1
|
Liu S, Wang Y, Huang Y, Hu M, Lv X, Zhang Y, Dai H. Gelatin-nanocellulose stabilized emulsion-filled hydrogel beads loaded with curcumin: Preparation, encapsulation and release behavior. Int J Biol Macromol 2024:133551. [PMID: 38997845 DOI: 10.1016/j.ijbiomac.2024.133551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/16/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
In this study, the curcumin was firstly encapsulated in gelatin (GLT) and/or cellulose nanocrystals (CNC) stabilized emulsions, then further mixed with sodium alginate (SA) to form emulsion-filled hydrogel beads loaded with curcumin (Cur). The Cur-loaded emulsions showed a droplet size of 20.3-24.4 μm with a uniform distribution. Introducing CNC and/or SA increased the viscosity of emulsions accompanied by viscoelastic transition, while the modulus was reduced due to destruction of GLT gel. Cur was doubly immobilized in the hydrogel beads with >90 % of encapsulation efficiency. The results of simulated gastrointestinal tract experiments revealed that the beads possessed a good pH sensitivity and controlled release behavior to prolong the retention of Cur in the gastrointestinal tract. After 6 h of UV irradiation, the Cur-loaded emulsion-filled hydrogel beads showed a higher antioxidant activity than that of pure Cur, effectively delaying the photodegradation of Cur. In addition, the beads had better stability in aqueous and acidic environments, which was favorable for prolonging the release of Cur. These results suggest that the emulsion-filled hydrogel beads have great potential for the delivery of lipophilic bioactive molecules.
Collapse
Affiliation(s)
- Siyi Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuxi Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yue Huang
- Chongqing Sericulture Science and Technology Research Institute, Chongqing 400700, China
| | - Mengtao Hu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiangxiang Lv
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
2
|
Carpintero M, Marcet I, Zornoza M, Rendueles M, Díaz M. Effect of Birch Sap as Solvent and Source of Bioactive Compounds in Casein and Gelatine Films. MEMBRANES 2023; 13:786. [PMID: 37755208 PMCID: PMC10536005 DOI: 10.3390/membranes13090786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023]
Abstract
Birch sap consists of a natural water-based solution with valuable compounds such as minerals, sugars, organic acids and phenolic compounds that can be used advantageously in the preparation of edible films. In this study, gelatine- and casein-based films were prepared using birch sap as biopolymer solvent and source of bioactive compounds with the aim of developing new bioactive materials for food packaging. The physical, mechanical, barrier, antioxidant and iron-chelating properties of the obtained films were investigated. Birch sap enhanced the mechanical properties of the films by increasing puncture strength and flexibility, as well as their ultraviolet-visible light barrier properties. In addition, the presence of bioactive compounds endowed the birch sap films with an antioxidant capacity of almost 90% and an iron-chelating capacity of 40-50% with respect to the control films. Finally, to test these films as food packaging material, a photosensitive curcumin solution was packed and exposed to ultraviolet light. Tested films were able to protect curcumin against photodegradation, and the presence of bioactive compounds inside the birch-sap-enriched materials offered an additional 10% photoprotective effect compared to control films. Results showed the potential of birch sap as an environmentally friendly biopolymer solvent and plasticizer that can improve the mechanical and photoprotective properties of the prepared materials.
Collapse
Affiliation(s)
| | | | | | - Manuel Rendueles
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julian Clavería 8, 33006 Oviedo, Spain; (M.C.); (I.M.); (M.D.)
| | | |
Collapse
|
3
|
Pokhrel DR, Sah MK, Gautam B, Basak HK, Bhattarai A, Chatterjee A. A recent overview of surfactant-drug interactions and their importance. RSC Adv 2023; 13:17685-17704. [PMID: 37312992 PMCID: PMC10258811 DOI: 10.1039/d3ra02883f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
This review focuses on the self-aggregation properties of different drugs, as well as on their interaction with anionic, cationic, and gemini surfactants. The interaction of drugs with surfactants has been reviewed concerning conductivity, surface tension, viscosity, density, and UV-Vis spectrophotometric measurements, and their relation with critical micelle concentration (CMC), cloud point, and binding constant. The conductivity measurement technique is used for the micellization of ionic surfactants. Cloud point studies can be used for the non-ionic, and also for certain ionic surfactants. Usually, surface tension studies are mostly employed for non-ionic surfactants. The degree of dissociation that is determined is used to evaluate thermodynamic parameters of micellization at various temperatures. The effect of external parameters like temperature, salt, solvent, pH, etc., is discussed for thermodynamics parameters using recent experimental works on drug-surfactant interactions. Consequences of drug-surfactant interaction, condition of drugs during interaction with surfactants, and applications of drug-surfactant interaction are being generalized which reflects current and future potential uses of drug-surfactant interactions.
Collapse
Affiliation(s)
- Dilli Ram Pokhrel
- Department of Chemistry, Damak Multiple Campus Damak Jhapa 57217 Nepal
- Department of Chemistry, Raiganj University Uttar Dinajpur West Bengal-733134 India
| | - Manish Kumar Sah
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University Biratnagar 56613 Nepal
| | - Bibaran Gautam
- Department of Chemistry, Damak Multiple Campus Damak Jhapa 57217 Nepal
| | - Hriday Kumar Basak
- Department of Chemistry, Government General Degree College at Kushmandi Dakshin Dinajpur West Bengal-733121 India
- Department of Chemistry, Raiganj University Uttar Dinajpur West Bengal-733134 India
| | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University Biratnagar 56613 Nepal
- Department of Chemistry, Indian Institute of Technology Madras 600036 India
| | - Abhik Chatterjee
- Department of Chemistry, Raiganj University Uttar Dinajpur West Bengal-733134 India
| |
Collapse
|
4
|
Lokhande AS, Panchal F, Munshi R, Madkaikar M, Malshe VC, Devarajan PV. pH-responsive microparticles of rifampicin for augmented intramacrophage uptake and enhanced antitubercular efficacy. Int J Pharm 2023; 635:122729. [PMID: 36803923 DOI: 10.1016/j.ijpharm.2023.122729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
In this study we present pH-responsive rifampicin (RIF) microparticles comprising lecithin and a biodegradable hydrophobic polymer, polyethylene sebacate (PES), to achieve high intramacrophage delivery and enhanced antitubercular efficacy. PES and PES-lecithin combination microparticles (PL MPs) prepared by single step precipitation revealed average size of 1.5 to 2.7 µm, entrapment efficiency ∼ 60 %, drug loading 12-15 % and negative zeta potential. Increase in lecithin concentration enhanced hydrophilicity. PES MPs demonstrated faster release in simulated lung fluid pH 7.4, while lecithin MPs facilitated faster and concentration dependent release in acidic artificial lysosomal fluid (ALF) pH 4.5 due to swelling and destabilization confirmed by TEM. PES and PL (1:2) MPs exhibited comparable macrophage uptake which was ∼ 5-fold superior than free RIF, in the RAW 264.7 macrophage cells. Confocal microscopy depicted intensified accumulation of the MPs in the lysosomal compartment, with augmented release of coumarin dye from the PL MPs, confirming pH-triggered increased intracellular release. Although, PES MPs and PL (1:2) MPs displayed comparable and high macrophage uptake, antitubercular efficacy against macrophage internalised M. tuberculosis was significantly higher with PL (1:2) MPs. This suggested great promise of the pH-sensitive PL (1:2) MPs for enhanced antitubercular efficacy.
Collapse
Affiliation(s)
- Amit S Lokhande
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Falguni Panchal
- Department of Clinical Pharmacology, Topiwala National Medical College and B. Y. L. Nair Charitable Hospital, Dr A. L. Nair Road, Mumbai Central, Mumbai 400008, Maharashtra, India
| | - Renuka Munshi
- Department of Clinical Pharmacology, Topiwala National Medical College and B. Y. L. Nair Charitable Hospital, Dr A. L. Nair Road, Mumbai Central, Mumbai 400008, Maharashtra, India
| | - Manisha Madkaikar
- Department of Paediatric Immunology and Leukemia Biology, ICMR-National Institute of Immunohaematology, KEM Hospital campus, Parel, Mumbai 400012, Maharashtra, India
| | - Vinod C Malshe
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India.
| |
Collapse
|
5
|
Araya-Sibaja AM, Wilhelm-Romero K, Quirós-Fallas MI, Vargas Huertas LF, Vega-Baudrit JR, Navarro-Hoyos M. Bovine Serum Albumin-Based Nanoparticles: Preparation, Characterization, and Antioxidant Activity Enhancement of Three Main Curcuminoids from Curcuma longa. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092758. [PMID: 35566108 PMCID: PMC9106055 DOI: 10.3390/molecules27092758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Bovine Serum Albumin (BSA) lipid hybrid nanoparticles are part of the new solutions to overcome low bioavailability of poor solubility drugs such as curcuminoids, which possess multiple biological advantages; however, they are counterbalanced by its short biological half-life. In this line, we prepared the three main curcuminoids: curcumin (CUR), desmethoxycurcumin (DMC), and bisdemethoxycurcumin (BDM)-loaded BSA nanoparticles. The three formulations were characterized by the average size, size distribution, crystallinity, weight loss, drug release, kinetic mechanism, and antioxidant activity. The developed method produced CUR-, DMC-, and BDM-loaded BSA nanoparticles with a size average of 15.83 ± 0.18, 17.29 ± 3.34, and 15.14 ± 0.14 nm for CUR, DMC, and BDM loaded BSA, respectively. FT-IR analysis confirmed the encapsulation, and TEM images showed their spherical shape. The three formulations achieved encapsulation efficiency upper to 96% and an exhibited significantly increased release from the nanoparticle compared to free compounds in water. The antioxidant activity was enhanced as well, in agreement with the improvement in water release, obtaining IC50 values of 9.28, 11.70, and 15.19 µg/mL for CUR, DMC, and BDM loaded BSA nanoparticles, respectively, while free curcuminoids exhibited considerably lower antioxidant values in aqueous solution. Hence, this study shows promises for such hybrid systems, which have been ignored so far, regarding proper encapsulation, protection, and delivery of curcuminoids for the development of functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Andrea Mariela Araya-Sibaja
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, Pavas, San José 1174-1200, Costa Rica; (K.W.-R.); (J.R.V.-B.)
- Correspondence: ; Tel.: +506-2519-5700 (ext. 6016)
| | - Krissia Wilhelm-Romero
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, Pavas, San José 1174-1200, Costa Rica; (K.W.-R.); (J.R.V.-B.)
- Laboratorio BIODESS, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060, Costa Rica; (M.I.Q.-F.); (L.F.V.H.); (M.N.-H.)
| | - María Isabel Quirós-Fallas
- Laboratorio BIODESS, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060, Costa Rica; (M.I.Q.-F.); (L.F.V.H.); (M.N.-H.)
| | - Luis Felipe Vargas Huertas
- Laboratorio BIODESS, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060, Costa Rica; (M.I.Q.-F.); (L.F.V.H.); (M.N.-H.)
| | - José Roberto Vega-Baudrit
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, Pavas, San José 1174-1200, Costa Rica; (K.W.-R.); (J.R.V.-B.)
- Laboratorio de Investigación y Tecnología de Polímeros POLIUNA, Escuela de Química, Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica
| | - Mirtha Navarro-Hoyos
- Laboratorio BIODESS, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060, Costa Rica; (M.I.Q.-F.); (L.F.V.H.); (M.N.-H.)
| |
Collapse
|
6
|
Kour P, Afzal S, Gani A, Zargar MI, Nabi Tak U, Rashid S, Dar AA. Effect of nanoemulsion-loaded hybrid biopolymeric hydrogel beads on the release kinetics, antioxidant potential and antibacterial activity of encapsulated curcumin. Food Chem 2021; 376:131925. [PMID: 34973641 DOI: 10.1016/j.foodchem.2021.131925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 12/16/2022]
Abstract
Nanoemulsion encapsulated in the hydrogel beads are important entrants for loading hydrophobic active ingredients for enhancing their bioavailability and biological activities relevant in the pharmaceutical, food and cosmetic industries. Herein, we report the formulation of curcumin-loaded nanoemulsion encapsulated in ionotropic hybrid hydrogel beads of alginate, chitosan, gelatin and polyethylene oxide for effective delivery of curcumin. The release behaviour in simulated gastric and intestinal fluids (SGF and SIF) at 37 °C showed faster release in SGF which could be explained on the basis of mesh size, the extent of hydration and the complexation of the curcumin with the Ca2+ ions present within the hydrogel network. The free radical scavenging and antibacterial activities of the released curcumin in SGF were significantly greater than in SIF. This study shows promises of such hybrid systems, ignored so far, for proper encapsulation, protection and delivery of curcumin for the development of functional foods and pharmaceutics. The high structural stability of these nanoemulsion carriers and their effective delivery of curcumin provide a novel and tailored formulation out of existing polymers with plethora of advantages for oral drug delivery. Moreover, this study opens new door for different possibilities to improve the physicochemical characteristics and delivery of bioactive molecules like curcumin.
Collapse
Affiliation(s)
- Pawandeep Kour
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Saima Afzal
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Mohammed Iqbal Zargar
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Umar Nabi Tak
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Showkat Rashid
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Aijaz Ahmad Dar
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India.
| |
Collapse
|
7
|
Modulation of the interaction between sodium alginate and C16BzCl by the ions from sodium chloride and sodium salicylate: an insight into the hydrophobic salt effect on anionic polymer–catanionic surfactant interactions. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04841-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Lone MS, Afzal S, Chat OA, Aswal VK, Dar AA. Temperature- and Composition-Induced Multiarchitectural Transitions in the Catanionic System of a Conventional Surfactant and a Surface-Active Ionic Liquid. ACS OMEGA 2021; 6:11974-11987. [PMID: 34056352 PMCID: PMC8153984 DOI: 10.1021/acsomega.1c00469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
The mixture of the cationic surfactant, cetyltrimethylammonium bromide (CTAB), and anionic surface-active ionic liquid, 1-butyl-3-methylimidazoliumdodecyl sulfate (bmimDS), has been studied as a function of the mole fraction of CTAB, X CTAB, with the total surfactant concentration fixed at 50 mM using turbidity measurements, rheology, dynamic light scattering, differential scanning calorimetry, small-angle neutron scattering, and small-angle X-ray scattering techniques. The catanionic mixture has been found to exhibit phase transitions from vesicles to micelles as a function of temperature, with some mole fractions of CTAB showing dual transitions. Solutions of X CTAB = 0.2 to 0.5 exhibited a single transition from vesicles to cylindrical micelles at 45 °C. With an increase in the mole fraction of CTAB from 0.55 to 0.65, dual structural transitions at 30 and 45 °C were observed. The microstructural transition at 30 °C is ascribed to the vesicle aggregation process with smaller vesicles fusing into bigger ones, whereas the transition at 45 °C was evaluated to be the vesicle-to-cylindrical micelle transition. However, at higher mole fractions of CTAB, X CTAB from 0.65 to 0.90, a single transition from vesicles to small cylindrical/spherical micelles was observed in the solutions, at a lower temperature of 30 °C. To the best of our knowledge, such a microstructural transitions as a function of temperature in a single mixture of cationic and anionic surfactants without any additive has not been reported so far.
Collapse
Affiliation(s)
- Mohd Sajid Lone
- Soft
Matter Research Group, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Saima Afzal
- Soft
Matter Research Group, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Oyais Ahmad Chat
- Soft
Matter Research Group, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
- Department
of Chemistry, Government Degree College
Pulwama, Pulwama 192301, Jammu and Kashmir, India
| | - Vinod Kumar Aswal
- Solid
State Physics Division, Bhabha Atomic Research
Centre, Mumbai 400 085, India
| | - Aijaz Ahmad Dar
- Soft
Matter Research Group, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| |
Collapse
|