1
|
Zhao S, Xing L, Chen J, Yang Z, Che Y, Xiao R, Yang J, Bao R. Influence of Oxygen Exposure on Lignin Preservation during Sediment Lateral Transport in the Ocean: Insights from Molecular Dynamics Simulations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18756-18764. [PMID: 39381896 DOI: 10.1021/acs.est.4c06185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Understanding the fate of terrestrial organic carbon (terrOC) preservation in the marine environments is critical for deciphering the biogeochemical processes associated with the global carbon cycle and the Earth's climate change. The mechanisms controlling terrOC preservation are not completely understood, while lateral oxygen exposure time (OET) is considered as a critical controlling factor. Here, we first utilized molecular dynamics simulations to investigate the structural properties of lignin under anoxic, suboxic, and oxic conditions for understanding the mechanisms of terrOC preservation during sediment lateral transport in the ocean. Our finding suggested that oxygen exposure was indispensable for terrOC degradation through influencing the structural stability and reactivity of lignin. Our simulated results showed that in suboxic environments, prolonged OET may enhance terrOC preservation. Our organic geochemical results suggested that terrOC preferably preserved in coarse silts (20-63 μm) than fine silts (<20 μm) in suboxic environments, largely due to hydrodynamics-driven prolonged OET in coarse sediments, which may efficiently reduce CO2 emissions. Overall, our study sheds new light on the mechanisms of lateral OETs on terrOC preservation in suboxic conditions and, from a unique molecular structural perspective, provides insights into the impact of prolonged OETs on terrOC oxidative degradation in the marine environment.
Collapse
Affiliation(s)
- Siqi Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Studies, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Lei Xing
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Studies, Ocean University of China, Qingdao 266100, China
| | - Junhui Chen
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ziyang Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Studies, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yangli Che
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Studies, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Rui Xiao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Studies, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jianbo Yang
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Rui Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Studies, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Ming X, Si W, Yu Q, Sun Z, Qiu G, Cao M, Li Y, Li Z. Molecular insight into the initial hydration of tricalcium aluminate. Nat Commun 2024; 15:2929. [PMID: 38575602 PMCID: PMC10995194 DOI: 10.1038/s41467-024-47164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
Portland cement (PC) is ubiquitously used in construction for centuries, yet the elucidation of its early-age hydration remains a challenge. Understanding the initial hydration progress of tricalcium aluminate (C3A) at molecular scale is thus crucial for tackling this challenge as it exhibits a proclivity for early-stage hydration and plays a pivotal role in structural build-up of cement colloids. Herein, we implement a series of ab-initio calculations to probe the intricate molecular interactions of C3A during its initial hydration process. The C3A surface exhibits remarkable chemical activity in promoting water dissociation, which in turn facilitates the gradual desorption of Ca ions through a metal-proton exchange reaction. The dissolution pathways and free energies of these Ca ions follow the ligand-exchange mechanism with multiple sequential reactions to form the ultimate products where Ca ions adopt fivefold or sixfold coordination. Finally, these Ca complexes reprecipitate on the remaining Al-rich layer through the interface-coupled dissolution-reprecipitation mechanism, demonstrating dynamically stable inner-sphere adsorption states. The above results are helpful in unmasking the early-age hydration of PC and advancing the rational design of cement-based materials through the bottom-up approach.
Collapse
Affiliation(s)
- Xing Ming
- Faculty of Innovation Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Wen Si
- School of Civil Engineering, Dalian University of Technology, Dalian, China
| | - Qinglu Yu
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Zhaoyang Sun
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Guotao Qiu
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Mingli Cao
- School of Civil Engineering, Dalian University of Technology, Dalian, China
| | - Yunjian Li
- Faculty of Innovation Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China.
| | - Zongjin Li
- Faculty of Innovation Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China.
| |
Collapse
|
3
|
Zhou T, Gui C, Sun L, Hu Y, Lyu H, Wang Z, Song Z, Yu G. Energy Applications of Ionic Liquids: Recent Developments and Future Prospects. Chem Rev 2023; 123:12170-12253. [PMID: 37879045 DOI: 10.1021/acs.chemrev.3c00391] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Ionic liquids (ILs) consisting entirely of ions exhibit many fascinating and tunable properties, making them promising functional materials for a large number of energy-related applications. For example, ILs have been employed as electrolytes for electrochemical energy storage and conversion, as heat transfer fluids and phase-change materials for thermal energy transfer and storage, as solvents and/or catalysts for CO2 capture, CO2 conversion, biomass treatment and biofuel extraction, and as high-energy propellants for aerospace applications. This paper provides an extensive overview on the various energy applications of ILs and offers some thinking and viewpoints on the current challenges and emerging opportunities in each area. The basic fundamentals (structures and properties) of ILs are first introduced. Then, motivations and successful applications of ILs in the energy field are concisely outlined. Later, a detailed review of recent representative works in each area is provided. For each application, the role of ILs and their associated benefits are elaborated. Research trends and insights into the selection of ILs to achieve improved performance are analyzed as well. Challenges and future opportunities are pointed out before the paper is concluded.
Collapse
Affiliation(s)
- Teng Zhou
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518048, China
| | - Chengmin Gui
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Longgang Sun
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Yongxin Hu
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Hao Lyu
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Zihao Wang
- Department for Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, D-39106 Magdeburg, Germany
| | - Zhen Song
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gangqiang Yu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| |
Collapse
|
4
|
Xie W, He S, Fang S, Yin B, Tian R, Wang Y, Wang D. Analysis of starch dissolved in ionic liquid by glass nanopore at single molecular level. Int J Biol Macromol 2023; 239:124271. [PMID: 37019197 DOI: 10.1016/j.ijbiomac.2023.124271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023]
Abstract
In this paper, the glass nanopore technology was proposed to detect a single molecule of starch dissolved in ionic liquid [1-butyl-3-methylimidazolium chloride (BmimCl)]. Firstly, the influence of BmimCl on nanopore detection is discussed. It is found that a certain amount of strong polar ionic liquids will disturb the charge distribution in nanopores and increase the detection noise. Then, by analysis of the characteristic current signal of the conical nanopore, the motion behaviour of starch near the entrance of the nanopore was studied and analysis the dominant ion of starch in the BmimCl dissolution process. Finally, based on nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy simply discussed the mechanism of amylose and amylopectin dissolved in BmimCl. These results confirm that branched chain structure would affect the dissolution of polysaccharides in ionic liquids and the contribution of anions to the dissolution of polysaccharides are dominant. It is further proved that the current signal can be used to judge the charge and structure information of the analyte, and the dissolution mechanism can be assist analyzed at the single molecule level.
Collapse
|
5
|
Russo S, Bodo E. A polarisable force field for bio-compatible ionic liquids based on amino acids anions. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2113810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Stefano Russo
- Department of Chemistry, University of Rome “La Sapienza”, Rome, Italy
| | - Enrico Bodo
- Department of Chemistry, University of Rome “La Sapienza”, Rome, Italy
| |
Collapse
|
6
|
Hassan ESRE, Mutelet F. Evaluation of miscanthus pretreatment effect by Choline chloride based Deep Eutectic solvents on bioethanol production. BIORESOURCE TECHNOLOGY 2022; 345:126460. [PMID: 34863844 DOI: 10.1016/j.biortech.2021.126460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
This work evaluates the efficiency of three deep eutectic solvents constituted of choline chloride and urea or glycerol or ethylene glycol in the pretreatment of the miscanthus in view of extracting cellulose. Analysis of experiments shows that basicity and polarity of the hydrogen bond donor of these DESs are directly related to the miscanthus solubility. The best efficient process was found using {Choline chloride/glycerol} mixture for the pretreatment at a temperature of 373 K and a duration of about 6 h. This may be explained by the fact that {Choline chloride/glycerol} pretreatment allows to obtain an amorphous cellulose. {Choline chloride/glycerol} was as efficiently as IL pretreatments with an ethanol production of about 72%. This study shows that Choline chloride based DESs pretreatment for biomass could be a key point to enhance the efficiency of biorefinery.
Collapse
Affiliation(s)
- El-Sayed R E Hassan
- Laboratoire Réactions et Génie des Procédés (UMR CNRS 7274), Université de Lorraine, Nancy 54000, France; Minerals Beneficiation and Agglomeration Department, Minerals Technology Division, Central Metallurgical Research & Development Institute, P.O. Box 87 Helwan, 11722 Cairo, Egypt
| | - Fabrice Mutelet
- Laboratoire Réactions et Génie des Procédés (UMR CNRS 7274), Université de Lorraine, Nancy 54000, France.
| |
Collapse
|
7
|
Bodo E. Perspectives in the Computational Modeling of New Generation, Biocompatible Ionic Liquids. J Phys Chem B 2022; 126:3-13. [PMID: 34978449 PMCID: PMC8762658 DOI: 10.1021/acs.jpcb.1c09476] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Indexed: 12/11/2022]
Abstract
In this Perspective, I review the current state of computational simulations on ionic liquids with an emphasis on the recent biocompatible variants. These materials are used here as an example of relatively complex systems that highlights the limits of some of the approaches commonly used to study their structure and dynamics. The source of these limits consists of the coexistence of nontrivial electrostatic, many-body quantum effects, strong hydrogen bonds, and chemical processes affecting the mutual protonation state of the constituent molecular ions. I also provide examples on how it is possible to overcome these problems using suitable simulation paradigms and recently improved techniques that, I expect, will be gradually introduced in the state-of-the-art of computational simulations of ionic liquids.
Collapse
Affiliation(s)
- Enrico Bodo
- Chemistry Department, University of Rome “La Sapienza”, P. A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
8
|
Understanding the dissolution of softwood lignin in ionic liquid and water mixed solvents. Int J Biol Macromol 2021; 182:402-412. [PMID: 33838189 DOI: 10.1016/j.ijbiomac.2021.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/22/2022]
Abstract
Lignin is the most abundant heterogeneous aromatic polymer on earth to produce a large number of value-added chemicals. Besides, the separation of lignin from the lignocellulosic biomass is essential for cellulosic biofuel production. For the first time, we report a cosolvent-based approach to understand the dissolution of lignin with 61 guaiacyl subunits at the molecular level. Atomistic molecular dynamics simulations of the lignin were performed in 0%, 20%, 50%, 80%, and 100% 1-Ethyl-3-Methylimidazolium Acetate (EmimOAc) systems. The lignin structure was significantly destabilized in both 50%, and 80% EmimOAc cosolvents, and pure EmimOAc systems leading to the breakdown of intrachain hydrogen bonds. Lignin-OAc and lignin-water hydrogen bonds were formed with increasing EmimOAc concentration, signifying the dissolution process. The OAc anions mostly solvated the alkyl chains and hydroxy groups of lignin. Besides, the imidazolium head of Emim cations contributed to solvation of methoxy groups and hydroxy groups, whereas ethyl tail interacted with the benzene ring of guaiacyl subunits. Effective dissolution was obtained in both the 50% and 80% EmimOAc cosolvent systems. Overall, our study presents a molecular view of the lignin dissolution focusing on the role of both cation and anion, which will help to design efficient cosolvent-based methods for lignin dissolution.
Collapse
|