammad Yusuf
- Department of Petroleum Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia; Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia
| | - Hesam Kamyab
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Shwetank Krishna
- Chair Drilling and Completion Engineering, Montanuniversität Leoben, Franz Josef-Straße 18, 8700, Leoben, Austria
| | - Mohd Azuwan Maoinser
- Department of Petroleum Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia; Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia
| |
Collapse
|
9
|
Hammad Rasool M, Ahmad M, Ayoub M, Zamir A, Adeem Abbas M. A review of the usage of deep eutectic solvents as shale inhibitors in drilling mud. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Utilization of ionic liquids and deep eutectic solvents in oil operations: Progress and challenges. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
|
12
|
Jia H, Wang S, Wang Z, Wang Q, Jia H, Song L, Qin X, Fan F, Li Z, Huang P. Investigation of anionic group effects on the shale inhibition performance of fatty acid-based ionic liquids and their inhibition mechanism. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Zhu H, Li D, Zhao X, Pang S, An Y. A novel choline chloride/graphene composite as a shale inhibitor for drilling fluid and the interaction mechanism. RSC Adv 2022; 12:30328-30334. [PMID: 36337958 PMCID: PMC9589264 DOI: 10.1039/d2ra05085d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
For wellbore stability in shale formations, the development of environmentally friendly and efficient shale inhibitors is urgently needed. Herein, we report the preparation of choline chloride-modified graphene (Ch-G). The inhibition and interaction mechanisms of choline chloride-modified graphene on montmorillonite were also investigated. We evaluated the inhibition of Ch-G via linear swelling and rolling recovery and selected the inorganic salt inhibitor KCl as the control group. The lowest swelling height of 2.10 mm and the highest rolling recovery of 78.87% were achieved, indicating the excellent inhibition performance of Ch-G. The mechanism of inhibition of Ch-G was determined by Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. The Ch-G formed hydrogen bonds, coordination, and electrostatic interactions with the surface of montmorillonite and entered the montmorillonite via intercalation to achieve the inhibition. The increase in the nitrogen atom content in Ch-G led to the production of more positive ions and the formation of more ion bands, which enhanced the ability to inhibit shale hydration. The addition of Ch-G produced larger montmorillonite sheets, demonstrating its effective inhibition ability, which is needed to enable drilling fluids to stably drill into shale formations. The chemical structure of the choline chloride/graphene oxide composite.![]()
Collapse
Affiliation(s)
- Heming Zhu
- Key Laboratory of Shale Oil and Gas Enrichment Mechanism and Development, Sinopec Research Institute of Petroleum Engineering, Changping District, Beijing 100101, China
| | - Daqi Li
- Key Laboratory of Shale Oil and Gas Enrichment Mechanism and Development, Sinopec Research Institute of Petroleum Engineering, Changping District, Beijing 100101, China
| | - Xiangyang Zhao
- Key Laboratory of Shale Oil and Gas Enrichment Mechanism and Development, Sinopec Research Institute of Petroleum Engineering, Changping District, Beijing 100101, China
| | - Shaocong Pang
- School of Engineering and Technology, China University of Geosciences (Beijing), Haidian District, Beijing 100083, China
- Key Laboratory of Deep Geo Drilling Technology, Ministry of Land and Resources, Beijing 100083, China
| | - Yuxiu An
- School of Engineering and Technology, China University of Geosciences (Beijing), Haidian District, Beijing 100083, China
- Key Laboratory of Deep Geo Drilling Technology, Ministry of Land and Resources, Beijing 100083, China
| |
Collapse
|
14
|
Saleh TA, Rana A. Surface-modified biopolymer as an environment-friendly shale inhibitor and swelling control agent. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
15
|
Beg M, Haider MB, Thakur NK, Husein M, Sharma S, Kumar R. Clay-water interaction inhibition using amine and glycol-based deep eutectic solvents for efficient drilling of shale formations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Wang H, Gao Y, Jia X, Liu Q. Properties and mechanism of a poly(ionic liquid) inhibitor contained bi‐functional groups for bentonite hydration. J Appl Polym Sci 2021. [DOI: 10.1002/app.51253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hao Wang
- College of Civil Aviation Safety Engineering Civil Aviation Flight University of China Guanghan China
| | - Yihang Gao
- College of Marxism Civil Aviation Flight University of China Guanghan China
| | - Xuhong Jia
- College of Civil Aviation Safety Engineering Civil Aviation Flight University of China Guanghan China
| | - Quanyi Liu
- College of Civil Aviation Safety Engineering Civil Aviation Flight University of China Guanghan China
| |
Collapse
|
17
|
Jia H, Dai J, Miao L, Wei X, Tang H, Huang P, Jia H, He J, Lv K, Liu D. Potential application of novel amphiphilic Janus-SiO2 nanoparticles stabilized O/W/O emulsion for enhanced oil recovery. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126658] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Liu Z, Zhao G, Brewer M, Lv Q, Sudhölter EJR. Comprehensive review on surfactant adsorption on mineral surfaces in chemical enhanced oil recovery. Adv Colloid Interface Sci 2021; 294:102467. [PMID: 34175528 DOI: 10.1016/j.cis.2021.102467] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/23/2021] [Accepted: 06/13/2021] [Indexed: 01/20/2023]
Abstract
With the increasing demand for efficient extraction of residual oil, enhanced oil recovery (EOR) offers prospects for producing more reservoirs' original oil in place. As one of the most promising methods, chemical EOR (cEOR) is the process of injecting chemicals (polymers, alkalis, and surfactants) into reservoirs. However, the main issue that influences the recovery efficiency in surfactant flooding of cEOR is surfactant losses through adsorption to the reservoir rocks. This review focuses on the key issue of surfactant adsorption in cEOR and addresses major concerns regarding surfactant adsorption processes. We first describe the adsorption behavior of surfactants with particular emphasis on adsorption mechanisms, isotherms, kinetics, thermodynamics, and adsorption structures. Factors that affect surfactant adsorption such as surfactant characteristics, solution chemistry, rock mineralogy, and temperature were discussed systematically. To minimize surfactant adsorption, the chemical additives of alkalis, polymers, nanoparticles, co-solvents, and ionic liquids are highlighted as well as implementing with salinity gradient and low salinity water flooding strategies. Finally, current trends and future challenges related to the harsh conditions in surfactant based EOR are outlined. It is expected to provide solid knowledge to understand surfactant adsorption involved in cEOR and contribute to improved flooding strategies with reduced surfactant loss.
Collapse
Affiliation(s)
- Zilong Liu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, PR China; Organic Materials & Interfaces, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Ge Zhao
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, PR China
| | - Mark Brewer
- Shell Global Solutions International B.V., Shell Technology Centre Amsterdam (STCA), Grasweg 31, 1031 HW Amsterdam, The Netherlands
| | - Qichao Lv
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, PR China.
| | - Ernst J R Sudhölter
- Organic Materials & Interfaces, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
19
|
Yang L, Kong D, Chang X, Jiang G, Ao T, Xie C, Kinkeyi Moukoko AD, Ma J. Counterion-specific shale hydration inhibiting performance of vinylimdazolium ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Tariq Z, Kamal MS, Mahmoud M, Murtaza M, Abdulraheem A, Zhou X. Dicationic Surfactants as an Additive in Fracturing Fluids to Mitigate Clay Swelling: A Petrophysical and Rock Mechanical Assessment. ACS OMEGA 2021; 6:15867-15877. [PMID: 34179630 PMCID: PMC8223418 DOI: 10.1021/acsomega.1c01388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/02/2021] [Indexed: 05/03/2023]
Abstract
The interactions of clays with freshwater in unconventional tight sandstones can affect the mechanical properties of the rock. The hydraulic fracturing technique is the most successful technique to produce hydrocarbons from unconventional tight sandstone formations. Knowledge of clay minerals and their chemical interactions with fracturing fluids is extremely vital in the optimal design of fracturing fluids. In this study, quaternary ammonium-based dicationic surfactants are proposed as clay swelling inhibitors in fracturing fluids to reduce the fractured face skin. For this purpose, several coreflooding and breakdown pressure experiments were conducted on the Scioto sandstone samples, and the rock mechanical properties of the flooded samples after drying were assessed. Coreflooding experiments proceeded in a way that the samples were flooded with the investigated fluid and then postflooded with deionized water (DW). Rock mechanical parameters, such as compressive strength, tensile strength, and linear elastic properties, were evaluated using unconfined compressive strength test, scratch test, indirect Brazilian disc test, and breakdown pressure test. The performance of novel synthesized surfactants was compared with commercially used clay stabilizing additives such as sodium chloride (NaCl) and potassium chloride (KCl). For comparison, base case experiments were performed with untreated samples and samples treated with DW. Scioto sandstone samples with high illite contents were used in this study. Results showed that the samples treated with conventional electrolyte solutions lost permeability up to 65% when postflooded with DW. In contrast, fracturing fluid containing surfactant solutions retained the original permeability even after being postflooded with DW. Conventional clay stabilizing additives led to the swelling of clays caused by high compression and tensile strength of the rock when tested at dry conditions. Consequently, the rock fractures at a higher breakdown pressure. However, novel dicationic surfactants do not cause any swelling, and therefore, the rock fractures at the original breakdown pressure.
Collapse
Affiliation(s)
- Zeeshan Tariq
- Department
of Petroleum Engineering, King Fahd University
of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
| | - Muhammad Shahzad Kamal
- Center
for Integrative Petroleum Research (CIPR), King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
| | - Mohamed Mahmoud
- Department
of Petroleum Engineering, King Fahd University
of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
| | - Mobeen Murtaza
- Department
of Petroleum Engineering, King Fahd University
of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
| | - Abdulazeez Abdulraheem
- Department
of Petroleum Engineering, King Fahd University
of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
| | - Xianmin Zhou
- Center
for Integrative Petroleum Research (CIPR), King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
| |
Collapse
|
21
|
Imidazole-Based Ionic Liquids with BF 4 as the Counterion Perform Outstanding Abilities in Both Inhibiting Clay Swelling and Lowing Water Cluster Size. Int J Mol Sci 2021; 22:ijms22126465. [PMID: 34208767 PMCID: PMC8235394 DOI: 10.3390/ijms22126465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
Promoting fluid transportation in porous media has important applications in energy, pedology, bioscience, etc. For this purpose, one effective way is to prevent swelling through surface modification; however, it is far from enough in real cases, such as ultra-low permeability reservoirs and tight oils. In this study, we considered the comprehensive effects of inhibiting clay swelling, flocculation performance, reducing water clusters and interfacial tension and developed a series of imidazole-based tetrafluoroborate ionic liquids (ILs) with different lengths of alkyl chains. Through measurements of anti-swelling rates, XRD, SEM, 17O NMR, molecular dynamics simulation, zeta potential, flocculation evaluation, interfacial tension and a core flooding experiment based on ultra-low permeability reservoirs, the relationships between the molecular structure and physicochemical properties of ILs have been revealed. Interestingly, one of the selected ILs, imidazole-based tetrafluoroborate ILs (C8-OMImBF4), shows excellent performance, which is helpful to design an effective strategy in promoting fluid transportation in narrow spaces.
Collapse
|
22
|
Ahmad HM, Murtaza M, Kamal MS, Hussain SS, Mahmoud M. Cationic gemini surfactants containing biphenyl spacer as shale swelling inhibitor. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Ahmed Khan R, Murtaza M, Abdulraheem A, Kamal MS, Mahmoud M. Imidazolium-Based Ionic Liquids as Clay Swelling Inhibitors: Mechanism, Performance Evaluation, and Effect of Different Anions. ACS OMEGA 2020; 5:26682-26696. [PMID: 33110995 PMCID: PMC7581242 DOI: 10.1021/acsomega.0c03560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Clay swelling is one of the challenges faced by the oil industry. Water-based drilling fluids (WBDF) are commonly used in drilling operations. The selection of WBDF depends on its performance to improve rheology, hydration properties, and fluid loss control. However, WBDF may result in clay swelling in shale formations during drilling. In this work, the impact of imidazolium-based ionic liquids on the clay swelling was investigated. The studied ionic liquids have a common cation group, 1-allyl-3-methyllimidozium, but differ in anions (bromide, iodide, chloride, and dicyanamide). The inhibition behavior of ionic liquids was assessed by linear swell test, inhibition test, capillary suction test, rheology, filtration, contact angle measurement, scanning electron microscopy, and X-ray diffraction (XRD). It was observed that the ionic liquids with different anions reduced the clay swelling. Ionic liquids having a dicyanamide anion showed slightly better swelling inhibition performance compared to other inhibitors. Scanning electron microscopy images showed the water tendency to damage the clay structure, displaying asymmetrical cavities and sharp edges. Nevertheless, the addition of an ionic liquid to sodium bentonite (clay) exhibited fewer cavities and a smooth and dense surface. XRD results showed the increase in d-spacing, demonstrating the intercalation of ionic liquids in interlayers of clay. The results showed that the clay swelling does not strongly depend on the type of anion in imidazolium-based ILs. However, the type of anion in imidazolium-based ILs influences the rheological properties. The performance of ionic liquids was compared with that of the commonly used clay inhibitor (sodium silicate) in the oil and gas industry. ILs showed improved performance compared to sodium silicate. The studied ionic liquids can be an attractive alternative for commercial clay inhibitors as their impact on the other properties of the drilling fluids was less compared to commercial inhibitors.
Collapse
Affiliation(s)
- Rizwan Ahmed Khan
- Petroleum
Engineering Department, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Mobeen Murtaza
- Petroleum
Engineering Department, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Abdulazeez Abdulraheem
- Petroleum
Engineering Department, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Muhammad Shahzad Kamal
- Center
for Integrative Petroleum Research, King
Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Mohamed Mahmoud
- Petroleum
Engineering Department, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
24
|
Evaluation of Clay Hydration and Swelling Inhibition Using Quaternary Ammonium Dicationic Surfactant with Phenyl Linker. Molecules 2020; 25:molecules25184333. [PMID: 32971742 PMCID: PMC7571141 DOI: 10.3390/molecules25184333] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 12/26/2022] Open
Abstract
Water-based drilling fluids are extensively used for drilling oil and gas wells. However, water-based muds cause clay swelling, which severely affects the stability of wellbore. Due to two adsorption positions, it is expected that cationic gemini surfactants can reduce the clay swelling. In this work, quaternary ammonium dicationic gemini surfactants containing phenyl linkers and different counterions (Cl- and Br-) were synthesized, and the effect of variation in counterions on swelling and hydration properties of shales was studied. Numerous water-based drilling fluid formulations were prepared with different concentrations of surfactants to study the swelling inhibition capacity of surfactants. The performance of surfactant-containing drilling muds was evaluated by comparing them with base drilling mud, and sodium silicate drilling mud. Various experimental techniques were employed to study drilling mud characteristics such as rheology and filtration. The inhibition properties of drilling mud formulations were determined by linear swelling experiment, capillary suction time test, particle size distribution measurement, wettability measurements, and X-ray Diffraction (XRD). Experimental results showed that surfactant-based formulation containing bromide counterion exhibited superior rheological properties as compared to other investigated formulations. The filtration test showed that the gemini surfactant with chloride counterion had higher filtrate loss compared to all other formulations. The bentonite swelling was significantly reduced with increasing the concentration of dicationic surfactants as inhibitors, and maximum reduction in the linear swelling rate was observed by using a formulation containing surfactant with chloride counterion. The lowest capillary suction timer (CST) was obtained in the formulation containing surfactant with chloride counterion as less CST indicated the enhanced inhibition capacity. The particle size measurement showed that average bentonite particle size increased upon the addition of surfactants depicting the inhibition capacity. The increase in basal spacing obtained from XRD analysis showed the intercalation of gemini surfactants in interlayers of bentonite. The contact angle measurements were performed to study the wettability of the bentonite film surface, and the results showed that hydrophobicity increased by incorporating the surfactants to the drilling fluid.
Collapse
|
25
|
Fu L, Liao K, Ge J, He Y, Huang W, Du E. Preparation and inhibition mechanism of bis-quaternary ammonium salt as shale inhibitor used in shale hydrocarbon production. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Fu L, Liao K, Tang B, Jiang L, Huang W. Applications of Graphene and Its Derivatives in the Upstream Oil and Gas Industry: A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1013. [PMID: 32466513 PMCID: PMC7353333 DOI: 10.3390/nano10061013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/13/2022]
Abstract
Graphene and its derivatives, with their unique two-dimensional structures and excellent physical and chemical properties, have been an international research hotspot both in the research community and industry. However, in application-oriented research in the oil and gas industry they have only drawn attention in the past several years. Their excellent optical, electrical, thermal and mechanical performance make them great candidates for use in oil and gas exploration, drilling, production, and transportation. Combined with the actual requirements for well working fluids, chemical enhanced oil recovery, heavy oil recovery, profile control and water shutoff, tracers, oily wastewater treatment, pipeline corrosion prevention treatment, and tools and apparatus, etc., this paper introduces the behavior in water and toxicity to organisms of graphene and its derivatives in detail, and comprehensively reviews the research progress of graphene materials in the upstream oil and gas industry. Based on this, suggestions were put forward for the future research. This work is useful to the in-depth mechanism research and application scope broadening research in the upstream oil and gas industry.
Collapse
Affiliation(s)
| | - Kaili Liao
- School of Petroleum Engineering, ChangZhou University, Changzhou 213164, China; (L.F.); (B.T.); (L.J.)
| | | | | | - Weiqiu Huang
- School of Petroleum Engineering, ChangZhou University, Changzhou 213164, China; (L.F.); (B.T.); (L.J.)
| |
Collapse
|
27
|
Lv K, Huang P, Zhou Z, Wei X, Luo Q, Huang Z, Yan H, Jia H. Study of Janus Amphiphilic Graphene Oxide as a High-Performance Shale Inhibitor and Its Inhibition Mechanism. Front Chem 2020; 8:201. [PMID: 32351926 PMCID: PMC7174724 DOI: 10.3389/fchem.2020.00201] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
Janus amphiphilic graphene oxide (JAGO), modified by dodecylamine on one side of graphene oxide (GO), was investigated for its novel use as a shale inhibitor. JAGO was synthesized by the Pickering emulsion template technology and was characterized by the Fourier-transform infrared spectra, UV-vis spectra, and transmission electron microscopy. Compared to KCl (5%), polyether diamine (2%), and pristine GO (0.2%), JAGO's highest shale recovery rate (75.2% at 80°C) and lowest swelling height of Mt-pellets (2.55 mm, 0.2%) demonstrated its excellent inhibitive property. Furthermore, JAGO acted as a perfect plugging agent and greatly reduced filtration loss. Based on the results of X-ray diffraction, contact angle measurements, and pressure transmission tests, we proposed that the 2D nano-sheet amphiphilic structure of JAGO, which enabled it to be effective both in chemical inhibition and physical plugging, was responsible for its remarkable inhibition performances.
Collapse
Affiliation(s)
- Kaihe Lv
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao, China.,Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, China
| | - Pan Huang
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao, China.,Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, China
| | - Zhishi Zhou
- CNPC Tarim Oilfield Branch Oil and Gas Engineering Research Institute, Korla, China
| | - Xin Wei
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao, China.,Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, China
| | - Qi Luo
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao, China.,Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, China
| | - Ziming Huang
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao, China.,Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, China
| | - Hui Yan
- School of Pharmacy, Liaocheng University, Liaocheng, China
| | - Han Jia
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao, China.,Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, China
| |
Collapse
|