1
|
Olomo E, Talai S, Kiplagat J, Manirambona E, Muliwa A, Okino J. Thermal and catalytic pyrolysis of automotive plastic wastes to diesel range fuel. Heliyon 2024; 10:e39576. [PMID: 39512314 PMCID: PMC11541461 DOI: 10.1016/j.heliyon.2024.e39576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
This study investigated the pyrolysis of automotive plastic wastes (APW) for the production of diesel-grade oil products using a modified calcium bentonite clay catalyst. The research aimed to optimize the process for maximum oil yield and diesel range organics yield. The APW was characterized by its chemical composition and physical properties and the optimal temperature and catalyst amount were determined for maximum oil yield and diesel range hydrocarbons. The results showed that the APW contained mixed Acrylonitrile Butadiene Styrene (ABS), High/Low Density Polyethylene (H/LDPE), Polypropylene (PP), Polystrene (PS) and fiberglass, with a large quantity of volatiles and ash. The average oil yield was higher in the catalytic process compared to that in the thermal process. Generally, higher temperature above 450 °C produced waxy oil, thus lower temperature favoured more Diesel Range Organics (DRO). Both processes yield similar yields of C8-C24 DRO, and in both cases, lower temperature favoured high yield of C8-C24 hydrocarbons. The catalyst significantly increased the yield of oil, but did not significantly increase C8-C24 DRO yield. The optimal conditions for a maximum oil yield of 78.6 % and DRO yield of 79.5 % was a temperature of 416 °C and 24.3 wt% clay. Thus, the modified calcium bentonite clay can be used to improve oil yield from pyrolysis of APW. The oil produced had properties such as calorific value (49.85 MJ/kg), flash point (113 °C ) and total aromatics 3.55 area%, similar to those of commercial diesel, and comprised mostly of 2,4-Dimethyl-1-heptene (25.37 ± 2.01 %) of thermal and 2, 4 - Dimethyl - 1 - heptane (23.44 ± 2.42) in the catalytic process. The study suggests further research to explore different catalysts, maximization of both DRO and gasoline range organics, recover energy from residues, and conduct techno-economic assessments for plant-scale operations. Additionally, policies on the management of end-of-life vehicles should include provisions for stripping and segregation of plastic components by accredited providers for the purpose of plastics recycling.
Collapse
Affiliation(s)
- Elly Olomo
- Department of Mechanical, Production and Energy Engineering, Moi University, P.O. Box 3900 -30100, Eldoret, Kenya
- Department of Mechanical Engineering, Faculty of Engineering and Applied Sciences, Uganda Martyrs University, Fort Portal, Uganda
| | - Stephen Talai
- Department of Mechanical, Production and Energy Engineering, Moi University, P.O. Box 3900 -30100, Eldoret, Kenya
| | - Joseph Kiplagat
- Department of Mechanical, Production and Energy Engineering, Moi University, P.O. Box 3900 -30100, Eldoret, Kenya
| | - Egide Manirambona
- Department of Electromechanical Engineering, Faculty of Engineering Sciences, University of Burundi, Bujumbura, Burundi
| | - Anthony Muliwa
- Department of Chemical and Process Engineering, Moi University, P.O Box 3900-30100, Eldoret, Kenya
| | - Jasper Okino
- Department of Mechanical, Production and Energy Engineering, Moi University, P.O. Box 3900 -30100, Eldoret, Kenya
| |
Collapse
|
2
|
Sanni O, Ren J, Jen TC. Electrochemical, surface, and theoretical investigations of palm kernel shell extract as an effective inhibitor for carbon-steel corrosion in 1 M HCl solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35159-9. [PMID: 39377910 DOI: 10.1007/s11356-024-35159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Herein, we employed palm kernel shell extract (PKSE) as an eco-friendly inhibitor for carbon steel in acidic-induced corrosion. The corrosion inhibition of PKSE on carbon steel in 1 M HCI solution was investigated by electrochemical impedance spectroscopy, weight loss, and potentiodynamic polarization measurements. The surface was characterized by scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy. Moreover, the elastic modulus and hardness tests were conducted. Weight loss measurements revealed that the optimum concentration of inhibitors is 500 ppm with 95.3% inhibition efficiency in 1 M HCl solution. Electrochemical results showed that the inhibitor could exhibit excellent corrosion inhibition performance and displayed mixed-type inhibition. The electrochemical impedance spectroscopy analysis shows that the inhibition performance increases by increasing the concentration of PKSE. The surface studies ensure the PKSE effectiveness in carbon steel surface damage reduction. Also, the adsorption of PKSE molecules on the carbon steel surface occurs according to the Langmuir isotherm model. The primary goal of this investigation was the utilization of palm kernel shell extract as corrosion inhibitor for 1018 low carbon steel in 1 M HCl solution, which highlights its novelty. The present results will be helpful to uncover the versatile importance of palm kernel shell compounds in the corrosion inhibition process.
Collapse
Affiliation(s)
- Omotayo Sanni
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, 0002, South Africa.
| | - Jianwei Ren
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, 0002, South Africa
| | - Tien-Chien Jen
- Department of Mechanical Engineering Science, University of Johannesburg, Cnr Kingsway and University Roads, Johannesburg, 2092, South Africa
| |
Collapse
|
3
|
Ahmed MA, Amin S, Mohamed AA. Current and emerging trends of inorganic, organic and eco-friendly corrosion inhibitors. RSC Adv 2024; 14:31877-31920. [PMID: 39380647 PMCID: PMC11460216 DOI: 10.1039/d4ra05662k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Effective corrosion control strategies are highly desired to reduce the fate of corrosion. One widely adopted approach is the use of corrosion inhibitors, which can significantly mitigate the detrimental effects of corrosion. This systematic review provides a thorough analysis of corrosion inhibitors, including both inorganic and organic compounds. It explores the inhibition mechanisms, highlighting the remarkable inhibitive efficiency of organic compounds attributed to the presence of heteroatoms and conjugated π-electron systems. The review presents case studies and investigations of corrosion inhibitors, shedding light on their performance and application potential. Moreover, it compares the efficacy, compatibility, and sustainability of emerging environmentally friendly corrosion inhibitors, including biopolymers from natural resources as promising candidates. The review also highlights the potential of synergistic impacts between mixed corrosion inhibitors, particularly organic/organic systems, as a viable and advantageous choice for applications in challenging processing environments. The evaluation of inhibitors is discussed, encompassing weight loss (WL) analysis, electrochemical analysis, surface analysis, and quantum mechanical calculations. The review also discusses the thermodynamics and isotherms related to corrosion inhibition, further improving the understanding of inhibitor's behavior and mechanisms. This review serves as a valuable resource for researchers, engineers, and practitioners involved in corrosion control, offering insights and future directions for effective and environmentally friendly corrosion inhibition strategies.
Collapse
Affiliation(s)
- Mahmoud A Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University Cairo 11566 Egypt
- Veolia Water Technologies Cairo 11835 Egypt
| | | | - Ashraf A Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| |
Collapse
|
4
|
Pourmohseni M, Rashidi A, Karimkhani M. Preparation of corrosion inhibitor from natural plant for mild stil immersed in an acidic environmental: experimental and theoretical study. Sci Rep 2024; 14:7937. [PMID: 38575677 PMCID: PMC11371809 DOI: 10.1038/s41598-024-58637-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/01/2024] [Indexed: 04/06/2024] Open
Abstract
In the present study, the inhibition performance of some medicinal plants (i.e. Yarrow, Wormwood, Maurorum, Marjoram, and Ribes rubrum) was theoretically and experimentally investigated for mild steel immersed in 1M HCl. In this way, the obtained extracts characterized by Fourier transform infrared spectroscopy (FT-IR) and the electrochemical and theoretical techniques were used to study the inhibition mechanisms of the extracts for the immersed electrode in the acidic solution. In addition, the microstructure of the electrode surface immersed in the blank and inhibitor-containing solutions characterized by field emission scanning electron microscopy (FE-SEM), and Violet-visible (UV-Vis) spectroscopy was used to confirm the adsorption of the compounds on the electrode surface. The obtained electrochemical results revealed that the inhibition performance of the green inhibitors increased by increasing their dosage in the electrolyte. In addition, it was proved that Marjoram plant extract possessed the most inhibition efficiency (up to 92%) among the under-studied herbal extracts. Marjoram extract behaved as a mixed-type inhibitor in the hydrochloric acid solution, and the adsorption process of the extract on the steel surface followed the Langmuir adsorption model. Adsorption of the compounds on the steel surface was also studied using density functional theory (DFT), and it was found that the protonated organic compounds in the extract have a high affinity for adsorption on the electrode surface in the acidic solution.
Collapse
Affiliation(s)
- Maryam Pourmohseni
- Department of Chemistry Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Alimorad Rashidi
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran.
| | - Mehrnoosh Karimkhani
- Department of Chemistry Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Tabatabaei F, Mafigholami R, Moghimi H, Khoramipoor S. Investigating biodegradation of polyethylene and polypropylene microplastics in Tehran DWTPs. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2996-3008. [PMID: 38096084 PMCID: wst_2023_360 DOI: 10.2166/wst.2023.360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Microplastic (MP) pollution is a growing concern and various methods are being sought to alleviate the level of pollution worldwide. This study investigates the biodegradation capacity of MPs by indigenous microorganisms of raw water from Tehran drinking water treatment plants. By exposing polypropylene (PP) and polyethylene (PE) MPs to selected microbial colonies, structural, morphological, and chemical changes were detected by scanning electron microscope (SEM), cell weight measurement, Fourier transform infrared (FTIR), Raman spectroscopy test, and thermal gravimetric analysis (TGA). Selected bacterial strains include Pseudomonas protegens strain (A), Bacillus cereus strain (B), and Pseudomonas protegens strain (C). SEM analysis showed roughness and cracks on PP MPs exposed to strains A and C. However, PE MPs exposed to strain B faced limited degradation. In samples related to strain A, the Raman spectrum was completely changed, and a new chemical structure was created. Both TGA and FTIR analysis confirmed changes detected by Raman analysis of PP and PE MPs in chemical changes in this study. The results of cell dry weight loss for microbial strains A, B, and C were 13.5, 38.6, and 25.6%, respectively. Moreover, MPs weight loss was recorded at 32.6% for PP MPs with strain A, 13.3% for PE MPs with strain B, and 25.6% for PP MPs with strain C.
Collapse
Affiliation(s)
- Fatemeh Tabatabaei
- Faculty of Environmental Science and Engineering, Islamic Azad University, West Tehran Branch, Tehran, Iran E-mail:
| | - Roya Mafigholami
- Faculty of Environmental Science and Engineering, Islamic Azad University, West Tehran Branch, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbiology, University of Tehran, Tehran, Iran
| | - Sanaz Khoramipoor
- Faculty of Environmental Science and Engineering, Islamic Azad University, West Tehran Branch, Tehran, Iran
| |
Collapse
|
6
|
Jaafar MZ, Mohd Ridzuan FF, Mohamad Kassim MH, Abu F. The Role of Dissolution Time on the Properties of All-Cellulose Composites Obtained from Oil Palm Empty Fruit Bunch. Polymers (Basel) 2023; 15:polym15030691. [PMID: 36771992 PMCID: PMC9919761 DOI: 10.3390/polym15030691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
All-cellulose composite (ACC) films from oil palm empty fruit bunches (OPEFBs) were successfully fabricated through the surface selective dissolution of cellulose fibers in 8 wt% LiCl/DMAc via the solution casting method. The effect of dissolution time on the properties of the ACC films was assessed in the range of 5-45 min. The results showed that under the best conditions, there were sufficiently dissolved fiber surfaces that improved the interfacial adhesion while maintaining a sizable fraction of the fiber cores, acting as reinforcements for the material. The ACC films have the highest tensile strength and modulus of elasticity of up to 35.78 MPa and 2.63 GPa after 15 min of dissolution. Meanwhile, an X-ray diffraction analysis proved that cellulose I and II coexisted, which suggests that the crystallite size and degree of crystallinity of the ACC films had significantly declined. This is due to a change in the cellulose structure, which results in fewer voids and enhanced stress distribution in the matrix. Scanning electron microscopy revealed that the interfacial adhesion improved between the reinforcing fibers and matrices as the failure behavior of the film composite changed from fiber pullout to fiber breakage and matrix cracking. On the other hand, the thermal stability of the ACC film showed a declining trend as the dissolution time increased. Therefore, the best dissolution time to formulate the ACC film was 15 min, and the obtained ACC film is a promising material to replace synthetic polymers as a green composite.
Collapse
Affiliation(s)
- Mohd Zaim Jaafar
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Penang, Malaysia
| | - Farah Fazlina Mohd Ridzuan
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Penang, Malaysia
| | - Mohamad Haafiz Mohamad Kassim
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Penang, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Penang, Malaysia
- Correspondence: (M.H.M.K.); (F.A.)
| | - Falah Abu
- Department of Ecotechnology, School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Shah Alam, Shah Alam 40450, Selangor, Malaysia
- Smart Manufacturing Research Institute (SMRI), Universiti Teknologi MARA (UiTM) Shah Alam, Shah Alam 40450, Selangor, Malaysia
- Correspondence: (M.H.M.K.); (F.A.)
| |
Collapse
|
7
|
Khoshtinat F, Tabatabaie T, Ramavandi B, Hashemi S. Application of pier waste sludge for catalytic activation of proxy-monosulfate and phenol elimination from a petrochemical wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69462-69471. [PMID: 35568787 DOI: 10.1007/s11356-022-20690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
This investigation aimed to remove phenol from real wastewater (taken from a petrochemical company) by activating peroxy-monosulfate (PMS) using catalysts extracted from pier waste sludge. The physical and chemical properties of the catalyst were evaluated by FE-SEM/EDS, XRD, FTIR, and TGA/DTG tests. The functional groups of O-H, C-H, CO32-, C-H, C-O, N-H, and C-N were identified on the catalyst surface. Also, the crystallinity of the catalyst before and after reaction with petrochemical wastewater was 103.4 nm and 55.8 nm, respectively. Operational parameters of pH (3-9), catalyst dose (0-100 mg/L), phenol concentration (50-250 mg/L), and PMS concentration (0-250 mg/L) were tested to remove phenol. The highest phenol removal rate (94%) was obtained at pH=3, catalyst dose of 80 mg/L, phenol concentration of 50 mg/L, PMS concentration of 150 mg/L, and contact time of 150 min. Phenol decomposition in petrochemical wastewater followed the first-order kinetics (k> 0.008 min-1, R2> 0.94). Changes in pH factor were very effective on phenol removal efficiency, and maximum efficiency (≈83%) was achieved in pH 3. The catalyst stability test was performed for up to five cycles, and phenol removal in the fifth cycle was reduced to 42%. Also, the energy consumption in this study was 77.69 kW h/m3. According to the results, the pier waste sludge catalyst/PMS system is a critical process for eliminating phenol from petrochemical wastewater.
Collapse
Affiliation(s)
- Feyzollah Khoshtinat
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Tayebeh Tabatabaie
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Seyedenayat Hashemi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
8
|
Hu D, Gu X, Wang G, Zhou Z, Sun L, Pei J. Performance and mechanism of lignin and quercetin as bio-based anti-aging agents for asphalt binder: A combined experimental and ab initio study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Guo R, Zhang Q, Wang Z, Tayebi M, Hamawandi B. The Effect of Eco-Friendly Inhibitors on the Corrosion Properties of Concrete Reinforcement in Harsh Environments. MATERIALS 2022; 15:ma15144746. [PMID: 35888210 PMCID: PMC9324560 DOI: 10.3390/ma15144746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022]
Abstract
In the present research, the synergistic effect of Arabic and guar gum inhibitors on the corrosion efficiency of concrete reinforcement was investigated. Thus, eight types of Arabic and guar gum combinations with 100, 250, 500, 750, and 1000 ppm were added to the steel reinforcement for 1, 7, 28, 48, and 72 days. The corrosion behavior of the samples was investigated by the electrochemical impedance (EIS) test. Water transmissibility, electrical resistivity, and compressive strength of concrete were also studied. The results showed that adding inhibitors generally increased the compressive strength of concrete. It was also found that water transmissibility was reduced by the addition of inhibitors. The electrical resistivity of the samples increased slightly with increasing time up to 72 days. EIS and Tafel results have demonstrated that Arabic and guar gums are effective inhibitors for reinforced concrete structures. Furthermore, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) utilized to analyze the samples indicated that inhibitor grain size was enhanced by enhancing the concentration of the inhibitor combination, showing that the guar and Arabic inhibitor combinations were properly absorbed on the reinforcement surface. Results showed that a sample with 250 ppm Arabic gum and 250 ppm guar gum having a properly distributed inhibitor combination on the reinforcement surface creates a desirable cathode current.
Collapse
Affiliation(s)
- Rui’E Guo
- College of Science and Engineering, Xi’an Siyuan University, Xi’an 710038, China;
- Correspondence: (R.G.); (B.H.)
| | - Qian Zhang
- School of Architecture and Rail Transit, Xi’an Vocational and Technical College, Xi’an 710077, China;
| | - ZaiXing Wang
- College of Science and Engineering, Xi’an Siyuan University, Xi’an 710038, China;
| | - Morteza Tayebi
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran 14778-93855, Iran;
| | - Bejan Hamawandi
- Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
- Correspondence: (R.G.); (B.H.)
| |
Collapse
|
10
|
Chen L, Lu D, Zhang Y. Organic Compounds as Corrosion Inhibitors for Carbon Steel in HCl Solution: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2023. [PMID: 35329474 PMCID: PMC8954067 DOI: 10.3390/ma15062023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/31/2022]
Abstract
Most studies on the corrosion inhibition performance of organic molecules and (nano)materials were conducted within "carbon steel/1.0 M HCl" solution system using similar experimental and theoretical methods. As such, the numerous research findings in this system are sufficient to conduct comparative studies to select the best-suited inhibitor type that generally refers to a type of inhibitor with low concentration/high inhibition efficiency, nontoxic properties, and a simple and cost-economic synthesis process. Before data collection, to help readers have a clear understanding of some crucial elements for the evaluation of corrosion inhibition performance, we introduced the mainstay of corrosion inhibitors studies involved, including the corrosion and inhibition mechanism of carbon steel/HCl solution systems, evaluation methods of corrosion inhibition efficiency, adsorption isotherm models, adsorption thermodynamic parameters QC calculations, MD/MC simulations, and the main characterization techniques used. In the classification and statistical analysis section, organic compounds or (nano)materials as corrosion inhibitors were classified into six types according to their molecular structural characteristics, molecular size, and compound source, including drug molecules, ionic liquids, surfactants, plant extracts, polymers, and polymeric nanoparticles. We outlined the important conclusions obtained from recent literature and listed the evaluation methods, characterization techniques, and contrastable experimental data of these types of inhibitors when used for carbon steel corrosion in 1.0 M HCl solution. Finally, statistical analysis was only performed based on these data from carbon steel/1.0 M HCl solution system, from which some conclusions can contribute to reducing the workload of the acquisition of useful information and provide some reference directions for the development of new corrosion inhibitors.
Collapse
Affiliation(s)
- Liangyuan Chen
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, No. 1 Wenhai Road (Qingdao), Qingdao 266200, China
- Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
| | - Dongzhu Lu
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, No. 1 Wenhai Road (Qingdao), Qingdao 266200, China
- Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
| | - Yanhu Zhang
- Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
11
|
Berrissoul A, Ouarhach A, Benhiba F, Romane A, Guenbour A, Outada H, Dafali A, Zarrouk A. Exploitation of a new green inhibitor against mild steel corrosion in HCl: Experimental, DFT and MD simulation approach. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Atabaki F, Jahangiri S. Poly(epichlorohydrin) Modified (PECH/NTO/PO(OH)2) as a New Corrosion Inhibitor for Mild Steel in Hydrochloric Acid Medium: Synthesis, Electrochemical, Termodynamic, Surface Study. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427221100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Shahmoradi A, Talebibahmanbigloo N, Nickhil C, Nisha R, Javidparvar A, Ghahremani P, Bahlakeh G, Ramezanzadeh B. Molecular-MD/atomic-DFT theoretical and experimental studies on the quince seed extract corrosion inhibition performance on the acidic-solution attack of mild-steel. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117921] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Sales CS, de Melo Camargo LTF, Araújo CST, Carvalho-Silva VH, Signini R. Efficiency of water treatment with crushed shell of jatobá-do-cerrado (Hymenaea stigonocarpa) fruit to adsorb Cu(II) and Ni(II) ions: experimental and quantum chemical assessment of the complexation process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60041-60059. [PMID: 34155593 DOI: 10.1007/s11356-021-14868-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
The shell surrounding fruits of the jatobá-do-cerrado tree, in its natural state, was modified by the addition of HNO3 and NaOH and used as an adsorbent in the removal of Cu(II) and Ni(II) from aqueous solutions. The untreated (JIN) and chemically modified (JCT) fruit shell samples were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and X-ray diffraction. Their efficiency as adsorbents in the removal of Cu(II) and Ni(II) ions from aqueous solutions was studied under different conditions of pH (2-9) and it was observed that the optimal pH for Cu (II) adsorption was 5.5 and for Ni (II) it was 6.0. The adsorption isotherms were obtained at different temperatures (298, 308, 318 K) and the qmax values ranged from 33.96 to 41.00 mg g-1. The adsorbents presented higher selectivity toward Cu ions (II). The thermodynamic analysis results suggest that the adsorption process studied is of a physical nature. Supported by quantum mechanical calculations, the interaction sites of the ion-cellulose and ion-lignin complexes were identified, evidencing the central role of water molecules in stabilization of the complexes. The experimental and theorical results indicate that JIN and JCT have good potential for the adsorption of Cu(II) and Ni(II) ions and are thus promising materials for the removal of other metal ions in aqueous systems.
Collapse
Affiliation(s)
- Cleciane Souza Sales
- Campus Central Anápolis - CET, Universidade Estadual de Goiás, CP 459, Anápolis, GO, 75001-970, Brazil
| | | | | | - Valter Henrique Carvalho-Silva
- Modeling of Physical and Chemical Transformations Division, Theoretical and Structural Chemistry Group, Research and Graduate Center, Goias State University, Anapolis,, 75132-903, Brazil.
| | - Roberta Signini
- Campus Central Anápolis - CET, Universidade Estadual de Goiás, CP 459, Anápolis, GO, 75001-970, Brazil.
| |
Collapse
|
15
|
Ghahremani P, Tehrani MEHN, Ramezanzadeh M, Ramezanzadeh B. Golpar leaves extract application for construction of an effective anti-corrosion film for superior mild-steel acidic-induced corrosion mitigation at different temperatures. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127488] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Shahmoradi A, Ranjbarghanei M, Javidparvar A, Guo L, Berdimurodov E, Ramezanzadeh B. Theoretical and surface/electrochemical investigations of walnut fruit green husk extract as effective inhibitor for mild-steel corrosion in 1M HCl electrolyte. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116550] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
A comprehensive electronic-scale DFT modeling, atomic-level MC/MD simulation, and electrochemical/surface exploration of active nature-inspired phytochemicals based on Heracleum persicum seeds phytoextract for effective retardation of the acidic-induced corrosion of mild steel. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115764] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Alahiane M, Oukhrib R, Berisha A, Albrimi YA, Akbour RA, Oualid HA, Bourzi H, Assabbane A, Nahlé A, Hamdani M. Electrochemical, thermodynamic and molecular dynamics studies of some benzoic acid derivatives on the corrosion inhibition of 316 stainless steel in HCl solutions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115413] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Thermodynamic Parameters and Adsorption Mechanism of Corrosion Inhibition in Mild Steel Using Jatropha Leaf Extract in Hydrochloric Acid. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05488-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Shahini M, Ramezanzadeh B, Mohammadloo HE. Recent advances in biopolymers/carbohydrate polymers as effective corrosion inhibitive macro-molecules: A review study from experimental and theoretical views. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115110] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
An Overview of Molecular Dynamic Simulation for Corrosion Inhibition of Ferrous Metals. METALS 2020. [DOI: 10.3390/met11010046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Molecular dynamics (MD) simulation is a powerful tool to study the molecular level working mechanism of corrosion inhibitors in mitigating corrosion. In the past decades, MD simulation has emerged as an instrument to investigate the interactions at the interface between the inhibitor molecule and the metal surface. Combined with experimental measurement, theoretical examination from MD simulation delivers useful information on the adsorption ability and orientation of the molecule on the surface. It relates the microscopic characteristics to the macroscopic properties which enables researchers to develop high performance inhibitors. Although there has been vast growth in the number of studies that use molecular dynamic evaluation, there is still lack of comprehensive review specifically for corrosion inhibition of organic inhibitors on ferrous metal in acidic solution. Much uncertainty still exists on the approaches and steps in performing MD simulation for corrosion system. This paper reviews the basic principle of MD simulation along with methods, selection of parameters, expected result such as adsorption energy, binding energy and inhibitor orientation, and recent publications in corrosion inhibition studies.
Collapse
|
22
|
Bahalkeh F, Habibi juybari M, Zafar Mehrabian R, Ebadi M. Removal of Brilliant Red dye (Brilliant Red E-4BA) from wastewater using novel Chitosan/SBA-15 nanofiber. Int J Biol Macromol 2020; 164:818-825. [DOI: 10.1016/j.ijbiomac.2020.07.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 01/18/2023]
|
23
|
Yousefi AM, Safaroghli-Azar A, Pourbagheri-Sigaroodi A, Fakhroueian Z, Momeny M, Bashash D. Application of ZnO/CNT@Fe 3O 4nanocomposite in amplifying the anti-leukemic effect of imatinib: a novel strategy to adjuvant therapy in chronic myeloid leukemia. Biomed Mater 2020; 16. [PMID: 33197900 DOI: 10.1088/1748-605x/abcae2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/16/2020] [Indexed: 12/22/2022]
Abstract
The advent of tyrosine kinase inhibitors (TKI) in the therapeutic protocols of chronic myeloid leukemia (CML) sparked a flame of hope for patients to finally reach to the milestone of the complete remission. However, by the different mutations bypassing the effectiveness of Imatinib, a powerful impetus has emerged to bring more efficient agents into the field of treatment. The results of the present study declared that the companionship of our synthesized ZnO/CNT@Fe3O4 nanocomposite with Imatinib was able to more efficiently decrease the survival of CML-derived K562 cells probably through inducing reactive oxygen species (ROS)-dependent apoptosis. We also found a superior cytotoxicity in the presence of a well-known autophagy inhibitor, indicating that the apoptotic effect of this treatment was probably enhanced through the suppression of autophagy. Investigating the molecular mechanisms involved in the growth-suppressive effect of ZnO/CNT@Fe3O4-plus-Imatinib clarified that the up-regulation of SIRT1 ceased the progression of the cell cycle, foremost by increasing the expression of p21 and p27 cyclin-dependent kinase inhibitors. Notably, we reported for the first time that either direct or indirect suppression of c-Myc resulted in an enhanced anti-leukemic effect; suggesting that the overexpression of c-Myc could play a contributory role in attenuating the efficacy of ZnO/CNT@Fe3O4-plus-Imatinib in K562. Given to the established efficacy of ZnO/CNT@Fe3O4 in CML cells, our preclinical results suggest that the application of this nanocomposite is an appealing strategy to boost the anti-leukemic effect of TKIs, which should be further studied in combination with other anti-cancer agents either in hematologic malignancies or solid tumors.
Collapse
Affiliation(s)
- Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, Shahid Beheshti University of Medical Sciences School of Paramedical Sciences, Tehran, Tehran, Iran (the Islamic Republic of)
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, Shahid Beheshti University of Medical Sciences School of Paramedical Sciences, Tehran, Iran (the Islamic Republic of)
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, Shahid Beheshti University of Medical Sciences School of Paramedical Sciences, Tehran, Iran (the Islamic Republic of)
| | - Zahra Fakhroueian
- School of Chemical Engineering, College of Engineering, Institute of Petroleum Engineering, University of Tehran, 11155-4563, Iran, Tehran, Iran (the Islamic Republic of)
| | - Majid Momeny
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland, Turku, FINLAND
| | - Davood Bashash
- Department of Hematology and Blood Banking, Shahid Beheshti University of Medical Sciences School of Paramedical Sciences, Tehran,Iran, Tehran, , Iran (the Islamic Republic of)
| |
Collapse
|
24
|
Olivares-Xometl O, Lijanova IV, Likhanova NV, Arellanes-Lozada P, Hernández-Cocoletzi H, Arriola-Morales J. Theoretical and experimental study of the anion carboxylate in quaternary-ammonium-derived ionic liquids for inhibiting the corrosion of API X60 steel in 1 M H2SO4. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|