1
|
Sarmah D, Choudhury A, Bora U. Palladium nanoparticle catalyzed synthesis of indoles via intramolecular Heck cyclisation. Org Biomol Chem 2024; 22:6419-6431. [PMID: 39069947 DOI: 10.1039/d4ob01177e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A system utilizing palladium(II)-PEG has been devised for the intramolecular Heck cyclization of N-vinyl and N-allyl-2-haloanilines. The synthesis of a variety of indoles, including 2,3-diester substituted ones and 3-methyl indoles, has been accomplished using this catalytic system. The N-vinyl starting materials are obtained by the aza-Michael addition of 2-haloanilines with alkynecarboxylate esters, which, upon cyclization, yield ester-substituted indoles. Conversely, N-allyl-2-haloanilines yield 3-methylated indoles as the major products. The high activity of the system is owed to the in situ generation of Pd nanoparticles.
Collapse
Affiliation(s)
- Debasish Sarmah
- Dept of Chemical Sciences, Tezpur University, Napam, Sonitpur, Assam, India.
- Department of Chemistry, Dakshin Kamup College, Mirza, Kamrup, Assam, India
| | - Anup Choudhury
- Department of Chemistry, Handique Girls' College, Guwahati, Assam, India
| | - Utpal Bora
- Dept of Chemical Sciences, Tezpur University, Napam, Sonitpur, Assam, India.
| |
Collapse
|
2
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
3
|
Jia H, Cheng M, Zhao R, Zheng P, Ren F, Nan Y, Huang M, Li Y. Excellent Pd-Loaded Magnetic Nanocatalyst on Multicarboxyl and Boronic Acid Biligands. ACS OMEGA 2024; 9:17817-17831. [PMID: 38680317 PMCID: PMC11044249 DOI: 10.1021/acsomega.3c07133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/28/2023] [Accepted: 03/27/2024] [Indexed: 05/01/2024]
Abstract
An effective palladium nanocatalyst (Fe3O4@SiO2-FPBA-DTPA-Pd) was proposed and prepared, which was immobilized on magnetic silica with ethylenediamine pentaacetic acid and formylphenylboronic acid as biligands. A series of characterizations showed that Fe3O4@SiO2-FPBA-DTPA-Pd was 5-15 nm and contained 1.44 mmol/g Pd2+/Pd0. It was stable below 232.7 °C, and its saturation magnetization value was 21.17 emu/g which was easily recycled by a magnet. Its catalytic ability was evaluated through 7 Suzuki reactions and 15 Heck reactions. Results showed that the yields of 14 reactions catalyzed by Fe3O4@SiO2-FPBA-DTPA-Pd were more than 90%, while were better than those of the other two immobilized Pd catalysts on a single diethyltriamine pentaacetic acid (DTPA) group or boronic acid group. Moreover, Fe3O4@SiO2-FPBA-DTPA-Pd showed good reusability in both Suzuki and Heck reactions. In two model Suzuki and Heck reactions, after seven cycles, its yields were still above 95% without significant loss, which exceeded those of many reported catalysts; therefore, it has great potential in future large-scale industrial production.
Collapse
Affiliation(s)
- Haijiao Jia
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Mengqi Cheng
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Ran Zhao
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Pingyi Zheng
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Fangfang Ren
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yaqin Nan
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Mengting Huang
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Youxin Li
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
New Ionic Liquid Microemulsion-Mediated Synthesis of Silver Nanoparticles for Skin Bacterial Infection Treatments. Antibiotics (Basel) 2023; 12:antibiotics12020247. [PMID: 36830157 PMCID: PMC9952689 DOI: 10.3390/antibiotics12020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
This work reports a new approach for the synthesis of extremely small monodispersed silver nanoparticles (AgNPs) (2.9-1.5) by reduction of silver nitrate in a new series of benzyl alkyl imidazolium ionic liquids (BAIILs)-based microemulsions (3a-f) as media and stabilizing agents. Interestingly, AgNPs isolated from the IILMEs bearing the bulkiest substituents (tert-butyl and n-butyl) (3f) displayed almost no nanoparticle agglomeration. In an in vitro antibacterial test against ESKAPE pathogens, all AgNPs-BAIILs had potent antibiotic activity, as reflected by antibacterial efficiency indices. Furthermore, when compared to other nanoparticles, these were the most effective in preventing biofilm formation by the tested bacterial strains. Moreover, the MTT assay was used to determine the cytotoxicity of novel AgNPs-BAIILs on healthy human skin fibroblast (HSF) cell lines. The MTT assay revealed that novel AgNPs-BAIILs showed no significant toxic effects on the healthy cells. Thus, the novel AgNPs-BAIILs microemulsions could be used as safe antibiotics for skin bacterial infection treatments. AgNPs isolated from BAIIL (3c) was found to be the most effective antibiotic of the nanoparticles examined.
Collapse
|
5
|
Mangaiyarkarasi R, Santhiya N, Umadevi S. Ionic liquid crystal – mediated preparation of reduced graphene oxide under microwave irradiation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
DPD Simulation on the Transformation and Stability of O/W and W/O Microemulsions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041361. [PMID: 35209153 PMCID: PMC8878357 DOI: 10.3390/molecules27041361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
The dissipative particle dynamics simulation method is adopted to investigate the microemulsion systems prepared with surfactant (H1T1), oil (O) and water (W), which are expressed by coarse-grained models. Two topologies of O/W and W/O microemulsions are simulated with various oil and water ratios. Inverse W/O microemulsion transform to O/W microemulsion by decreasing the ratio of oil-water from 3:1 to 1:3. The stability of O/W and W/O microemulsion is controlled by shear rate, inorganic salt and the temperature, and the corresponding results are analyzed by the translucent three-dimensional structure, the mean interfacial tension and end-to-end distance of H1T1. The results show that W/O microemulsion is more stable than O/W microemulsion to resist higher inorganic salt concentration, shear rate and temperature. This investigation provides a powerful tool to predict the structure and the stability of various microemulsion systems, which is of great importance to developing new multifunctional microemulsions for multiple applications.
Collapse
|
7
|
Seitkalieva MM, Samoylenko DE, Lotsman KA, Rodygin KS, Ananikov VP. Metal nanoparticles in ionic liquids: Synthesis and catalytic applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213982] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Chernyshev VM, Khazipov OV, Eremin DB, Denisova EA, Ananikov VP. Formation and stabilization of nanosized Pd particles in catalytic systems: Ionic nitrogen compounds as catalytic promoters and stabilizers of nanoparticles. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213860] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Le VD, Le TCH, Chau VT, Le TND, Dang CH, Vo TTN, Nguyen TD, Nguyen TD. Palladium nanoparticles in situ synthesized on Cyclea barbata pectin as a heterogeneous catalyst for Heck coupling in water, the reduction of nitrophenols and alkynes. NEW J CHEM 2021. [DOI: 10.1039/d0nj05032f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study develops an effective method for in situ synthesis of PdNPs using Cyclea barbata pectin as green reducing and stabilizing reagent. The catalytic activity of nanocomposite was evaluated for Heck coupling reaction, reduction of nitrophenols and reduction of alkynes.
Collapse
Affiliation(s)
- Van-Dung Le
- Graduate University of Science and Technology
- Vietnam Academy of Science and Technology
- Cau Giay
- Vietnam
- Institute of Chemical Technology
| | - T. Cam-Huong Le
- Graduate University of Science and Technology
- Vietnam Academy of Science and Technology
- Cau Giay
- Vietnam
- Institute of Chemical Technology
| | - Van-Trung Chau
- Institute of Chemical Technology
- Vietnam Academy of Science and Technology
- Ho Chi Minh City
- Vietnam
| | - T. Ngoc-Duyen Le
- Institute of Chemical Technology
- Vietnam Academy of Science and Technology
- Ho Chi Minh City
- Vietnam
| | - Chi-Hien Dang
- Graduate University of Science and Technology
- Vietnam Academy of Science and Technology
- Cau Giay
- Vietnam
- Institute of Chemical Technology
| | - T. To-Nguyen Vo
- Institute of Chemical Technology
- Vietnam Academy of Science and Technology
- Ho Chi Minh City
- Vietnam
| | - Trinh Duy Nguyen
- Center of Excellence for Green Energy and Environmental Nanomaterials
- Nguyen Tat Thanh University
- Ho Chi Minh City 755414
- Vietnam
| | - Thanh-Danh Nguyen
- Graduate University of Science and Technology
- Vietnam Academy of Science and Technology
- Cau Giay
- Vietnam
- Institute of Chemical Technology
| |
Collapse
|