1
|
Li W, Zhang H, Zhai Z, Huang X, Shang S, Song Z. Fast and Reversible Photoresponsive Self-Assembly Behavior of Rosin-Based Amphiphilic Polymers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12885-12896. [PMID: 36175382 DOI: 10.1021/acs.jafc.2c04389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Designing stimulus-responsive amphiphilic polymers with a fast photoresponsive self-assembly behavior remains a challenge. Two series of rosin-terminated and azobenzene-terminated amphiphilic polymers (PAMn and PMAn) with fast and reversible photoresponsive properties were prepared using rosin-based azobenzene groups and polyethylene glycol, respectively. Under 5-10 s of UV irradiation, the polymers showed trans-to-cis isomerization and reached a photosteady state. For the PAMn polymer, the absorbance of the absorption peak at 325 nm recovered to more than 95% of the initial value under visible light for 5-10 s, whereas that of the PMAn polymer recovered completely. Notably, the PAMn and PMAn polymers initially self-assembled to vesicles or spherical micelles, and various morphological changes were achieved by manipulating UV irradiation time, with the initial morphology again recovered under dark conditions or visible-light irradiation. Remarkably, vesicles of the PAM34 and PMA34 polymers presented an intermediate open-vesicle state before being completely deformed under UV irradiation because of the existence of a π-π interaction. Finally, the ability of PAM34 and PMA34 polymer vesicles to perform the controlled release and reversible loading of a fluorescent probe was evaluated.
Collapse
Affiliation(s)
- Wanbing Li
- CAF; National Engineering Lab. for Biomass Chemical Utilization; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Lab. of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, Nanjing, Jiangsu Province210042, P. R. China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Haibo Zhang
- CAF; National Engineering Lab. for Biomass Chemical Utilization; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Lab. of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, Nanjing, Jiangsu Province210042, P. R. China
| | - Zhaolan Zhai
- CAF; National Engineering Lab. for Biomass Chemical Utilization; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Lab. of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, Nanjing, Jiangsu Province210042, P. R. China
| | - Xujuan Huang
- School of Chemical and Chemistry, Yancheng Institute of Technology, Yancheng, Jiangsu Province210042, P. R. China
| | - Shibin Shang
- CAF; National Engineering Lab. for Biomass Chemical Utilization; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Lab. of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, Nanjing, Jiangsu Province210042, P. R. China
| | - Zhanqian Song
- CAF; National Engineering Lab. for Biomass Chemical Utilization; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Lab. of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, Nanjing, Jiangsu Province210042, P. R. China
| |
Collapse
|
2
|
Ye Z, Lu H, Chai G, Wu C, Chen J, Lv L. Glycerol modified poly(vinyl alcohol)/poly(ethylene glycol) self‐healing hydrogel for artificial cartilage. POLYM INT 2022. [DOI: 10.1002/pi.6444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zishuo Ye
- Group of Mechanical and Biomedical Engineering College of Mechanical and Electronic Engineering, Xi'an Polytechnic University Xi'an Shaanxi 710048 P. R. China
| | - Hailin Lu
- Group of Mechanical and Biomedical Engineering College of Mechanical and Electronic Engineering, Xi'an Polytechnic University Xi'an Shaanxi 710048 P. R. China
| | - Guiquan Chai
- Group of Mechanical and Biomedical Engineering College of Mechanical and Electronic Engineering, Xi'an Polytechnic University Xi'an Shaanxi 710048 P. R. China
| | - Changlei Wu
- Group of Mechanical and Biomedical Engineering College of Mechanical and Electronic Engineering, Xi'an Polytechnic University Xi'an Shaanxi 710048 P. R. China
| | - Jian Chen
- Group of Mechanical and Biomedical Engineering College of Mechanical and Electronic Engineering, Xi'an Polytechnic University Xi'an Shaanxi 710048 P. R. China
| | - Leifeng Lv
- Department of Orthopadics The Second Affiliated hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi 710061 P.R. China
| |
Collapse
|
3
|
Chong-Boon Ong, Mohamad Suffian Mohamad Annuar. Hydrogels Responsive Towards Important Biological-Based Stimuli. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Li W, Zhang H, Zhai Z, Huang X, Shang S, Song Z. Photo-controlled self-assembly behavior of novel amphiphilic polymers with a rosin-based azobenzene group. NEW J CHEM 2022. [DOI: 10.1039/d1nj04575j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel ‘bola’ rosin-based photo-responsive amphiphilic polymers PMPn show an extremely high photoresponsive efficiency and various assembly morphological changes.
Collapse
Affiliation(s)
- Wanbing Li
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Haibo Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
| | - Zhaolan Zhai
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
| | - Xujuan Huang
- School of Chemical and Chemistry, Yancheng Institute of Technology, Yancheng 210042, Jiangsu Province, P. R. China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
| |
Collapse
|