1
|
Figueiredo NM, Voroshylova IV, Ferreira ESC, Marques JMC, Cordeiro MNS. Magnetic Ionic Liquids: Current Achievements and Future Perspectives with a Focus on Computational Approaches. Chem Rev 2024; 124:3392-3415. [PMID: 38466339 PMCID: PMC10979404 DOI: 10.1021/acs.chemrev.3c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Magnetic ionic liquids (MILs) stand out as a remarkable subclass of ionic liquids (ILs), combining the desirable features of traditional ILs with the unique ability to respond to external magnetic fields. The incorporation of paramagnetic species into their structures endows them with additional attractive features, including thermochromic behavior and luminescence. These exceptional properties position MILs as highly promising materials for diverse applications, such as gas capture, DNA extractions, and sensing technologies. The present Review synthesizes key experimental findings, offering insights into the structural, thermal, magnetic, and optical properties across various MIL families. Special emphasis is placed on unraveling the influence of different paramagnetic species on MILs' behavior and functionality. Additionally, the Review highlights recent advancements in computational approaches applied to MIL research. By leveraging molecular dynamics (MD) simulations and density functional theory (DFT) calculations, these computational techniques have provided invaluable insights into the underlying mechanisms governing MILs' behavior, facilitating accurate property predictions. In conclusion, this Review provides a comprehensive overview of the current state of research on MILs, showcasing their special properties and potential applications while highlighting the indispensable role of computational methods in unraveling the complexities of these intriguing materials. The Review concludes with a forward-looking perspective on the future directions of research in the field of magnetic ionic liquids.
Collapse
Affiliation(s)
- Nádia M. Figueiredo
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Iuliia V. Voroshylova
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Elisabete S. C. Ferreira
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Jorge M. C. Marques
- CQC−IMS,
Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - M. Natália
D. S. Cordeiro
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
2
|
Zhao R, Zhou Y, Zheng YZ. The azeotropy eliminating mechanism of ethyl acetate-acetonitrile system via ionic liquid entrainer: A combination of FTIR and DFT study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123461. [PMID: 37783036 DOI: 10.1016/j.saa.2023.123461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Ionic liquids (ILs) are good candidates for azeotropy separation. Knowledge of the microstructure properties of azeotrope - IL mixtures is important because they could reveal the molecular intrinsic cause of the elimination of azeotropy and represent the basis for the practical process. In this work, the microstructures of ethyl acetate-acetonitrile azeotrope mixtures and a representative IL, 1‑butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Tf2N], which could eliminate the azeotropy of the ethyl acetate-acetonitrile system, were studied by Fourier transform infrared spectroscopy with the assistance of quantum chemical calculations and excess spectra. The C≡N stretching vibrational region of acetonitrile was closely examined. The interaction complexes of ethyl acetate-acetonitrile and ion cluster/ion pair/ion - acetonitrile were identified. Weak strength hydrogen-bonds with electrostatically dominant and closed-shell interaction properties were found in these complexes. The interactions between [BMIM][Tf2N] and acetonitrile were stronger than those between ethyl acetate and acetonitrile, which caused the addition of IL to easily destroy the ethyl acetate-acetonitrile interaction complex. The interactions between [BMIM][Tf2N] and acetonitrile were stronger than those between [BMIM][Tf2N] and ethyl acetate, which would influence the relative volatility of ethyl acetate and acetonitrile in the azeotrope system. When x(IL) was larger than 0.027, all the interaction complexes between acetonitrile and ethyl acetate were completely broken apart, and the azeotrope was eliminated.
Collapse
Affiliation(s)
- Rui Zhao
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yu Zhou
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Yan-Zhen Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
3
|
Chai Y, Zheng XP, Du YP, Zhou Y, Zheng YZ. A combination of FTIR and DFT to study the microstructure properties of ionic liquid-acetonitrile-methanol systems. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123525. [PMID: 37857072 DOI: 10.1016/j.saa.2023.123525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Understanding the structural properties of ionic liquids (ILs) in azeotrope mixtures is crucial for designing and synthesizing IL entrainers tailored for extractive distillation. While extensive research has been conducted to comprehend the molecular properties of IL systems, much of this work has been limited to IL-cosolvent binary mixtures and fails to fully capture the essence of breaking azeotropy. In this study, we utilized Fourier-transform infrared spectroscopy (FTIR) and density functional theory (DFT) calculations to study the microstructure of the IL-azeotropic system. Leveraging the high resolution of excess spectroscopy and employing the methanol hydroxyl group as an effective probe, our research focused on the IL-acetonitrile-methanol mixtures. This approach enabled us to pinpoint species transformations during the mixing process, revealing the nature of phase equilibrium changes within the azeotrope. Consequently, our findings offer valuable insights into the microstructures of multicomponent solutions.
Collapse
Affiliation(s)
- Yu Chai
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Xiao-Ping Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Ya-Peng Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Yu Zhou
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Yan-Zhen Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
4
|
Zheng YZ, Zhao R, Zhang YC, Zhou Y. A FTIR and DFT Combination Study to Reveal the Mechanism of Eliminating the Azeotropy in Ethyl Propionate-n-Propanol System with Ionic Liquid Entrainer. Int J Mol Sci 2023; 24:10597. [PMID: 37445775 DOI: 10.3390/ijms241310597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Ionic liquids (ILs) have presented excellent behaviors in the separation of azeotropes in extractive distillation. However, the intrinsic molecular nature of ILs in the separation of azeotropic systems is not clear. In this paper, Fourier-transform infrared spectroscopy (FTIR) and theoretical calculations were applied to screen the microstructures of ethyl propionate-n-propanol-1-ethyl-3-methylimidzolium acetate ([EMIM][OAC]) systems before and after azeotropy breaking. A detailed vibrational analysis was carried out on the v(C=O) region of ethyl propionate and v(O-D) region of n-propanol-d1. Different species, including multiple sizes of propanol and ethyl propionate self-aggregators, ethyl propionate-n-propanol interaction complexes, and different IL-n-propanol interaction complexes, were identified using excess spectroscopy and confirmed with theoretical calculations. Their changes in relative amounts were also observed. The hydrogen bond between n-propanol and ethyl propionate/[EMIM][OAC] was detected, and the interaction properties were also revealed. Overall, the intrinsic molecular nature of the azeotropy breaking was clear. First, the interactions between [EMIM][OAC] and n-propanol were stronger than those between [EMIM][OAC] and ethyl propionate, which influenced the relative volatilities of the two components in the system. Second, the interactions between n-propanol and [EMIM][OAC] were stronger than those between n-propanol and ethyl propionate. Hence, adding [EMIM][OAC] could break apart the ethyl propionate-n-propanol complex (causing the azeotropy in the studied system). When x([EMIM][OAC]) was lower than 0.04, the azeotropy still existed mainly because the low IL could not destroy the whole ethyl propionate-n-propanol interaction complex. At x(IL) > 0.04, the whole ethyl propionate-n-propanol complex was destroyed, and the azeotropy disappeared.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Rui Zhao
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Yu-Cang Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yu Zhou
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
5
|
Bai W, Chen J, Liu F, Zhang J, Zhang X, Gu Z, Yu J. Effects of aprotic solvents on the physicochemical properties and ferric ion oxidation activity of iron-based ionic liquids. Phys Chem Chem Phys 2023; 25:6295-6305. [PMID: 36762600 DOI: 10.1039/d2cp03878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In recent years, iron-based ionic liquids (e.g. BmimFeCl4, Fe-IL) have been widely used in the catalytic oxidation removal of hydrogen sulfide owing to their excellent redox reversibility and stability. Nevertheless, the high viscosity and poor Fe3+ activity of BmimFeCl4 limit its large-scale industrial application. The addition of aprotic organic solvents to BmimFeCl4 is an effective strategy to enhance its mass transfer efficiency and catalytic oxidation desulfurization performance. In this work, the effects of two kinds of aprotic organic solvents, weak polar polyether alcohols (NHD, PEG200) and strong polar amides (DMAC, DMF, and NMP), on the density, viscosity, conductivity and ferric activity of Fe-IL were investigated. The Eyring equation fitted well for the relationship between the viscosity and the temperature of the composites. When the mass ratio of BmimFeCl4 to solvent was 7 : 3 at 298.2 K, the viscosity of BmimFeCl4/DMAC and BmimFeCl4/NHD was 8.67 mPa s and 27.19 mPa s, respectively. The excess molar volume (VE) and viscosity deviation (Δη) of the two composite systems were calculated and fitted using the Redlich-Kister equation. The study of VE implies that DMAC has stronger solvation to the BmimFeCl4 ion pairs, and NHD could cause a more obvious volume shrinkage. For the composites investigated, Δη of BmimFeCl4/DMAC is negative while that of BmimFeCl4/NHD is positive, showing that DMAC could significantly weaken the combination ability of [Bmim]+ and [FeCl4]-, and NHD may form a stronger interaction with [Bmim]+. The FT-IR spectra and DFT calculations demonstrated that both polyether alcohol and amide could interact with C2-H on [Bmim]+. The CV curves and the MK charges show that the addition of aprotic polar solvents could effectively improve the activity of Fe3+ under the action of a hydrogen bond, and the effect of amide solvents on the activation of Fe3+ is stronger than that of polyether alcohol solvents. In conclusion, it is found that the composites with stronger ferric activity have much better catalytic oxidation ability for the conversion performance of hydrogen sulfide, and the the interactions induced by the molecular weight and the polarity of the solvent have a significant effect on the configuration of the Fe-IL ion pairs.
Collapse
Affiliation(s)
- Wenxuan Bai
- Research Group of Environmental Catalysis and Separation Process, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jinxiang Chen
- Research Group of Environmental Catalysis and Separation Process, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Fen Liu
- Research Group of Environmental Catalysis and Separation Process, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jingcong Zhang
- Research Group of Environmental Catalysis and Separation Process, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaodong Zhang
- Research Group of Environmental Catalysis and Separation Process, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhiping Gu
- Research Group of Environmental Catalysis and Separation Process, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jiang Yu
- Research Group of Environmental Catalysis and Separation Process, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
6
|
The molecular nature of the eliminating azeotropy of dimethyl carbonate–ethanol system by ionic liquid entrainer. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Structure and hydrogen-bond properties of N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide and ethanol: A combination of FTIR and theoretical studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Zheng YZ, Lu YM, Tian XY, He HY, Zhang YC. Combination of FTIR and DFT to study the regulation law of [EMIM][OAc] on the microstructure of the acetone–methanol azeotrope system. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Li J, Yao Y, Shi Y, Tang J, Gadow SI, Liu R, Niu Q. [Bmim]FeCl 4 mediated inhibition and toxicity during anaerobic digestion: Dose-response kinetics, biochar-dependent detoxification and microbial resistance. WATER RESEARCH 2022; 210:117969. [PMID: 34952458 DOI: 10.1016/j.watres.2021.117969] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/05/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
[Bmim]FeCl4, or 1‑butyl‑3-methylimidazolium tetrachloroferrate, is a typical ionic liquid (IL). Its recyclable, magnetic, multicomponent, and solvent-free nature makes it a particularly attractive ionic liquid for use in industrial processes. Despite its widespread use, the potential hazards that [Bmim]FeCl4 might pose to the environment, including productive microorganisms, have not been explored. In this study, the dose-response of [Bmim]FeCl4 in anaerobic digestion (AD) was investigated to assess the potential toxification and biochar-dependent detoxification in microbial communities, including enzymatic activity and molecule docking dynamics. Our results showed that methane production (31.52 mLmax/gVS) was sharply inhibited following [Bmim]FeCl4 treatment. Moreover, increasing the dosage of [Bmim]FeCl4 caused more dissolved organic matter (DOM) to be generated. Interestingly, 0.4 g/L of [Bmim]FeCl4 could stimulate the high activity of microbial hydrolase and ATPase. However, a higher concentration of 2.65 g/L prevented these enzymatic processes from continuing. At the cellular level, higher concentration of [Bmim]FeCl4 (>0.4 g/L) increased malondialdehyde (MDA) levels, leading to a higher cell lethal rate and weakening of the secondary structures of protein (especially, the amide I region). At the molecular level, the competitive H-bonding in the active sites caused low activity and consummated more energy. At the community level, structural equation modeling (SEM) revealed that [Bmim]FeCl4 and biochar were the main drivers for microbial community succession. For instance, high [Bmim]FeCl4 (8 g/L) benefited the growth of Clostridium sensu_stricto (from ≤1% to 27%). It is worth mentioning that biochar reversed the inhibition with high α-diversity, which caused a resurgence in the activity of previously inhibited ATPase and hydrolase. H2-trophic methanogens (Methanolinea and Methaofastidisoum) were sensitive to [Bmim]FeCl4 and decreased linearly while acetoclastic methanogens (Methanosaeta) were unchanged. These findings were consistent with the short-term activity tests and further verified by functional analysis.
Collapse
Affiliation(s)
- Jingyi Li
- School of Environmental Science and Engineering, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China; China-America CRC for Environment & Health, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China
| | - Yilin Yao
- School of Environmental Science and Engineering, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China; China-America CRC for Environment & Health, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China
| | - Yongsen Shi
- School of Environmental Science and Engineering, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China; China-America CRC for Environment & Health, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Samir Ibrahim Gadow
- Agriculture and Biology Research Division, Department of Agricultural Microbiology, National Research Centre, 33 EI Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China; China-America CRC for Environment & Health, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China
| | - Qigui Niu
- School of Environmental Science and Engineering, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China; China-America CRC for Environment & Health, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China.
| |
Collapse
|
10
|
Yu K, Ding WL, Lu Y, Wang Y, Liu Y, Liu G, Huo F, He H. Ionic liquids screening for lignin dissolution: COSMO-RS simulations and experimental characterization. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
11
|
Zhang Y, Tan X, Ding W, Wang Y, He H, Yu Z. Tracking the Micro-Heterogeneity and Hydrogen-Bonding Interactions in Hydroxyl-Functionalized Ionic Liquid Solutions: A Combined Experimental and Computational Study. Chemphyschem 2021; 22:1891-1899. [PMID: 34236730 DOI: 10.1002/cphc.202100395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/06/2021] [Indexed: 01/03/2023]
Abstract
Ionic liquids (ILs) are an important class of media that are usually used in combination with polar solvents to reduce costs and tune their physicochemical properties. In this regard, it is essential to understand the influence of adding solvents on the properties of ILs. In this work, the micro-heterogeneity and H-bonding interactions between a hydroxyl-functionalized IL, [HOEmim][TFSI], and acetonitrile (ACN) were investigated by attenuated total reflection Fourier transform infrared spectroscopy and molecular simulations. All studied IL-ACN mixtures were found to deviate from the ideal mixtures. The degree of deviations reaches the maximum at about x(ACN)=0.7 with the presence of both homogeneous clusters of pure IL/ACN and heterogeneous clusters of IL-ACN. With the addition of ACN to IL, the mixtures undergo the transformation from "ACN solvated in [HOEmim][TFSI]" to "[HOEmim][TFSI] solvated in ACN". It is found that the newly formed H-bonding interactions between the IL and ACN is the main factor that contributes to the red shifts of O-H, C2 -H, C4,5 -H, and Calkyl -H of [HOEmim]+ cation, and the blue shifts of C-D, C≡N of ACN, and C-F, S=O of [TFSI]- anion. These in-depth studies on the mixtures of hydroxyl-functionalized IL and acetonitrile would help to understand the micro-heterogeneity and H-bonding interactions of miscible solutions and shed light on exploring their applications.
Collapse
Affiliation(s)
- Yaqin Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Department of Materials Science & Engineering, City University of Hong Kong, Hong Kong, P. R. China
| | - Xin Tan
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weilu Ding
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiwu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
12
|
Busato M, Del Giudice A, Di Lisio V, Tomai P, Migliorati V, Gentili A, Martinelli A, D’Angelo P. Fate of a Deep Eutectic Solvent upon Cosolvent Addition: Choline Chloride-Sesamol 1:3 Mixtures with Methanol. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:12252-12261. [PMID: 34552826 PMCID: PMC8442355 DOI: 10.1021/acssuschemeng.1c03809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The changes upon methanol (MeOH) addition in the structural arrangement of the highly eco-friendly deep eutectic solvent (DES) formed by choline chloride (ChCl) and sesamol in 1:3 molar ratio have been studied by means of attenuated total reflection Fourier transform infrared spectroscopy, small- and wide-angle X-ray scattering (SWAXS), and molecular dynamics simulations. The introduction of MeOH into the DES promotes the increase of the number of Cl-MeOH hydrogen bonds (HBs) through the replacement of sesamol and choline molecules from the chloride anion coordination sphere. This effect does not promote the sesamol-sesamol, choline-choline, and sesamol-choline interactions, which remain as negligible as in the pure DES. Differently, the displaced sesamol and choline molecules are solvated by MeOH, which also forms HBs with other MeOH molecules, so that the system arranges itself to keep the overall amount of HBs maximized. SWAXS measurements show that this mechanism is predominant up to MeOH/DES molar ratios of 20-24, while after this ratio value, the scattering profile is progressively diluted in the cosolvent background and decreases toward the signal of pure MeOH. The ability of MeOH to interplay with all of the DES components produces mixtures with neither segregation of the components at nanoscale lengths nor macroscopic phase separation even for high MeOH contents. These findings have important implications for application purposes since the understanding of the pseudophase aggregates formed by a DES with a dispersing cosolvent can help in addressing an efficient extraction procedure.
Collapse
Affiliation(s)
- Matteo Busato
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandra Del Giudice
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Valerio Di Lisio
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Pierpaolo Tomai
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Valentina Migliorati
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandra Gentili
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Andrea Martinelli
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Paola D’Angelo
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
13
|
Zhang T, Ding WL, Zhang Y, Bi K, Lu Y, Ji L, He H. Investigating the property and strength of intermolecular interaction in saturated and unsaturated cyclic cations constructed ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Zheng YZ, Chen H, Zhou Y, Zhang YC. Combination of FTIR and DFT to study the structure and hydrogen-bond properties of alkylammonium-based ILs and DMSO mixtures. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Chen W, Lu Y, Wang Y, Huo F, Ding WL, Wei L, He H. Probing Charge Injection-Induced Structural Transition in Ionic Liquids Confined at the MoS 2 Surface. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Chen
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yumiao Lu
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanlei Wang
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Feng Huo
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei-Lu Ding
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Wei
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Hongyan He
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
16
|
Chen H, Wang Z, Zhao P, Xu X, Gong S, Yu Z, Zhou Y. Comparative study of the hydrogen bonding properties between bis(fluorosulfonyl)imide/bis(trifluoromethyl)sulfonylimide-based ether-functionalized ionic liquids and methanol. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Chen H, Wang Z, Xu X, Gong S, Yu Z, Zhou Y. The microscopic structure of 1-Methoxyethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EOMIMTFSI) during dilution with polar solvents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
18
|
Sadjadi S, Koohestani F, Heravi MM. Fabrication of a metal free catalyst for chemical reactions through decoration of chitosan with ionic liquid terminated dendritic moiety. Sci Rep 2020; 10:19666. [PMID: 33184399 PMCID: PMC7661698 DOI: 10.1038/s41598-020-76795-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/03/2020] [Indexed: 11/09/2022] Open
Abstract
In attempt to develop a biocompatible metal-free catalyst, a dendritic moiety was grown on chitosan through successive reactions with 2,4,6-trichloro-1,3,5-triazine and ethylenediamine. Subsequently, the terminal functional groups of the dendron were decorated with 1-methylimidazolium chloride. The catalyst was characterized with SEM, EDS, TGA, FTIR, XRD and mapping analysis. Then, the catalytic activity of the resultant composite was scrutinized for catalyzing Knoevenagel condensation and synthesis of xanthene derivatives in aqueous media under mild reaction condition. The results confirmed high activity of the catalyst, superior to ionic liquid free counterpart and bare chitosan. This observation was ascribed to the instinct catalytic activity of ionic liquid. Moreover, using control catalysts, it was confirmed that the presence of the dendritic moiety that could increase the content of ionic liquid on the backbone of the catalyst enhanced the catalytic activity.
Collapse
Affiliation(s)
- Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, PO Box 14975-112, Tehran, Iran.
| | - Fatemeh Koohestani
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, PO Box 14975-112, Tehran, Iran
| | - Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University, Vanak, PO Box 1993891176, Tehran, Iran.
| |
Collapse
|