1
|
Zdziennicka A, González-Martín ML, Rekiel E, Szymczyk K, Zdziennicki W, Jańczuk B. Thermodynamic Characterization of Rhamnolipid, Triton X-165 and Ethanol as well as Their Mixture Behaviour at the Water-Air Interface. Molecules 2023; 28:4987. [PMID: 37446649 DOI: 10.3390/molecules28134987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
In many industrial fields, in medicine or pharmacy, there are used multi-component mixtures of surfactants as well as more and more often mixtures containing biosurfactants. Thus, in our study the mixtures of rhamnolipid (RL), ethanol (ET) and Triton X-165 (TX165) were applied. For these mixtures the surface tension of aqueous solutions with constant concentration and composition of ET and RL as well as the variable concentration of TX165 was measured. Based on the obtained results and the literature data, thermodynamic analyses of the adsorption process of ET, RL, TX165, binary mixtures of ET + RL, ET + TX165 and RL + TX165 as well as the ternary mixtures of RL + ET + TX165 at the water-air interface were made. This analysis allows to propose a new equation for calculation of the total ethanol concentration at the water-air interface using the Guggenheim-Adam adsorption isotherm. The constants in the Langmuir and Szyszkowski equations for each component of the studied mixtures as well as the composition of the mixed monolayer at the water-air interface were also successfully analysed based on the contribution of particular surface active compounds to the water surface tension reduction as well as based on the Frumkin isotherm of adsorption.
Collapse
Affiliation(s)
- Anna Zdziennicka
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Maria Luisa González-Martín
- Department of Applied Physics, University Institute of Extremadura Sanity Research (INUBE), Extremadura University, Avda. de Elvas, s/n, 06006 Badajoz, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain
| | - Edyta Rekiel
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Katarzyna Szymczyk
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Wojciech Zdziennicki
- University Clinical Hospital in Poznań, Przybyszewskiego 49, 60-355 Poznań, Poland
| | - Bronisław Jańczuk
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| |
Collapse
|
2
|
Wang T, Wang Q, Zhou Y, Shi Y, Gao H. The Effect of Terbinafine and Its Ionic Salts on Certain Fungal Plant Pathogens. Molecules 2023; 28:4722. [PMID: 37375277 DOI: 10.3390/molecules28124722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Terbinafine, an inhibitor of squalene epoxidase in ergosterol biosynthesis, is chiefly utilized as an antifungal medication with potential uses in pesticide applications. This study explores the fungicidal efficacy of terbinafine against prevalent plant pathogens and confirms its effectiveness. To augment its water solubility, five ionic salts of terbinafine were synthesized by pairing them with organic acids. Among these salts, TIS 5 delivered the most impressive results, amplifying the water solubility of terbinafine by three orders of magnitude and lessening its surface tension to facilitate better dispersion during spraying. The in vivo experiments on cherry tomatoes showed that TIS 5 had a superior therapeutic activity compared to its parent compound and two commonly used broad-spectrum fungicides, pyraclostrobin and carbendazim. The results highlight the potential of terbinafine and its ionic salts, particularly TIS 5, for use as fungicides in agriculture due to their synergistic effects with furan-2-carboxylate.
Collapse
Affiliation(s)
- Tao Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Qiuxiao Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yifei Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yaolin Shi
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haixiang Gao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Thermodynamic Analysis of the Adsorption and Micellization Activity of the Mixtures of Rhamnolipid and Surfactin with Triton X-165. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113600. [PMID: 35684536 PMCID: PMC9182474 DOI: 10.3390/molecules27113600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
The surface tension of aqueous solutions of Triton X-165 with rhamnolipid or surfactin mixtures was measured. The obtained results were applied for the determination of the concentration and composition of the Triton X-165 and biosurfactants mixture at the water-air interface as well as the contribution of the particular component of the mixtures to water surface tension reduction and the mutual influence of these components on the critical micelle concentration. The determination of these quantities was based on both the commonly used concepts and a new one proposed by us, which assumes that the composition of the mixed monolayer at the water-air interface depends directly on the pressure of the monolayer of the single mixture component and allows us to determine the surface concentration of each mixture component independently of surface tension isotherms shape. Taking into account the composition of the mixed monolayer at the water-air interface, the standard Gibbs adsorption free energy was considered. The obtained results allow us to state that the concentration of both mixture components corresponding to their saturated monolayer and the surface tension of their aqueous solution can be predicted using the surfactants' single monolayer pressure and their mole fraction in the mixed monolayer determined in the proposed way.
Collapse
|
4
|
Khoshdast H, Gholami A, Hassanzadeh A, Niedoba T, Surowiak A. Advanced Simulation of Removing Chromium from a Synthetic Wastewater by Rhamnolipidic Bioflotation Using Hybrid Neural Networks with Metaheuristic Algorithms. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2880. [PMID: 34072118 PMCID: PMC8199015 DOI: 10.3390/ma14112880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/01/2022]
Abstract
This work aims at presenting an advanced simulation approach for a novel rhamnolipidic-based bioflotation process to remove chromium from wastewater. For this purpose, the significance of key influential operating variables including initial solution pH (2, 4, 6, 8, 10 and 12), rhamnolipid to chromium ratio (RL:Cr = 0.010, 0.025, 0.050, 0.075 and 0.100), reductant (Fe) to chromium ratio (Fe:Cr of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0), and air flowrate (50, 100, 150, 200 and 250 mL/min) were investigated and evaluated using Analysis of Variance (ANOVA) method. The RL as both collector and frother was produced using a pure strain of Pseudomonas aeruginosa MA01 under specific conditions. The bioflotation tests were carried out within a bubbly regimed column cell with the dimensions of 60 × 5.70 × 0.1 cm. Four optimization techniques based on Artificial Neural Network (ANN) including Cuckoo, genetic, firefly and biogeography-based optimization algorithms were applied to 113 experiments to identify the optimum values of studied factors. The ANOVA results revealed that all four variables influence the bioflotation performance through a non-linear trend. Their influences, except for aeration rate, were found statistically significant (p-value < 0.05), and all parameters followed the normal distribution according to Anderson-Darlin (AD) criterion. Maximum chromium removal of about 98% was achieved at pH of 6, rhamnolipid to chromium ratio of 0.05, air flowrate of 150 mL/min, and Fe to Cr ratio of 1.0. Flotation kinetics study indicated that chromium bioflotation follows the first-order kinetic model with a rate of 0.023 sec-1. According to the statistical assessment of the model accuracy, the firefly algorithm (FFA) with a structure of 4-9-1 yielded the highest level of reliability with the mean squared, root mean squared, percentage errors and correlation coefficient values of test-data of 0.0038, 0.0617, 3.08% and 96.92%, respectively. These values were evidences of the consistency of the well-structured ANN method to simulate the process.
Collapse
Affiliation(s)
- Hamid Khoshdast
- Department of Mining Engineering, Higher Education Complex of Zarand, Zarand 7761156391, Iran
| | - Alireza Gholami
- Department of Mineral Processing, Tarbiat Modares University, Tehran 14115-111, Iran;
| | - Ahmad Hassanzadeh
- Independent Scholar, Am Apostelhof 7A, 50226 Frechen, Germany;
- Department of Geoscience and Petroleum, Faculty of Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Tomasz Niedoba
- Department of Environmental Engineering, Faculty of Mining and Geoengineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland;
| | - Agnieszka Surowiak
- Department of Environmental Engineering, Faculty of Mining and Geoengineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland;
| |
Collapse
|
5
|
|
6
|
Wang CW, Wang J, Liu YS, Li J, Peng XL, Jia CS, Zhang LH, Yi LZ, Liu JY, Li CJ, Jia X. Prediction of the ideal-gas thermodynamic properties for water. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114912] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Modification of adsorption, aggregation and wetting properties of surfactants by short chain alcohols. Adv Colloid Interface Sci 2020; 284:102249. [PMID: 32987295 DOI: 10.1016/j.cis.2020.102249] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 11/21/2022]
Abstract
The adsorption of methanol, ethanol and propan-1-ol at the solution-air and solid-solution interfaces, their aggregation in the aqueous media as well as wetting properties regarding their applications as additives or co-surfactants in the surfactants aqueous solution were discussed based on the literature data. Mutual influence of alcohols and surfactants on the solution-air and solid-solution interface tension was considered. For this purpose there were used different methods allowing to describe or predict changes of water surface tension as a function of alcohols concentration. These, in turn, as a function of alcohol and/or surfactant concentration were also analyzed by means of the methods applied for prediction of surface tension of aqueous solution of the classical surfactants mixture. The same considerations related to the behaviour of alcohol and surfactant at the solid-solution and solution-air interfaces were made. To explain the behaviour of alcohols and surfactants mixture at the solution-air and solid-solution interfaces the components and parameters of water, alcohols, surfactants and solids surface tension as well as the Gibbs free energy changes during the adsorption process were taken into account. It was proved that wettability of some solids can be predicted based on alcohol and surfactants adsorption as well as surface tension components and parameters. As follows the mutual influence of alcohol and surfactant on their adsorption at the solution-air and solid-solution interfaces as well as on the wetting properties at the alcohol concentration from zero to its critical aggregation concentration (CAC) is different from that at its concentration higher than CAC.
Collapse
|
8
|
Hamzah N, Kasmuri N, Tao W, Singhal N, Padhye L, Swift S. Effect of rhamnolipid on the physicochemical properties and interaction of bacteria and fungi. Braz J Microbiol 2020; 51:1317-1326. [PMID: 32399689 DOI: 10.1007/s42770-020-00295-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 05/07/2020] [Indexed: 10/24/2022] Open
Abstract
Bacterial adhesion on surfaces is an essential initial step in promoting bacterial mobilization for soil bioremediation process. Modification of the cell surface is required to improve the adhesion of bacteria. The modification of physicochemical properties by rhamnolipid to Pseudomonas putida KT2442, Rhodococcus erythropolis 3586 and Aspergillus brasiliensis ATCC 16404 strains was analysed using contact angle measurements. The surface energy and total free energy of adhesion were calculated to predict the adhesion of both bacteria strains on the A. brasiliensis surface. The study of bacterial adhesion was carried out to evaluate experimental value with the theoretical results. Bacteria and fungi physicochemical properties were modified significantly when treated with rhamnolipid. The adhesion rate of P. putida improved by 16% with the addition of rhamnolipid (below 1 CMC), while the increase of rhamnolipid concentration beyond 1 CMC did not further enhance the bacterial adhesion. The addition of rhamnolipid did not affect the adhesion of R. erythropolis. A good relationship has been obtained in which water contact angle and surface energy of fungal surfaces are the major factors contributing to the bacterial adhesion. The adhesion is mainly driven by acid-base interaction. This finding provides insight to the role of physicochemical properties in controlling the bacterial adhesion on the fungal surface to enhance bacteria transport in soil bioremediation.
Collapse
Affiliation(s)
- Nurhidayah Hamzah
- Department of Water Resources and Environmental Systems, Faculty of Civil Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Norhafezah Kasmuri
- Department of Water Resources and Environmental Systems, Faculty of Civil Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia.
| | - Wei Tao
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, People's Republic of China
| | - Naresh Singhal
- Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, University of Auckland, Auckland, New Zealand
| | - Lokesh Padhye
- Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, University of Auckland, Auckland, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|