1
|
Naumenko K, Zahorodnia S, Pop CV, Rizun N. Antiviral activity of silver nanoparticles against the influenza A virus. J Virus Erad 2023; 9:100330. [PMID: 37416089 PMCID: PMC10319835 DOI: 10.1016/j.jve.2023.100330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
Viral infections occupy an essential place in modern medicine, particularly a large group of diseases caused by the influenza viruses. They are rapidly transmitted and mutate quickly, which can lead to significant socio-economic consequences. Silver nanoparticles (AgNPs) are considered to be an effective antimicrobial agent. This study shows that they have strong antiviral properties against the influenza A virus infection. Their absence of cytotoxicity at inhibitory concentrations demonstrates that they could be an effective antiviral agent against this virus. As AgNPs inhibit the influenza A virus replication and spread, they could also be successfully used as a post-infection virostatic agent.
Collapse
Affiliation(s)
- Krystyna Naumenko
- Zabolotny Institute of Microbiology and Virology, The National Academy of Sciences of Ukraine, st. Academician Zabolotny, 154, 03143, Kyiv, Ukraine
| | - Svitlana Zahorodnia
- Zabolotny Institute of Microbiology and Virology, The National Academy of Sciences of Ukraine, st. Academician Zabolotny, 154, 03143, Kyiv, Ukraine
| | - Calin V. Pop
- Noble Elements LLC / NOBEL, Cheyenne, WY, 82001, United States
| | - Nodari Rizun
- Noble Elements LLC / NOBEL, Cheyenne, WY, 82001, United States
| |
Collapse
|
2
|
Shaban SM, Hamed EH, Elsharif AM, Elged AH, El Basiony N. Preparation gemini non-ionic surfactants-based polyethylene oxide with variable hydrophobic tails for controlling the catalytic and antimicrobial activity of AgNPs. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Organic quaternary phosphonium salts intercalated MXene towards controllable amphiphilicity and dispersions. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Pisárčik M, Lukáč M, Jampílek J, Pašková Ľ, Bilka F, Bilková A, Devínsky F, Vaľko J, Horáková R, Hošek J, Březina M, Opravil T. Controlled synthesis of gemini surfactant-capped gold nanoparticles. Gemini structure-nanoparticle properties relationship study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Micellar nanocontainers based on sterically hindered cationic phosphonium amphiphiles. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3481-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Pisárčik M, Lukáč M, Jampílek J, Bilka F, Bilková A, Pašková Ľ, Devínsky F, Horáková R, Březina M, Opravil T. Silver Nanoparticles Stabilized with Phosphorus-Containing Heterocyclic Surfactants: Synthesis, Physico-Chemical Properties, and Biological Activity Determination. NANOMATERIALS 2021; 11:nano11081883. [PMID: 34443714 PMCID: PMC8399434 DOI: 10.3390/nano11081883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Phosphorus-containing heterocyclic cationic surfactants alkyldimethylphenylphospholium bromides with the alkyl chain length 14 to 18 carbon atoms were used for the stabilization of silver nanodispersions. Zeta potential of silver nanodispersions ranges from +35 to +70 mV, which indicates the formation of stable silver nanoparticles (AgNPs). Long-chain heptadecyl and octadecyl homologs of the surfactants series provided the most intensive stabilizing effect to AgNPs, resulting in high positive zeta potential values and smaller diameter of AgNPs in the range 50–60 nm. A comparison with non-heterocyclic alkyltrimethylphosphonium surfactants of the same alkyl chain length showed better stability and more positive zeta potential values for silver nanodispersions stabilized with heterocyclic phospholium surfactants. Investigations of biological activity of phospholium-capped AgNPs are represented by the studies of antimicrobial activity and cytotoxicity. While cytotoxicity results revealed an increased level of HepG2 cell growth inhibition as compared with the cytotoxicity level of silver-free surfactant solutions, no enhanced antimicrobial action of phospholium-capped AgNPs against microbial pathogens was observed. The comparison of cytotoxicity of AgNPs stabilized with various non-heterocyclic ammonium and phosphonium surfactants shows that AgNPs capped with heterocyclic alkyldimethylphenylphospholium and non-heterocyclic triphenyl-substituted phosphonium surfactants have the highest cytotoxicity among silver nanodispersions stabilized by the series of ammonium and phosphonium surfactants.
Collapse
Affiliation(s)
- Martin Pisárčik
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, SK-83232 Bratislava, Slovakia;
- Correspondence: ; Tel.: +421-2-50117329
| | - Miloš Lukáč
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, SK-83232 Bratislava, Slovakia;
| | - Josef Jampílek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia;
| | - František Bilka
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, SK-83232 Bratislava, Slovakia; (F.B.); (A.B.); (Ľ.P.)
| | - Andrea Bilková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, SK-83232 Bratislava, Slovakia; (F.B.); (A.B.); (Ľ.P.)
| | - Ľudmila Pašková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, SK-83232 Bratislava, Slovakia; (F.B.); (A.B.); (Ľ.P.)
| | - Ferdinand Devínsky
- Faculty of Pharmacy, Comenius University, SK-83232 Bratislava, Slovakia;
| | | | - Matěj Březina
- Materials Research Centre, Faculty of Chemistry, University of Technology, CZ-61200 Brno, Czech Republic; (M.B.); (T.O.)
| | - Tomáš Opravil
- Materials Research Centre, Faculty of Chemistry, University of Technology, CZ-61200 Brno, Czech Republic; (M.B.); (T.O.)
| |
Collapse
|