1
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
2
|
Sadjadi S, Tarighi S, Delangiz M, Heravi M. Heteropolyacid supported on ionic liquid decorated hierarchical faujasite zeolite as an efficient catalyst for glycerol acetalization to solketal. Sci Rep 2023; 13:15703. [PMID: 37735246 PMCID: PMC10514292 DOI: 10.1038/s41598-023-42956-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023] Open
Abstract
To handle huge amount of glycerol produced in biodiesel industry, glycerol is transformed to value-added products. In this regard, glycerol acetalization to solketal is industrially attractive. As in this process various by-products can be formed, designing highly selective catalysts is of great importance. In this line, we wish to report a novel catalyst that benefits from strong acidity, high specific surface area and thermal stability, which can selectively form solketal in glycerol acetalization. To prepare the catalyst, hierarchical zeolite was prepared via a novel method, in which partially dealuminated NaY was treated with PluronicF-127 and then reacted with NH4NO3 to furnish the H-form zeolite. Hierarchical faujasite was then achieved through calcination and template removal. Subsequently, it was functionalized with ionic liquid and used for the immobilization of heteropolyacid. The results indicated the importance of the mesoprosity of zeolite and the presense of ionic liquid functionality for achiveing high solketal yield. Moreover, among three investigated heteropolyacids, phosphomolybdic acid exhibited the highest catalytic activity. In fact, using 10 wt% catalyst at 55 °C and glycerol to acetone molar ratio of 1:20, solketal with yield of 98% was furnished under solvent-less condition. Besides, the catalyst was recyclable with low leaching of heteropolyacid.
Collapse
Affiliation(s)
- Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112, Tehran, Iran.
| | - Sara Tarighi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112, Tehran, Iran
| | - Motahareh Delangiz
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112, Tehran, Iran
| | - Majid Heravi
- Department of Chemistry, School of Physic and Chemistry, Alzahra University, P.O. Box 1993891176, Vanak, Tehran, Iran
| |
Collapse
|
3
|
The preparation of polyvinyl imidazole-functionalized magnetic biochar decorated by silver nanoparticles as an efficient catalyst for the synthesis of spiro-2-Amino-4H-pyran compounds. Sci Rep 2022; 12:22281. [PMID: 36566247 PMCID: PMC9789996 DOI: 10.1038/s41598-022-25857-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/06/2022] [Indexed: 12/25/2022] Open
Abstract
The silver nanoparticle was synthesized by developing poly (1-vinylimidazole) on the surface of magnetized biochar (the stem and roots of Spear Thistle) (biochar/Fe3O4/PVIm/Ag). This nanocomposite was characterized by Fourier-transformed infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), and transmission electron microscopy (TEM). The SEM and TEM images of the nanocatalyst, biochar/Fe3O4/PVIm/Ag-NPs, confirmed the observation of microscopic sheets of biochar. The catalytic activity of these Ag NPs was tested via multicomponent reaction plus reusing to successful formation of 2-amino-4H-pyran and functionalized spirochromen derivatives. The prepared nanocatalyst was easily separated by an external magnet and reused in repeating coupling reaction cycles four times without remarkable activity loss. The catalyst showed great efficiency and reusability, thus making it an ideal candidate for catalytic purposes in several organic transformations.
Collapse
|
4
|
Abedian-Dehaghani N, Sadjadi S, Heravi MM. Selenium and nitrogen co-doped biochar as an efficient metal-free catalyst for oxidation of aldehydes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Sadjadi S, Abedian-Dehaghani N, Heravi MM. Pd on thermo-responsive composite of silica-coated carbon nanotube and 1-vinyl-3-butylimidazolium-based ionic liquid copolymers as an efficient catalyst for hydrogenation of nitro compounds. Sci Rep 2022; 12:3972. [PMID: 35273229 PMCID: PMC8913645 DOI: 10.1038/s41598-022-07708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/16/2022] [Indexed: 11/09/2022] Open
Abstract
In this work, an ionic liquid-containing thermo-responsive heterogeneous catalyst with utility for promoting hydrogenation of nitro-compounds in aqueous media is developed. To prepare the catalyst, silica-coated carbon nanotubes were synthesized and vinyl-functionalized. The resulted compound was then polymerized with 1-viny-3-butylimidazolium bromide and N-isopropylacrylamide. The obtained ionic liquid-containing thermo-responsive composite was palladated via wet-impregnation method to give the final catalyst. Study of the performance of the catalyst confirmed high catalytic activity of the catalyst at temperature above the lower critical solution temperature. Furthermore, the catalyst was highly recyclable and showed negligible Pd leaching upon recycling. Broad substrate scope and selectivity of the catalyst towards reduction of nitro functionality were also confirmed. Furthermore, hot filtration test implied the heterogeneous nature of the catalysis. The comparison of the activity of Pd/CNT-P with some control catalysts approved the importance of hybridization of P and CNT and the presence of ionic liquid for the catalytic activity.
Collapse
Affiliation(s)
- Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, PO Box 14975-112, Tehran, Iran.
| | - Neda Abedian-Dehaghani
- Department of Chemistry, School of Physics and Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran
| | - Majid M Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran.
| |
Collapse
|
6
|
Glotov A, Vutolkina A, Pimerzin A, Vinokurov V, Lvov Y. Clay nanotube-metal core/shell catalysts for hydroprocesses. Chem Soc Rev 2021; 50:9240-9277. [PMID: 34241609 DOI: 10.1039/d1cs00502b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Catalytic hydroprocesses play a significant role in oil refining and petrochemistry. The tailored design of new metal nanosystems and optimization of their support, composition, and structure is a prospective strategy for enhancing the efficiency of catalysts. Mesoporous support impacts the active component by binding it to the surface, which leads to the formation of tiny highly dispersed catalytic particles stabilized from aggregation and with minimized leaching. The structural and acidic properties of the support are crucial and determine the size and dispersion of the active metal phase. Currently, research efforts are shifted toward the design of nanoscale porous materials, where homogeneous catalysts are displaced by heterogeneous. Ceramic materials, such as 50 nm diameter natural halloysite nanotubes, are of special interest for this. Much attention to halloysite clay is due to its tubular structure with a hollow 10-15 nm diameter internal cavity, textural characteristics, and different chemical compositions of the outer/inner surfaces, allowing selective nanotube modification. Loading halloysite with metal particles or placing them outside the tubes provides stable and efficient mesocatalysts. The low cost of this abundant nanoclay makes it a good choice for the scaled-up architectural design of core-shell catalysts, containing active metal sites (Au, Ag, Pt, Ru, Co, Mo, Fe2O3, CdS, CdZnS, Cu-Ni) located inside or outside the tubular template. These alumosilicate nanotubes are environment-friendly and are available in thousands of tons. Herein, we summarized the advances of halloysite-based composite materials for hydroprocesses, focusing on the selective binding of metal particles. We analyze the tubes' morphology adjustments and size selection, the physicochemical properties of pristine and modified halloysite (e.g., acid-etched or silanized), the methods of metal clusters formation, and their localization. We indicate prospective routes for the architectural design of stable and efficient nanocatalysts based on this safe and natural clay material.
Collapse
Affiliation(s)
- Aleksandr Glotov
- Gubkin Russian State University of Oil and Gas (NRU), 65 Leninsky Prospekt, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
7
|
Composite of bentonite and cyclodextrin as an efficient catalyst for promoting chemical transformations in aqueous media. Sci Rep 2021; 11:5102. [PMID: 33658567 PMCID: PMC7930184 DOI: 10.1038/s41598-021-84349-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/15/2021] [Indexed: 11/08/2022] Open
Abstract
Combining the encapsulating capability of cyclodextrin and instinctive features of bentonite clay, a versatile metal free catalyst has been developed that could promote various chemical reactions such as Knoevenagel condensation, synthesis of xanthan and octahydroquinazolinones in aqueous media under ultrasonic irradiation. To prepare the catalyst, bentonite was Cl-functionalized and then reacted with isatin and guanidine successively to furnish amino functionalized bentonite. The latter then reacted with tosylated cyclodextrin. The resultant catalytic composite was characterized via XRD, SEM, EDS, BET, elemental mapping analysis, TGA and FTIR. The catalytic activity tests approved excellent activity of the catalyst as well as broad substrate scope. Notably, the catalyst could be simply recovered and reused for several reaction runs. Moreover, the activity of the composite was superior to that of its components.
Collapse
|
8
|
Khalil M, Kadja GT, Ilmi MM. Advanced nanomaterials for catalysis: Current progress in fine chemical synthesis, hydrocarbon processing, and renewable energy. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.09.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Molnár Á. Synthetic Application of Cyclodextrins in Combination with Metal Ions, Complexes, and Metal Particles. ChemCatChem 2020. [DOI: 10.1002/cctc.202001610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 6720 Szeged Hungary
| |
Collapse
|
10
|
Sadjadi S, Koohestani F, Heravi M. Biochar-Based Graphitic Carbon Nitride Adorned with Ionic Liquid Containing Acidic Polymer: A Versatile, Non-Metallic Catalyst for Acid Catalyzed Reaction. Molecules 2020; 25:E5958. [PMID: 33339246 PMCID: PMC7766038 DOI: 10.3390/molecules25245958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022] Open
Abstract
A novel biochar-based graphitic carbon nitride was prepared through calcination of Zinnia grandiflora petals and urea. To provide acidic and ionic-liquid functionalities on the prepared carbon, the resultant biochar-based graphitic carbon nitride was vinyl functionalized and polymerized with 2-acrylamido-2-methyl-1-propanesulfonic acid, acrylic acid and the as-prepared 1-vinyl-3-butylimidazolium chloride. The final catalytic system that benefits from both acidic (-COOH and -SO3H) and ionic-liquid functionalities was applied as a versatile, metal-free catalyst for promoting some model acid catalyzed reactions such as Knoevenagel condensation and Biginelli reaction in aqueous media under a very mild reaction condition. The results confirmed high activity of the catalyst. Broad substrate scope and recyclability and stability of the catalyst were other merits of the developed protocols. Comparative experiments also indicated that both acidic and ionic-liquid functionalities on the catalyst participated in the catalysis.
Collapse
Affiliation(s)
- Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemicals Institute, P.O. Box 14975112, Tehran 1497713115, Iran;
| | - Fatemeh Koohestani
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemicals Institute, P.O. Box 14975112, Tehran 1497713115, Iran;
| | - Majid Heravi
- Department of Chemistry, School of Science, Alzahra University, P.O. Box 1993891176, Vanak, Tehran 1993891176, Iran
| |
Collapse
|
11
|
Elyasi Z, Safaei Ghomi J, Najafi GR, Zand Monfared MR. The influence of the polymerization approach on the catalytic performance of novel porous poly (ionic liquid)s for green synthesis of pharmaceutical spiro-4-thiazolidinones. RSC Adv 2020; 10:44159-44170. [PMID: 35517141 PMCID: PMC9058518 DOI: 10.1039/d0ra08647a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
Although poly (ionic liquids) (PILs) have attracted great research interest owing to their various applications, the performance of nanoporous PILs has been rarely developed in the catalysis field. To this end, a micro–mesoporous PIL with acid–base bifunctional active sites was designed and fabricated by two different polymerization protocols including hydrothermal and classical precipitation polymerization in this paper. Based on our observations, hydrothermal conditions (high temperature and pressure) enabled the proposed sonocatalyst to possess a great porous structure with a high specific surface area (SBET: 315 m2 g−1) and thermal stability (around 450 °C for 45% weight loss) through strengthening cross-linking. In a comparative study, the preferred nanoporous PIL was selected and utilized as the sonocatalyst in a multicomponent reaction of isatins, primary amines, and thioglycolic acid. In the following, a variety of new and known pharmaceutical spiro-4-thiazolidinone derivatives were synthesized at room temperature and obtained excellent yields (>90%) within short reaction times (4–12 min) owing to the substantial synergistic effect between ultrasound irradiation and magnetically separable catalyst. Sustainable synthesize of a new mesoporous poly (ionic liquid) as acid–base bifunctional catalyst for environmental being preparation of monospiro derivatives has been developed.![]()
Collapse
Affiliation(s)
- Zahra Elyasi
- Department of Chemistry, Qom Branch, Islamic Azad University Post Box: 37491-13191 Qom I. R. Iran +98 31 55552935 +98 31 55912385
| | - Javad Safaei Ghomi
- Department of Chemistry, Qom Branch, Islamic Azad University Post Box: 37491-13191 Qom I. R. Iran +98 31 55552935 +98 31 55912385.,Department of Organic Chemistry, Faculty of Chemistry, University of Kashan Iran
| | - Gholam Reza Najafi
- Department of Chemistry, Qom Branch, Islamic Azad University Post Box: 37491-13191 Qom I. R. Iran +98 31 55552935 +98 31 55912385
| | - Mohammad Reza Zand Monfared
- Department of Chemistry, Qom Branch, Islamic Azad University Post Box: 37491-13191 Qom I. R. Iran +98 31 55552935 +98 31 55912385
| |
Collapse
|
12
|
Sadjadi S, Koohestani F. Bentonite with high loading of ionic liquid: A potent non-metallic catalyst for the synthesis of dihydropyrimidinones. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Sadjadi S, Koohestani F, Heravi MM. Fabrication of a metal free catalyst for chemical reactions through decoration of chitosan with ionic liquid terminated dendritic moiety. Sci Rep 2020; 10:19666. [PMID: 33184399 PMCID: PMC7661698 DOI: 10.1038/s41598-020-76795-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/03/2020] [Indexed: 11/09/2022] Open
Abstract
In attempt to develop a biocompatible metal-free catalyst, a dendritic moiety was grown on chitosan through successive reactions with 2,4,6-trichloro-1,3,5-triazine and ethylenediamine. Subsequently, the terminal functional groups of the dendron were decorated with 1-methylimidazolium chloride. The catalyst was characterized with SEM, EDS, TGA, FTIR, XRD and mapping analysis. Then, the catalytic activity of the resultant composite was scrutinized for catalyzing Knoevenagel condensation and synthesis of xanthene derivatives in aqueous media under mild reaction condition. The results confirmed high activity of the catalyst, superior to ionic liquid free counterpart and bare chitosan. This observation was ascribed to the instinct catalytic activity of ionic liquid. Moreover, using control catalysts, it was confirmed that the presence of the dendritic moiety that could increase the content of ionic liquid on the backbone of the catalyst enhanced the catalytic activity.
Collapse
Affiliation(s)
- Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, PO Box 14975-112, Tehran, Iran.
| | - Fatemeh Koohestani
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, PO Box 14975-112, Tehran, Iran
| | - Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University, Vanak, PO Box 1993891176, Tehran, Iran.
| |
Collapse
|
14
|
Palladium Catalysts Based on Porous Aromatic Frameworks, Modified with Ethanolamino-Groups, for Hydrogenation of Alkynes, Alkenes and Dienes. Catalysts 2020. [DOI: 10.3390/catal10101106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The current work describes an attempt to synthesize hybrid materials combining porous aromatic frameworks (PAFs) and dendrimers and use them to obtain novel highly active and selective palladium catalysts. PAFs are carbon porous materials with rigid aromatic structure and high stability, and the dendrimers are macromolecules which can effectively stabilize metal nanoparticles and tune their activity in catalytic reactions. Two porous aromatic frameworks, PAF-20 and PAF-30, are modified step-by-step with diethanolamine and hydroxyl groups at the ends of which are replaced by new diethanolamine molecules. Then, palladium nanoparticles are applied to the synthesized materials. Properties of the obtained materials and catalysts are investigated using X-ray photoelectron spectroscopy, transmission electron microscopy, solid state nuclear magnetic resonance spectroscopy, low temperature N2 adsorption and elemental analysis. The resulting catalysts are successfully applied as an efficient and recyclable catalyst for selective hydrogenation of alkynes to alkenes at very high (up to 90,000) substrate/Pd ratios.
Collapse
|
15
|
Pd on poly(1-vinylimidazole) decorated magnetic S-doped grafitic carbon nitride: an efficient catalyst for catalytic reduction of organic dyes. Sci Rep 2020; 10:13440. [PMID: 32778757 PMCID: PMC7417994 DOI: 10.1038/s41598-020-70457-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
A novel magnetic catalyst, (SGCN/Fe3O4/PVIs/Pd) was synthesized by growing of poly(1-vinylimidazole) on the surface of ionic liquid decorated magnetic S-doped graphitic carbon nitride, followed by stabilization of palladium nanoparticles. Catalytic activity of the prepared heterogeneous catalyst was explored for the catalytic reduction of hazardous dyes, methyl orange and Rhodamine B, in the presence of NaBH4. Besides, the effects of the reaction variables on the catalytic activity were investigated in detail. The kinetics study established that dye reduction was the first order reaction and the apparent activation energy was calculated to be 72.63 kJ/mol and 68.35 kJ/mol1 for methyl orange and Rhodamine B dyes, respectively. Moreover, ΔS# and ΔH# values for methyl orange were found to be − 33.67 J/mol K and 68.39 kJ/mol respectively. These values for Rhodamine B were − 45.62 J/mol K and 65.92 kJ/mol. The recycling test verified that the catalyst possessed good stability and reusability, thereby making it a good candidate for the catalytic purposes. Furthermore, a possible catalytic mechanism for dye catalytic reduction over SGCN/Fe3O4/PVIs/Pd was proposed.
Collapse
|
16
|
Pd immobilized on hybrid of magnetic graphene quantum dots and cyclodextrin decorated chitosan: An efficient hydrogenation catalyst. Int J Biol Macromol 2020; 150:441-448. [DOI: 10.1016/j.ijbiomac.2020.02.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/22/2022]
|