1
|
Munir R, Zahoor AF, Anjum MN, Nazeer U, Haq AU, Mansha A, Chaudhry AR, Irfan A. Synthesis And Photovoltaic Performance of Carbazole (Donor) Based Photosensitizers in Dye-Sensitized Solar Cells (DSSC): A Review. Top Curr Chem (Cham) 2024; 383:5. [PMID: 39738993 DOI: 10.1007/s41061-024-00488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 11/22/2024] [Indexed: 01/02/2025]
Abstract
Carbazoles are nitrogen-containing aromatic heterocycles, having widespread applications in the field of photovoltaics. Carbazole-based photosensitizers have tunable features for absorption on semi-conductor (tellurium dioxide or zinc oxide) layers to create sufficient push-pull force in the conversion of sunlight into electrical energy, thus presenting as promising heterocyclic donor candidates to be used in dye-sensitized solar cells. For the synthesis of these dyes, various structural designs are available, namely, D-A, D-π-A, D-D-π-A, D-A-π-A, A-π-D-π-A-π-A, and D2-π-A that all involve incorporating carbazole as a donor (D), along with spacer (π-extender) moieties, such as thiophene, phenol, ethynylene, nitromethane, azine, thiadiazole, or acetonitrile. Additionally, acceptors (A) employed in the designs include cyanoacrylic acids, carboxylic acids, malononitrile, rhodanine-3-acetic acid, 4-aminobenzoic acid, or 4-amino salicylic acid. This comprehensive review explores the synthesis and photovoltaic performances of numerous carbazole-based photosensitizers tailored for dye-sensitized solar cells, covering the period of 2019-2023.
Collapse
Affiliation(s)
- Ramsha Munir
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Muhammad Naveed Anjum
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Usman Nazeer
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Texas, 77204-5003, USA
| | - Atta Ul Haq
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha, P.O. Box 551, 61922, Bisha, Saudi Arabia
| | - Ahmad Irfan
- Department of Chemistry, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| |
Collapse
|
2
|
Naik P, Swain N, Naik R, Devarajan N, Al-Odayni AB, Abduh NA, Keremane KS, Alagarasan D, Aravinda T, Shivaprasad H. Exploring optical, electrochemical, thermal, and theoretical aspects of simple carbazole-derived organic dyes. Heliyon 2024; 10:e25624. [PMID: 38380028 PMCID: PMC10877267 DOI: 10.1016/j.heliyon.2024.e25624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
This study highlights the recent advancements in organic electronic materials and their potential for cost-effective optoelectronic devices. The investigation focuses on the molecular design, synthesis, and comprehensive analysis of two organic dyes, aiming to explore their suitability for optoelectronic applications. The dyes are strategically constructed with carbazole as the foundational structure, connecting two electron-withdrawing groups: barbituric acid (Cz-BA) and thiobarbituric acid (Cz-TBA). These dyes, featuring carbazole as the core and electron-withdrawing groups, demonstrate promising spectral, optical, electrochemical, thermal, and theoretical properties. They show strong potential for diverse optoelectronic applications, promising efficient light absorption and robust stability. The results endorse their suitability for practical optoelectronic systems.
Collapse
Affiliation(s)
- Praveen Naik
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Yelahanka, Bengaluru, 560064, Karnataka, India
| | - Nibedita Swain
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Yelahanka, Bengaluru, 560064, Karnataka, India
| | - R. Naik
- Department of Engineering and Materials Physics, Institute of Chemical Technology-Indian Oil Odisha Campus, Bhubaneswar, 751013, India
| | - Nainamalai Devarajan
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Abdel-Basit Al-Odayni
- Department of Restorative Dental Science, College of Dentistry, King Saud University, P. O. Box 60169, Riyadh, 11545, Saudi Arabia
| | - Naaser A.Y. Abduh
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Kavya S. Keremane
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Devarajan Alagarasan
- Department of Physics, Nitte Meenakshi Institute of Technology, Yelahanka, Bengaluru, 560064, Karnataka, India
| | - T. Aravinda
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Yelahanka, Bengaluru, 560064, Karnataka, India
| | - H.B. Shivaprasad
- Department of Physics, Nitte Meenakshi Institute of Technology, Yelahanka, Bengaluru, 560064, Karnataka, India
| |
Collapse
|
3
|
Photophysical Characteristics of Eu(III) 1,3-diketonates with substituted 1,10-phenanthroline auxiliary moieties: Experimental and Theoretical Approach. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
4
|
Carbazole based D-πi-π-A dyes for DSSC applications: DFT/TDDFT study of the influence of πi-spacers on the photovoltaic performance. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2022.111738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Hooda P, Lather V, Malik R, Khatri S, Khangwal J, Kumari P, Taxak V, Kumar M, Khatkar S, Kumar R. Judd-Ofelt analysis of warm reddish orange light emanating samarium (III) complexes possessing two band gaps. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
Zhao S, Cao J, Liu Q, Zhang X. Fine-tuning the π bridge of organic dye molecules with triarylamino as an electron donor by using electron-rich/deficient groups for more efficient dye-sensitized solar cells. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2093286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Shihan Zhao
- Xi'an University of Technology, Xi'an, People’s Republic of China
| | - Jiameng Cao
- Xi'an University of Technology, Xi'an, People’s Republic of China
| | - Qian Liu
- Xi'an University of Technology, Xi'an, People’s Republic of China
| | - Xianbin Zhang
- Xi'an University of Technology, Xi'an, People’s Republic of China
| |
Collapse
|
7
|
Novel polymeric metal complexes of salicylaldehyde schiff base derivative being used for dye sensitizer. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Shi X, Li Y, Wang L. Two novel mono-hydroxyl pyranoanthocyanidins bearing dimethylamino substituent(s) for dye-sensitized solar cell. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Alizadeh A, Shariatinia Z. Unveiling the influence of SmFeO3-TiO2 nanocomposites as high performance photoanodes of dye-sensitized solar cells. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Selective enrichment of carbazole from an anthracene slag by extraction: Experiment and simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Electronically excited state structures and stabilities of organic small molecules: A DFT study of triphenylamine derivatives. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Najare MS, Patil MK, Tilakraj TS, Yaseen M, Nadaf AA, Mantur S, Inamdar SR, Khazi IAM. Photophysical and Electrochemical Properties of Highly π-Conjugated Bipolar Carbazole-1,3,4-Oxadiazole-based D-π-A Type of Efficient Deep Blue Fluorescent Dye. J Fluoresc 2021; 31:1645-1664. [PMID: 34379233 DOI: 10.1007/s10895-021-02778-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/05/2021] [Indexed: 11/26/2022]
Abstract
In this contribution, we have designed and synthesized a novel carbazole-1,3,4-oxadiazole based bipolar fluorophore (E)-2-(4-(4-(9H-carbazol-9-yl)styryl)phenyl)-5-(4-(tertbutyl) phenyl)-1,3,4-oxadiazole (CBZ-OXA-IV). Wittig reaction is utilised for the synthesis of the designed bipolar target compound CBZ-OXA-IV. 1H NMR, 13C NMR, FT-IR and ESI-MS results confirmed the designed chemical structure of the fluorophore CBZ-OXA-IV. The photophysical properties have been investigated in detail using UV-Vis absorption, photoluminescence spectroscopy. Also, the photoluminescence studies on solid state samples (as thin films) were carried out. The CBZ-OXA-IV dye emits intense deep blue fluorescence with observed absorption and emission maxima occurring are at 353 nm and 470 nm, respectively. Fluorophore CBZ-OXA-IV has shown high Stokes shift of 7052 cm-1. The experimentally measured optical band gap ([Formula: see text]) value is found to be 3.01 eV and the fluorescence quantum yields (Φf) is 0.40. The intramolecular charge transfer property of CBZ-OXA-IV dye was examined by using photophysical properties such as absorption, emission in different solvents of different varying polarities. In addition, Density Functional Theory computations are studied in detail including the MEP surface plots and natural bond orbital analysis. The electrochemical properties have been investigated in detail by using cyclic voltammetry measurements. Thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) measurement results display a high thermal stability with decomposition temperature (Td5%) 387 °C and a large glass transition temperature (Tg) of 98 °C. The obtained results demonstrated that the novel bipolar fluorophore CBZ-OXA-IV could play an important role in organic optoelectronics and possibly can be utilized as bipolar transport materials for electroluminescence applications in optoelectronic devices/OLEDs.
Collapse
Affiliation(s)
| | - Mallikarjun Kalagouda Patil
- Laser Spectroscopy Programme, Department of Physics, UGC-CPEPA, Karnatak University, Dharwad, 580003, Karnataka, India
| | - Tarimakki Shankar Tilakraj
- Laser Spectroscopy Programme, Department of Physics, UGC-CPEPA, Karnatak University, Dharwad, 580003, Karnataka, India
| | - Mohammed Yaseen
- Department of Chemistry, Karnatak University, Dharwad, 580003, Karnataka, India
| | - AfraQuasar A Nadaf
- Department of Chemistry, Karnatak University, Dharwad, 580003, Karnataka, India
| | - Shivaraj Mantur
- Department of Chemistry, Karnatak University, Dharwad, 580003, Karnataka, India
| | - Sanjeev Ramchandra Inamdar
- Laser Spectroscopy Programme, Department of Physics, UGC-CPEPA, Karnatak University, Dharwad, 580003, Karnataka, India
| | | |
Collapse
|
13
|
Badran I, Tighadouini S, Radi S, Zarrouk A, Warad I. Experimental and first-principles study of a new hydrazine derivative for DSSC applications. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Novel Red Light-Absorbing Organic Dyes Based on Indolo[3,2-b]carbazole as the Donor Applied in Co-Sensitizer-Free Dye-Sensitized Solar Cells. MATERIALS 2021; 14:ma14071716. [PMID: 33807483 PMCID: PMC8037655 DOI: 10.3390/ma14071716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022]
Abstract
Three novel organic dyes (D6, D7 and D8), based on indolo[3,2-b]carbazole as the donor and different types of electron-withdrawing groups as the acceptors, were synthesized and successfully applied in dye-sensitized solar cells (DSSCs). Their molecular structures were fully characterized by 1H NMR, 13C NMR and mass spectroscopy. The density functional theory (DFT) calculations, electrochemical impedance spectroscopy analysis, UV–Vis absorption characterization and tests of the solar cells were used to investigate the photophysical/electrochemical properties as well as DSSCs’ performances based on the dyes. Dye D8 showed the broadest light-response range (300–770 nm) in the incident monochromatic photo-to-electron conversion efficiency (IPCE) curve, due to its narrow bandgap (1.95 eV). However, dye D6 exhibited the best device performance among the three dyes, with power conversion efficiency of 5.41%, Jsc of 12.55 mA cm−2, Voc of 745 mV and fill factor (FF) of 0.59. We also found that dye aggregation was efficiently suppressed by the introduction of alkylated indolo[3,2-b]carbazole, and, hence, better power conversion efficiencies were observed for all the three dyes, compared to the devices of co-sensitization with chenodeoxycholic acid (CDCA). It was unnecessary to add adsorbents to suppress the dye aggregation.
Collapse
|
15
|
Li X, Song P, Zhao D, Li Y. Theoretical Investigation on Photophysical Properties of Triphenylamine and Coumarin Dyes. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4834. [PMID: 33137902 PMCID: PMC7663121 DOI: 10.3390/ma13214834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 11/16/2022]
Abstract
Organic molecules with donor and acceptor configures are widely used in optoelectronic materials. Triphenylamine dyes (TPCTh and TPCRh) are investigated via density functional theory (DFT) and time-dependent DFT. Some microscopic parameters related to light absorption and photoelectric formation are calculated to interpret the experimental performance in dye-sensitized solar cells (DSSCS). Considering that coumarin derivatives (Dye 10 and Dye 11) have good donor and acceptor structures, they also have a COOH group used as an anchoring group to connect with semiconductors. Thus, the two dyes' photophysical and photoelectric properties are analyzed to estimate the performance and application in DSSCs.
Collapse
Affiliation(s)
- Xinrui Li
- Department of Physics, Liaoning University, Shenyang 110036, China;
| | - Peng Song
- Department of Physics, Liaoning University, Shenyang 110036, China;
| | - Dongpeng Zhao
- College of Science, Northeast Forestry University, Harbin 150040, China;
| | - Yuanzuo Li
- College of Science, Northeast Forestry University, Harbin 150040, China;
| |
Collapse
|
16
|
Keremane KS, Rao R, Adhikari AV. Simple 3,6-disubstituted Carbazoles as Potential Hole Transport Materials: Photophysical, Electrochemical and Theoretical Studies. Photochem Photobiol 2020; 97:289-300. [PMID: 33000869 DOI: 10.1111/php.13337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/24/2020] [Indexed: 11/26/2022]
Abstract
Developing effective and low-cost organic hole-transporting materials (HTMs) is crucial for the construction of high-performance perovskite solar cells (PSCs) and to promote their production in commercial ventures. In this context, we herein report the molecular design, synthesis and characterization of two novel D-A-D-A-D architectured 9-(2-ethylhexyl)-9H-carbazoles, connecting the mono/dimethoxyphenyl substituted cyanovinylene sidearms symmetrically at 3rd and 6th positions of the carbazole heterocycle (CZ1-2 ), as potential hole-transporting materials (HTMs). The current work highlights their structural, photophysical, thermal, electrochemical and theoretical investigations, including their structure-property correlation studies. Evidently, the optical studies showcased their excellent fluorescence ability due to their push-pull natured structure with extended π-conjugation. Further, in-depth solvatochromic studies demonstrated their intramolecular charge-transfer (ICT)-dominated optoelectronic behavior, supported by various correlation studies. Also, the optical results revealed that CZ1 and CZ2 display λabs and λemi in the order of 410-430 nm and 530-560 nm, respectively, with a bandgap in the range of 2.5-2.6 eV. Finally, their quantum chemical simulations have provided an insight into the predictions of their structural, molecular, electronic and optical parameters. Conclusively, the study furnishes a deeper understanding of the intricacies involved in the structural modification of carbazole-based HTMs for achieving better performance.
Collapse
Affiliation(s)
- Kavya S Keremane
- Organic Materials Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Mangalore, India
| | - Rathnamala Rao
- Department of Electronics and Communication Engineering, National Institute of Technology Karnataka, Mangalore, India
| | - Airody Vasudeva Adhikari
- Organic Materials Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Mangalore, India.,Yenepoya Research Centre, Yenepoya deemed to be University, Mangalore, India
| |
Collapse
|